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ON A CERTAIN TWO-SIDED SYMMETRIC CONDITION IN

MAGNETIC FIELD ANALYSIS AND COMPUTATIONS
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Abstract. A special two-sided condition for the incremental magnetic reluctivity is in-
troduced which guarantees the unique existence of both the weak and the approximate
solutions of the nonlinear stationary magnetic field distributed on a region composed of
different media, as well as a certain estimate of the error between the two solutions. The
condition, being discussed from the physical as well as the mathematical point of view, can
be easily verified and is fulfilled for various magnetic reluctivity models used in electrotech-
nical practice.

Keywords: magnetic field, variational formulation, two-sided existence and uniqueness
condition, finite element method

MSC 2000 : 65N30

1. Introduction

The knowledge of magnetic field distribution over a domain consisted of several

parts with different physical properties is of great importance for electrotechnic prac-
tice because it enables us to investigate various, desirable as well as undesirable,

physical phenomena. As a consequence, designers of electrical machinery are able to
foresee run, behaviour and working characteristics of projected facilities in a better

way. The magnetic field can be investigated in various ways, see for example [11]
using the physical modelling or [3, 14] applying the finite difference method. Great

attention in literature has been devoted to the magnetic field analysis using the finite
element method (see e.g. references in [1, 4, 5, 6, 10, 12, 13, 15] or the COMPUMAG

conference papers). From the finite element theoretical point of view the stationary

1 The work of the second author was supported by a grant of the Grant Agency of Czech
Republic under the number 201/95/1557.
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magnetic field problem was studied first in [7]. In this thesis a special two-sided

symmetric condition for the incremental magnetic reluctivity was introduced. This
condition guarantees the unique existence of both the weak and the approximate
solutions, as well as a certain estimate of the corresponding error. In view of narrow

publicity of the result mentioned, the authors of this paper believe that a modernized
republishing of the condition with an explanation of its physical meaning, as well

as of the proof of the corresponding theorem, in a journal with wider range will be
useful. At the end of the paper some practical aspects are mentioned.

2. Preliminaries

The proof of the assertion concerning stationary magnetic fields is based on the

results from [8] where a nonlinear operator equation F (x) = θ, ||θ|| = 0, has been
studied, the operator F being defined on a real Banach space E. The operator is

required to be potential, its potential being denoted by f(x), i.e. F (x) = gradf(x),
and to fulfil the condition

(1) α(‖x2 − x1‖) �
〈
F (x2)− F (x1), x2 − x1

〉
� β(‖x2 − x1‖) ∀x1, x2 ∈ E,

α(t), β(t) being non-negative functions of the non-negative argument such that the
functions

α(s) =
∫ s

0

α(t)
t
dt, β(s) =

∫ s

0

β(t)
t
dt

are continuous and increasing for s � 0, lim
s→∞

α(s)
s = ∞, and 〈., .〉 represents the

duality between E and the dual space E∗. The left-hand side of (1) expresses the

uniform monotonicity of F while the right-hand side implies the uniform continuity
of F . Under this notation the main result from [8] can be formulated in the following

way:

Theorem 1. Let a potential operator F (x) fulfilling (1) be defined on E. Let

M ⊂ E be a nonempty closed convex set. Then there exist unique x∗ ∈ E, f(x∗) =
min
x∈E

f(x) and x ∈ M , f(x) = min
x∈M

f(x), and for their difference in the norm of E we

have

(2) ‖x− x∗‖ � γ(‖x− x∗‖) ∀x ∈ M,

where γ is an increasing non-negative function of the non-negative argument and

γ(0) = 0.
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Let us note that γ is defined as a composition of β and α−1. The elements x∗

and x are called respectively the weak and the approximate solutions of the above
operator equation. Observe also that for the unique existence of both solutions the
uniform monotonicity of F is sufficient while the right-hand side inequality of (1)

is necessary for the estimate (2). As (2) is valid for any x ∈ M we can see that
the error between the weak and the approximate solutions is, in a certain sense, not

worse than that of the best approximation of x∗ over M . An assertion similar to
Theorem 1 was proved in [2], pp. 322–323.

