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A COMPARISON OF COINTEGRATION TESTS 

PETR MARIEL, Bilbao 

(Received June 1, 1995) 

Summary. In this paper some of the cointegration tests applied to a single equation 
are compared. Many of the existent cointegration tests are simply extensions of the unit 
root tests applied to the residuals of the cointegrating regression and the habitual Ho is no 
cointegration. However, some non residual-based tests and some tests of the opposite null 
hypothesis have recently appeared in literature. Monte Carlo simulations have been used 
for the power comparison of the nine selected tests (ADF, Za, Zt, DH5, Jl, HI, H2, C, 
LHI) using several types of data generating processes. 

Keywords: Integrated Processes, Monte Carlo Simulation 

A MS classification: 62J05, 62E25 

1. INTRODUCTION 

Two or more time series are said to be cointegrated if each of the series taken 
individually is I(l) while some linear combination of the series is I(0). Cointegration 
means that many shocks can cause permanent changes in the I(l) series but there 
is some long-run equilibrium relation tying the series together. The series can then 
deviate from the equilibrium in the short run but not in the long run. 

Cointegration analysis is often used in financial economics. Kasa [9], for example, 
looks for common stochastic trends among the stock markets of the U.S.A., Japan, 
England, Germany and Canada. His results indicate the presence of a single common 
trend driving these countries' stock markets. In a similar study, Arshanapalli and 
Doukas [1] discover that the U.S.A. stock market has a considerable impact on the 
French, German and U.K. markets in the post-October 1987 period. Johansen and 
Juselius [8] look for relations among prices, interest rates and exchange rates for the 
U.K., and test some hypotheses on cointegration relations among these variables. 
Haldrup [6] studies single-equation regression models containing both I(l) and 1(2) 
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variables. His paper is completed with an empirical application of money demand 
in the U.K.. Ngama and Sosvilla [12] examine the purchasing power parity theory 
for both the Spanish Peseta/U.S. Dollar and the Spanish Peseta/Deutsche Mark 
exchange rates, using both the consumer and the wholesale price indices. 

Given that testing the existence of a cointegration relationship in a single equa­
tion is equivalent to testing for the unit root in the residuals of the cointegrating 
regression, many cointegration tests are usually different ways of testing for this unit 
root, that is to say, they are extensions of unit root tests. This is the first reason 
for the existence of more tests of the null hypothesis of no cointegration than of the 
null of cointegration, since the null hypothesis of the majority of the unit root tests 
is the existence of the unit root at the frequency zero. Another reason is related to 
the asymptotic theory of the models with I(l) variables. As Phillips and Ouliaris 
[15] argue, the conventional asymptotic theory fails under the II0 of cointegration, 
that is to say, it is not valid for certain statistics (such as the long run variance). 

Among the residual based tests of the IIo of no cointegration the first to be men­
tioned is the well known Augmented Dickey-Fuller test (see [3]). This test has been 
and still is used in many applications for its simple and intuitive procedure. Other 
tests belonging to this class are the very well known Za and Zt [15] and the less 
known Durbin-Hausman test of Choi [2]. Among the non residual based tests of the 
Ho of no cointegration, the test tECM of Kremers, Ericsson and Dolado [10] could 
be mentioned. It is simply the t statistic of the correction error term in the ECM 
model. Another statistic is the J2 , proposed by Park [13], which is based on the 
signification of some additional regressors in the cointegrating regression. 

The class of tests of the Ho of cointegration has not been studied as much as the 
previous one and up to now there have been relatively few proposals of this type of 
tests. Among the oldest, the Jl statistic of Park [13] stands out. Hansen [7] suggests 
to test the cointegration using some of the statistics proposed for parameter insta­
bility against several alternatives in the context of cointegrated regression models. 
Other non residual based tests of the Ho of cointegration are the tests HI and H2 
proposed by Fernandez-Macho ([4], [5]) which are based on the Durbin-Hausman 
principle. From the residual based tests of the H0 of cointegration, the tests C of 
Shin [17] and LBI of Leybourne and McCabe [11] should be mentioned. 

2 . COINTEGRATION TESTS 

2.1. Preliminaries 
Let an ra-vector time series {zf}o° be generated by zt = z t_i + w*. We assume 

that {wf} is a stationary and ergodic random sequence with zero mean and finite 
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variance. The initial variable z 0 is assumed to be any random variable. We also 

assume that the partial sum process of {wt} satisfies the multivariate invariance 

principle (see [14]). That is, for r E [0,1], 

[TV] 

l 

where B(r) is the m-vector Brownian motion with a covariance matrix 

n = 

«11 w 2 1 

( l x l ) ( l x ( m - l ) ) 
Cь>21 *-*22 

L ((m - 1) x 1) ((m - 1) x (m - 1)) J 

We consider the linear cointegrating regression, partitioning zt = (yt,x.f

t)': 

(1) yt=*y,xt + ut. 

The majority of the cointegration tests are based on this regression for which we 

assume that {x*} is not cointegrated. Obviously {ut} is 1(0) when {yt} and {x*} 

axe cointegrated and is 1(1) when they are not. The residual based tests are simply 

different ways of testing the cointegrating regression residuals for a unit root. 

2.2. Ho- No cointegration 

2.2.1. Augmented Dickey-Fuller test (ADF) 

This is a well known unit root test applied to the residuals of the cointegrat­

ing regression {ut}. The ADF statistics is the £-ratio of the coefficient a* in the 

regression: 

p 

(2) Aut = d*ut-i + ^2 & Afit-i + vt 

t = i 

ADF = td.. 

Under Ho' no cointegration 

The asymptotic distribution of the ADF statistic is, as in the case of the following 

tests, a stochastic integral of the continuous stochastic processes which are continuous 

functionals of the standard m-dimensional Brownian motion: 

./0 
RdS, 
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provided the order of the autoregression in the ADF is such that p —> oo as T —» oo, 
p = o (T1!3) and 

R(r) = Q(r)/(Kj\^ , 

5(r) = Q(r)/(K'K)V2, 

Q(r) = W!{r)-J W1W^(J W_W_) W_(r). 

K'=(l,-J WIW^J W2W!> 

W(r) 
Г ^ i 1 

(1) 
W2 

- ( m - 1 ) -

JV(r) denotes the m-vector standard Brownian motion which is written as W to 
achieve notational economy as JQ VV1JV2 is used for JQ VVi(r)IV2(r) dr. The asymp­
totic distribution depends only on the number of regressors in (1). 

Under Ha: cointegration 

(3) ADF = Op (T1!2). 

The critical values and more details about the asymptotic distribution of the ADF 
statistic can be found in [15]. 

2.2.2. The Phillips' Za and Zt test 
After the estimation of the regression ut = aiit-i + i)_, the Za and Zt statistics 

are defined as 

1/2 

Ża = T(â - 1) - (l/2)(s2

тt - sl) T- 2 £ ûU 
^ 2 

T 1/2 г / T 

Żt= (_^ û ?- i ) (à-l)lsтe-(ll2)(sтe-s2Ąsтe(т-2J£ûU 

where 

sl=T-^vf, 
1 

T 

sт£ =T-l^2v2
t +2T~1Y^WSÍ 5 3 vtvt-8 

1 s_=l t = s+l 
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for a certain window such as wse = 1 — s/(£ + 1). 

The first terms of the statistics Za and Zt are based on the conventional statistics 
for the H0: a = 1 in the relation ut = aut-\ + vt. The difference between them is 
that Za is based only on the estimation of a but Zt includes the standard error of 
regression. The second terms correct for the possible heteroskedasticity and auto­
correlation of vt. This correction is small when the estimations of the long run and 
short run variances do not differ too much; then the value of (s2ri — s2) is small while 
it would be large in the opposite case-

Under Ho: no cointegration 

ïa^ [ 
Jo 

í RdS, 
jo 

Za => / RåR 

where R(r) and S(r) have been defined in the previous section. 

These distributions depend only on the number of regressors in (1). The statistics 
Zt and ADF have the same asymptotic distribution (this result depends crucially 
on the condition p —> oo in the regression (2)). 

Under Ha: cointegration 

(4) Za = Op(T) 

(5) Zt = Op(T
1?2). 

The statistic Za diverges faster as T —> oo under the alternative than the statistics 
Zt and ADF. The results (5) and (3) are valid only if fqq(0) > 0, where fqq(X) is 
the spectral density of the stationary process qt = h'zt (h'h = 1, that is to say, h is 
the cointegration vector). If fqq(0) = 0 then Zt = Op(T). The critical values of the 
statistics Za and Zt can be found in [15]. 

Phillips and Ouliaris [15] recommend the statistic Za, because this test is likely 
to have higher power than Zt and ADF in samples of moderate size. See [15] for 
further details. 

2.2.3. Durbin-Hausman test 

The null hypothesis (no cointegration) for this test is Ho : a = 1 in the regression 
ut = aut-i +vt. The idea of this test is based on the Durbin-Hausman statistic com­
posed of two estimators which are both consistent under the null but have different 
probability limits under the alternative hypothesis. 
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Two estimators which fulfil these conditions are the pseudo IV estimator 

T T 

&iv = Y2 fi* / _Z fi*fi*-i 

t=i t=i 

and the OLS estimator 
T T 

OtOLS = ^UtUt-l/ Y^tf-i-
t=l t=l 

The Durbin-Hausman statistic proposed by Choi [2] is 

rp -I 

DHS = (a}V-aoLs)2/Us2(i2u2

t_1) }, 

where 

S- = Г - 1 _ 3 ( « t - â o L S Û t - i ) 3 , 
t=l 

6 = s2/a2, 
T 

°2 = T~l Ylfi* ~ &OLSUt-l)2 

t=l 
I T 

+ 2T~lY2Wsl Yl (ut-6LOLSUt-l)(ut-s-OLOLSUt-s-l)-
s=l t=s+l 

ws£ is a selected window as in the case of the previous statistics Za and Zt. The 

term 6 appears in the statistic to correct possible serial correlation and guarantees 

that the asymptotic distribution is free of nuisance parameters. 

Under Ho- no cointegration 

DHS=>(l + f^F-'f21) 

where Q(r) is defined in the previous section and 

/ n /21 

> / / > • 

/' ww = I'" '" 
JO L/2I -̂ 22 

Under Ha: cointegration 
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If we assume, as in the previous section, that fqq(0) > 0, then 

DHS = Ov(T). 

The statistic diverges in probability at the same rate as Z a which indicates good 
power of the test in finite-sample applications. The critical values for the DHS 

statistic can be found in [2]. 

2.3. Ho: Cointegration 

2.3.1. Test for cointegration by variable addition 

Park [13] proposes two alternative statistics: the first for the null hypothesis of 
cointegration and the other for the null hypothesis of no cointegration. Both of them 
are based on the same idea. To the cointegrating regression we add some superfluous 
regressors and when the cointegration is present (the regression errors are stationary) 
the test is able to detect the insignificance of the added variables. When there is no 
cointegrating relationship among the variables (the regression errors are I(l)) the 
regression is spurious and the added variables are likely to be significant. 

We estimate the relation 

(6) y*t = d'*x* + /3[slt + /3'2s2t + et 

by OLS. {slt} is a vector of k2 deterministic trends and {s2t} is a vector of m2 

processes I(l) which are not cointegrated with {x^}. More details about the added 
regressors can be found in [13]. The variables yt and x* are transformations of the 
original variables yt and x^, because the asymptotic distribution of the Wald test for 
Ho : 0i = (32 = 0 in (6) with the original variables yt and x* is not free of nuisance 
parameters. 

A simple version of this transformation for a bivariate case which is used for the 
power comparison in Section 3 is the following. 

We regress 

yt = &i +a2xt + eu 

£t = &3 +dt, 
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where a± and a% are constants, et and dt are the corresponding residuals. Then for 

qt = (et, Adt)
f, we define 

á00 = i / - — & # , 
t=l 

o _ ^ 0 0 ^ 0 1 

^ l a a — A A 
. ^ 1 0 " 1 1 . 

T i T 

= 1/Tj2qtq't + 1/Tj2™se £ (&#-*+&-*#), 
í = l /c=l í-=A;+l 

A — | ^ 0 0 ^ 0 1 
a a ~~ Jr Á LOio A u 

T £ T 

= l/T_g t«íí + l/r""«;.< ~~ qtq[_k, 
t=l s=l t=s+l 

Áia = (r5io,An), 

ca = (0,(iOiňn)> 

where ujs^ is some window which fulfils the condition J" |uj5^| — 0(T5), 0 ^ O" ^ | . 
s = l 

The transformed variables are defined as 

X* = Xt - A i a _ 0 0 & , 

y? = y t - ( f Aiafi-i+OA. 

The statistic for the Ho of cointegration is 

RSS-. — RSS^,, 
л = WQO.І 

where RSS*S and RSS* are the residual sum of squares of the regression (6) with 

and without the superfluous regressors and u>oo.i = ^oo - ^oi-^ii^io-

Under H0: cointegration 

т a 2 
Jl ~ Xm2 + k2-

Under Ha- no cointegration 

л = oP(г1-4), 
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where S is set by the definition of the corresponding window wsi. Under the alter­
native the statistic diverges in probability depending on the selected window. The 
smaller o~, the faster the divergence of J\. 

An obvious advantage is that no special tables for this test are required, but the 
choice of the superfluous regressors and the window wse will probably be crucial for 
the power of the test. 

2.3.2. The Shin's C and Leybourne and McCabe's LBI tests 
The C statistic [17] and LBI statistic [11] are based on the structural model of 

local trend. Consider the following model: 

yt = 7 ;x t + ut 

ut = vt + i\)t 

vt = vt-i + et 

where ipt is a stationary process and et is iid(0,cr2) and ipt and et are independent. 
The null hypothesis is Ho : oE -= 0, that is to say, ut has no random walk component. 

The C and LBI statistics are defined as 

TT S2 

C = LBI= ^t=1 ^ 
T2s2(£) ' 

where St is the partial sum process of the residuals from the cointegrating regression 
and s2 (£) is a consistent semiparametric estimator of the long run variance of the 
regression error ut. Shin [17] uses the triangular Barlett window for the estimation 
of the long run variance in the empirical section of his paper: 

(?) 4 M = r 1 ^ u ? + 2 r 1 ^ ( i - s ( ! + i ) - 1 ) J2 «'*«-» 
£=1 s=l t=s+l 

whereas Leybourne and McCabe [11] use the rectangular window: 

(8) *__/(*) = T-i J2*? + 2T-1 £ £ _.«._.. 
t=l s=l t=s+l 

If the variables x* are strictly exogenous with respect to ut, then the test statistics 
C and LBI have the following limiting distribution. 

Under H0: cointegration 

do 
(9) LBI = C=ï 

Jo 
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where 

G = Wi-(j w£\(j W2w£\ (fw2dwX 
Under HQ: no cointegration 

C = Op(T/Є), 

where t is the selected lag of the window used for the estimation of s2(t). Then the 

power of the test depends on t. 

The exogeneity assumption is too restrictive in time series modeling. Shin [17] 

(using the result of Saikkonen [16]) proposes a modification of the cointegrating 

regression in order to relax this assumption. The proposed modification consists in 

using the present, past and future values of Ax* as additional regressors. See [17] for 

further details. Therefore, we consider the modified least squares regression equation 

K 

(10) yt = f x t + ] T it'jAxt-j + fi*. 
j=-K 

The C statistic defined using the new residuals u*t has the same limiting distribution 

(9) without the assumption of strict exogeneity 

The statistics C and LBI are very simple to calculate and the critical values can 

be found in [17]. Of course, the choice of the lag truncation parameter t and the 

number K for the leads and lags of the additional regressors will be a problem in 

empirical applications. Shin [17] proposes the use of the AIC or BIC criteria for the 

selection of K. 

2.3.3. Hausman-like tests HI and H2 

As in the case of Choi's test, the statistics HI and H2 (see [4] and [5]) are based 

on the comparison of two estimators, both of them consistent under the null but one 

of them inconsistent under the alternative hypothesis. 

The OLS estimation of (10) will produce under cointegration an efficient and 

superconsistent (the estimates converge to its true value at the rate T _ 1 rather than 

the usual T - 1 / 2 ) estimator of the cointegrating vector (1,7V)' whose asymptotic 

distribution is free of the nuisance parameters itj (see [16]). The error term ut is 

asymptotically uncorrelated with the increments of xt at all leads and lags. We 

define 
K 

zt=yt- ^2 n'jAxt-j. 
j=-K 
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The initial model (1) may thus be rewritten as 

zt = i'xt+u*t. 

Taking differences we get 

Azt =-y'Axt + Au*, 

where Ax^ and Aut are asymptotically uncorrelated and the OLS estimator y- will 
give us the usual y/T-consistent estimator under cointegration. 

Both estimators JL and *f- are used for defining Hausman-like statistics Hi and 
H2 as 7L is inconsistent under no cointegration (spurious regression) and 7 D is an 
Op(T~lI2) estimator (asymptotically biased since the correlation between Ax* and 
Au* may not be equal to zero in general) under the alternative hypothesis. 

The test statistics are 

Hi = (7L - 1D)'(VD + VL)(IL - ID), 

H2 = (7L - 1D)'VD(IL - 7D), 

where VL> and VL are consistent estimates of the covariance matrices of 7L and 
7£>, respectively. Since VL is Op(T~2) while VD is Op(T~l) the two statistics are 
asymptotically equivalent. 

Under Ho: cointegration 

яi-xíU 

Therefore, the asymptotic distribution of the test statistics HI and H2 is a stan­
dard x2 distribution. The critical values for the sample size of T = 10,20,.. .,500 
and for 1 to 4 regressors can be found in [5]. 

Under Ha: no cointegration 

HI = Op(T) 

H2 = Op(T). 
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3 . COMPARISON OF THE EMPIRICAL SIZE AND POWER 

In this section the empirical size and power of the nine above presented tests in 
a bivariate case are compared. For the comparison the following data generating 
process (DGP) is used: 

DGP(l) 
xt = xt-i +vt vt = (piVt-i + en + Oieij-i 

yt = xt+ ut ut = <P2Ut-i + £2t + 02e2}t-i 

(J*)=ІV(0,Ľ) |Ы|Øi|<l. 

The values of ip2 and 62 determine whether the variables xt and yt are cointegrated. 
If #2 = 0, then for the values |<D2| £ [0,1) the series yt and xt are cointegrated and 
the cointegrating vector is (1 , -1) . Increasing the value of <p2 from 0 to 1 we are 
approaching the case of no cointegration and we can observe changes in 

• the power of the test for H0: no cointegration 
• the size of the test for Ho: cointegration 

for different values of ip2. Changes in the value of ip2 should not have any impact on 
size or power of the tests. We should observe a drastic change of size (or power) in 
the extreme case <p2 = \ where the cointegration is replaced by no cointegration. 

If we maintain the value of ip2 = 1 and decrease the value of 62 from 0 to — 1, 
we are moving away from the extreme case of no cointegration (ip2 = 1 and 82 = 0) 
and at the same time we are approaching the initial case of cointegration since, for 
<D2 = 1 and 62 = —1, the process ut = ut-i + e2t — e2it-i cannot be distinguished 
from the process ut = e2t (if Ho = £o)> which is a 1(0) series. 

Then, decreasing the values of 62 we can observe changes in 
• the power of the test for H0: cointegration 
• the size of the test for H0: no cointegration. 

All the previous cases can be summarized in the following scheme. 

02 = 0 y>2 = 1 
if2 = 0. • • 0.2 • • • 0.4 • • • 0.6 • • • 0.8 • • • 02 = 0 0.2 0.4 0.6 0.8 • • 

N v '> V  

cointegration no cointegration cointegration 

For the empirical size and power comparison, the DGP(l) has been used with the 
following parameter values: 

ҷ>i = 0.45, i = 0.35, 
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ҷ>2 = 0; 0.2; 0.4; 0.6; 0.8; 1, 2 = -0.2; -0.4; -0.6; -0.8; - 1 , 
> v ' * v ' 

2 = 0 </?2 = 1 

VO.5 
0.5 

1 

DGP(l) is complicated enough to be considered a good approach to the large scale 

of real processes. We have to point out that processes ut and vt are serially and 

contemporaneously correlated. That is to say, the regressor in the cointegrating 

regression is serially and contemporaneously correlated with the disturbance term. 

The results of Monte Carlo simulation for sample size T = 100 and 5000 itera­

tions are summed up in tables (l)-(4). For the simulation, the software package 

RATS version 4.10 was used and the random normal numbers were generated by the 

function %RAN(x). 

The triangular Barlett window wst = 1 - s/(£ + 1) was used for the estimation 

of the long run variance in the case of Za, Zt, DHS, Jl and C statistic. The £ 

value in the tables (l)-(4) represents the lag truncation parameter for the Barlett 

window. The value of p in the case of ADF statistics is the number of lags Aut in 

the equation (2). The parameter K which represents the number of leads and lags 

of Axt in the modified cointegrating regression (10) was set equal to 0 because the 

results with higher values of K were worse for both the C and the Hausman-like 

statistic. 

The following conclusions can be drawn. 

• ADF: The power of this test is sufficiently high but it does not reach the power 
of the Z a , Zt, or DHS test, especially in cases where cp2 € [0.6,1). Another 
conclusion is that the empirical size depends crucially on the number of lags 
p. If we add a few lags of Aut the test will suffer from a serious overrejection 
problem which will make it rather useless in practice. When p = 0 then for 
the values ip2 = 1 and 82 = —0.6 (under NO cointegration) this test rejects the 
right null hypothesis of no cointegration about 42 % of time. We can observe 
that the overrejection problem can be solved by increasing the value of p, but 
the cost of this solution is a lower power under the alternative hypothesis. For 
example for the values p = 4, ip2 = 0.8 and 62 = 0 the test rejects the wrong 
null hypothesis only in 57% of the cases. 

• Z a and Zt: The power of these tests is extraordinary, but it seems to be at 
the expense of distortion of the size. The number of rejections of the true null 
hypothesis for the values 92 = -0.4 and lower (ip2 = 1) moves between 35% and 
90%. One advantage we should point out is the independence of the results of 
the value of £. 
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When we use these tests we should keep in mind that they sometimes tend 
to reject the null hypothesis of no cointegration when it is the true hypothesis. 
Then we tend to find the cointegrating relationship among no cointegrating 
series. 

DHS: The conclusions for the DHS statistics could be the same as in the case 
of the previous tests Za and Zt. The simulation experiments confirm the results 
of Choi [2], who argues that the DHS statistic performs slightly better than 
Za and Zt tests when </?2 is close to 1. Obviously this is a very problematic 
region where it is very difficult to distinguish between cointegration and near 
cointegration. The large distortion of the size, however, has to be left for further 
research. 

Jl: The power of the Jl statistic is very good but the overrejection problem 
under the null hypothesis seems to be too large. As Park (see [13]) argues, the 
selection of the additional regressors is crucial for the test performance. In our 
simulation experiments, 5 additional regressors have been used. Two of them 
were deterministic trends (0.2£ and 0.003£2) and the other three regressors were 
independent random walks: 

X\t = # i , t - i +£it 

%2t = X2,t-1 + £2t 

%3t = #3,t-l +£3t 

= N 

The results for less additional regressors (one deterministic trend and one ran­
dom walk) were still more disastrous. 

• C: As we have argued in Section 2, the performance of this test depends on £ 
(under H0: no cointegration C = Op(T/£)). For small values of £ the test has a 
very high power which does not depend on the value of 02, but the overrejection 
problem under the null hypothesis seems to be too serious. If we increase the 
value of £, the number of rejections under the null hypothesis gets closer to the 
theoretical value of 5% (1 %) but the power of the test (under the alternative) 
drops quickly. The evident advantage as compared to the previous test is that 
the power does not depend on the value of 02. 

• LB I: The number of rejections of this test under the null hypothesis is stable 
enough for the majority of the values of <D2. The lack of power under the alter­
native seems to be an important problem of this test. The values around 40% 
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(for i = 4) are not enough for practical purposes, that is to say, we can easily 
accept the cointegrating relationship among series that are not reintegrated. 

• HI, H2: The tests perform very well under the null hypothesis of cointegration 
and the number of rejections of the null is very close to the theoretical value 
(5 % and 1 %) Tor the majority of the values of <p2 (< 1). Under the alternative 
hypothesis the tests enjoy a high power for the values 62 > -0.6 {tp2 = 1) and 
when 62 gets closer to - 1 the tests lose power. But this is the only region where 
these tests perform worse than any other test (with the empirical size close to 
the nominal one) of the null hypothesis of cointegration. 

Some of these results are summarized in Figure 1. At first sight we can observe 
that the tests of the null hypothesis of no cointegration have a higher power1 than 
the test with the opposite null hypothesis. The overrejection problem under the 
null hypothesis seems to be the cost paid for this extraordinary power. On the 
contrary, the tests of the null hypothesis of cointegration perform better under the 
null hypothesis than under the alternative. 

<p = .0 <p = .2 <p = A <p=.6 <p = .8 <p=] 0 = . 2 0 = . 4 0 = .6 0 = .8 0 = 1 

Ho (H2.CLBI) Ho (ADF.Za.Zt.DHS) 

Figure 1. Power and empirical size of cointegration tests 

1 However, the direct comparison would be incorrect 
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4 . CONCLUSION 

Which null hypothesis should we use in our studies? If we base the decision on 
the results of our Monte Carlo experiment, there is no obvious answer. In general, 
the tests of the null hypothesis of cointegration perform very well under the null but 
tend to fail under the alternative. The tests of the null of no cointegration exhibit 
excellent power under the alternative but suffer from the overrejection problem under 
the null. A clear conclusion of the Monte Carlo experiment is that in the empirical 
studies no-cointegration will be a much more difficult relationship to be discovered 
than cointegration. 

Nevertheless, the present Monte Carlo study offers the possibility of combining 
two cointegration tests with opposite null hypotheses to obtain more precise results. 
If we accept no cointegration and reject cointegration, then there is strong evidence 
for no cointegration. Similarly, if we reject no cointegration and accept cointegration, 
then this is strong evidence for cointegration. These statements assume that both 
tests have good power and do not suffer the overrejection problem under the null 
hypothesis. If both null hypotheses are rejected, then a type I error may have 
occurred in one of the tests. If both null hypotheses are accepted, then one of the 
tests may suffer lack of power. 

Thus, using Monte Carlo simulation for a large scale of DGP we could conclude 
that the best combination for the testing of cointegration could be Za(DHS)-H2. 

Acknowledgement. I would like to thank Professors J. Fernandez-Macho and 
M. Regulez for helpful advice and valuable comments on this paper. 
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Cointegration 
No 

Cointegration 

Ҷ>2 = 0.0 ҷ>2 = 0.2 ҷ>2 = 0.4 Ҷ>2 = 0.6 ҷ>2 = 0-8 Ҷ>2 = 1.0 

Я 0 : No Cointegration 
p = \ 100.00 100.00 100.00 99.92 83.46 5.46 

ADF p = 4 99.72 99.36 97.92 90.88 56.84 4.66 
p = S 77.32 72.96 66.28 54.80 31.46 3.82 

e=o 100.00 100.00 100.00 100.00 88.48 3.82 
Za Є=\ 100.00 100.00 100.00 100.00 89.46 5.04 

e=s 100.00 100.00 100.00 100.00 89.82 4.88 
£=\2 100.00 100.00 100.00 100.00 88.48 3.82 

£=0 100.00 100.00 100.00 100.00 91.84 7.62 

zt Є=\ 100.00 100.00 100.00 100.00 91.78 7.62 

e=s 100.00 100.00 100.00 100.00 91.78 7.86 
Є=\2 100.00 100.00 100.00 100.00 92.34 8.32 

e=o 
DHS Є=\ 

e=s 
Є=\2 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

96.84 

96.96 

97.48 

97.22 

Significance level 5 % 

8.10 
10.34 
10.14 
9.42 

IIo- Cointegration 
Jl Є=0 97.48 

Є=\ 99.4 
97.72 
99.78 

97.50 
98.96 

97.24 
95.48 

97.90 
86.84 

99.66 
95.56 

Hl 8.98 5.96 5.06 5.12 11.56 58.28 

H2 9.02 6.02 4.92 5.18 11.72 61.28 

C 
e=o 
e=\ 
e=s 

4.56 
4.10 
3.74 

9.38 
4.74 
4.04 

18.14 
6.06 
4.46 

32.88 
8.78 
5.68 

58.60 
17.74 
9.82 

91.96 
58.16 
42.72 

LBI Є=2 

e=\ 
4.54 
5.48 

4.22 
4.62 

4.90 
4.08 

6.82 
4.38 

15.64 
7.72 

57.32 
40.80 

Table 1. Power and empirical size 
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Cointegration 
No 

Cointegration 

Ҷ>2 = 0 . 0 (D2 = 0 .2 <D2 = 0 . 4 <D2 — 0 . 6 4>ъ = 0.8 <D2 = 1.0 

tf0: No Cointegration 
p=\ 100.00 100.00 99.98 97.66 46.14 1.40 

ADF p = 4 94.76 91.04 81.56 60.72 21.44 0.88 
p = S 39.66 35.92 30.02 21.22 8.92 0.58 

i=0 100.00 100.00 100.00 99.76 49.54 0.74 
Z& i=4 100.00 100.00 100.00 99.72 53.42 0.94 

І=S 100.00 100.00 100.00 99.64 50.18 0.76 
i=\2 100.00 100.00 100.00 99.76 49.54 0.74 

i=0 100.00 100.00 100.00 99.90 62.84 2.80 

zt 
i=\ 100.00 100.00 100.00 99.90 62.30 2.76 
І=S 100.00 100.00 100.00 99.90 63.04 2.80 

i=\2 100.00 100.00 100.00 99.94 65.06 2.98 

DHS 
i=0 
i=4 
І=S 

І=\2 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

80.88 

82.02 

81.92 

78.98 

Significance level 1 % 

2.78 
3.44 
3.40 
2.94 

Ho-' Cointegration 
Jl i=0 94.68 

i=4 99.84 
95.00 
99.52 

94.50 
98.12 

94.08 
92.16 

95.48 
76.78 

99.52 
90.96 

Я l 1.96 1.04 0.86 1.28 3.76 47.80 

Я2 1.96 1.06 0.90 1.20 3.98 51.62 

C 
i=0 
i=\ 
І=S 

0.58 
0.32 
0.14 

2.48 
0.50 
0.20 

6.74 
0.74 
0.26 

15.84 
1.76 
0.40 

38.16 
5.54 
1.66 

81.74 
39.80 
20.44 

LBI i=2 
i=4 

0.62 
0.80 

0.50 
0.48 

0.50 
0.36 

1.02 
0.28 

4.50 
1.06 

38.80 
18.94 

Table 2. Power and empirical size 
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No 
Cointegration Cointegration 

02 = 0.0 02 = -0.2 02 = -0.4 0 2 = -0.6 02 = -0.8 02 = -1.0 

Я 0 : NO Cointegration 
p~-= 0 5.46 6.76 15.54 41.98 85.80 100.00 

ADF P = --4 4.66 4.70 5.34 9.20 33.50 99.72 

P = = 8 3.82 3.92 3.78 4.62 10.14 77.48 

(;= =0 3.82 14.86 41.06 75.82 97.98 100.00 
Za Ь =4 5.04 12.98 32.38 66.96 95.86 100.00 

£--=8 4.88 15.60 38.82 73.32 97.22 100.00 

e= = 12 3.82 14.86 41.06 75.82 97.98 100.00 

£--=0 7.62 19.94 41.14 71.88 95.78 100.00 

zt t~-=4 7.62 20.24 42.34 72.86 96.18 100.00 
Ь =8 7.86 19.96 40.36 71.18 95.84 100.00 

t= =12 8.32 20.50 41.80 72.68 96.22 100.00 

ь =0 8.10 23.62 52.26 82.50 98.84 100.00 
DHS t--=4 10.34 21.00 42.96 74.56 97.16 100.00 

t--=8 10.14 23.26 48.12 78.76 98.18 100.00 
£= = 12 9.42 24.68 52.10 81.84 98.72 100.00 

Я 0 : Cointegration 
Jl £=0 99.66 

£=4 95.56 
99.80 
96.02 

99.80 
97.02 

99.76 
97.86 

99.34 
99.14 

97.34 
99.90 

Я l 58.28 56.26 51.16 40.88 23.04 8.98 

Я 2 61.28 58.50 53.22 42.72 23.64 9.00 

C 
£=0 
£=4 
£=S 

91.96 
58.16 
42.72 

91.26 
57.90 
43.40 

89.66 
57.78 
43.60 

85.46 
56.38 
43.10 

70.88 
51.36 
41.04 

4.32 
3.82 
3.76 

LBI t=2 
£=4 

57.32 
40.80 

57.16 
40.82 

56.84 
41.14 

55.76 
40.82 

50.88 
38.88 

4.54 
5.48 

Significance level 5 % 

Table 3. Power and empirical size 

429 



Cointegration 
No 

Cointegration 

02 = 0.0 02 = -0 .2 02 = -0 .4 02 = -0 .6 02 = -0 .8 02 = -1 .0 

Ho: NO Cointegration 
p = 0 1.40 1.90 5.16 24.24 74.06 100.00 

ADF p = 4 0.88 1.08 1.16 2.24 14.56 94.78 
p = 8 0.58 0.56 0.58 0.82 2.40 39.76 

Za £ 
£=0 0.74 
=4 0.94 

£=8 0.76 
£=12 0.74 

4.78 
4.40 
5.70 
4.78 

22.90 
18.84 
24.90 
22.90 

60.98 
54.68 
62.78 
60.98 

94.90 
92.78 
95.22 
94.90 

100.00 
100.00 
100.00 
100.00 

i=0 2.80 
£=4 2.76 
£=8 2.80 
£=12 2.98 

9.10 
9.30 
9.22 
9.48 

25.92 
27.32 
26.38 
27.56 

58.28 
59.96 
59.42 
61.98 

Significance level 1 % 

92.02 
92.46 
92.80 
93.98 

100.00 
100.00 
100.00 
100.00 

£=0 2.78 12.04 36.76 73.14 97.38 100.00 
DHS £=4 3.44 10.76 3018 65.60 95.68 100.00 

£=8 3.40 12.78 35.50 71.60 98.18 100.00 
£=12 2.94 13.96 39.82 74.98 97.80 100.00 

Ho: Cointegration 
Jl £=0 99.52 

£=4 90.96 
99.40 
92.14 

99.66 
93.72 

99.46 
95.58 

98.64 
98.28 

94.92 
99.76 

Hl 47.80 44.60 38.30 27.48 11.58 1.96 

H2 51.62 48.40 41.56 29.68 12.22 2.04 

C 
£=0 
£=4 
£=8 

81.74 
39.80 
20.44 

81.04 
40.28 
20.86 

78.94 
40.04 
20.84 

73.40 
38.86 
20.56 

57.08 
33.48 
18.28 

0.64 
0.32 
0.12 

LBI £=2 
£=4 

38.88 
18.94 

38.80 
19.00 

38.56 
19.06 

37.54 
19.34 

31.98 
17.96 

0.62 
0.08 

Table 4. Power and empirical size 
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