3. Magnetic field problem formulation

The two-dimensional nonlinear stationary magnetic field problem can be mathe-

matically formulated in the following way:

Problem 1. A bounded planar domain Ω with a Lipschitz continuous boundary
∂Ω is given. Assume Ω to be divided into a finite number of mutually disjoint

subregions Ωi, i = 1, . . . , N , with Lipschitz continuous boundaries ∂Ωi. Suppose the
physical medium in Ω to be described by a given current density J = J(x, y) and a

positive magnetic reluctivity ν = ν(x, y, B) so that both quantities are continuous

on each Ωi. Across the boundaries Γ =
N⋃

i=1
∂Ωi − ∂Ω between different media, these

quantities can be discontinuous. We look for a function u = u(x, y) satisfying the
equation

(3)
∂

∂x

(
ν

∂u

∂x

)
+

∂

∂y

(
ν

∂u

∂y

)
= −J in Ω− Γ

which is continuous together with the function ν ∂u
∂n across Γ, n denoting the normal

to the common boundary oriented in a unique way, and which satisfies the boundary

conditions

(4) u = g1 on Γ1, ν
∂u

∂n
= g2 on Γ2 = ∂Ω− Γ1,

n being the outer normal to the boundary ∂Ω and Γ1 ⊆ ∂Ω denoting a nonempty

measurable set. The relationship between u and B is given by B ≡ B(u) = | gradu|.

Let us point out that (3) has a wider meaning in practice, for one can also meet
it in the dual problem of the magnetic field where the permeability appears in the

role of ν, or in the investigation of a potential gas flow where ν(B) = 1 − Ba/a,
a > 0, or in the minimum surface problem where ν(B) = (1 + B2)−0.5, or in the

elasticity theory when searching the elastic plastic bar twisting where ν(B) is an
empiric function.
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In the sequel we shall assume that g1 is the trace of a function from W 1,p(Ω),

p > 2, g2 ∈ L2(Γ2) and J ∈ L2(Ω). Concerning the magnetic reluctivity we shall
suppose that ν ≡ ν(x, y, B) is measurable on Ω as a function of space variables x, y

and that the derivative νd ≡ νd(x, y, B) = ∂
∂B

[
B ν(x, y, B)

]
exists for almost all

(x, y) ∈ Ω(this guarantees the measurability of ν with respect to B) and fulfils the
condition

(5) α0 � νd(x, y, B) � β0,

where α0, β0 are positive constants.

To equation (3) the Dirichlet form

(6) a(u, v) =
∫

Ω

[
ν(x, y, B(u)) gradu grad v − J v

]
dΩ−

∫

Γ2

g2 v dΓ

can be adjoint. This form, having sense for all u, v ∈ H1(Ω), enables us to formulate
our problem in a variational way:

Problem 2. Let V = {v ∈ H1(Ω) | v = 0 on Γ1}. Choose u0 ∈ W 1,p(Ω), p > 2
so that tru0 = g1 on Γ1. We look for such a function u, u− u0 ∈ V , that

(7) a(u, v) = 0 ∀v ∈ V.

4. Two-sided symmetric condition

The two-sided symmetric condition (5) will play the main role in our further

considerations, above all in problems concerning the existence and uniqueness of
the weak and approximate solutions as well as the convergence of the approximate

solution. Therefore, we shall be concerned with it in more detail.

Let us start with the physical meaning of (5). Magnetic reluctivities, as functions
of space variables x, y, are usually piecewise constant in practice. Let us restrict our

further considerations on one medium. Here the magnetic reluctivity is a function of
the third argument only, i.e. ν(x, y, B) = ν(B), and can be easily determined from

the magnetization characteristic. For an isotropic medium with negligible magnetic
hysteresis the magnetization characteristic (the initial magnetic curve) is a single-

valued function B = B(H), where B andH denote the magnitudes of the flux density
and the magnetic intensity, respectively. This function, defined for H ∈ 〈0,∞), is
continuous, increasing and satisfying the restrictions µ0H � B � µ0H + B0, where
µ0 = 4� 10−7H/m denotes the permeability of vacuum and B0 is known. From the
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magnetization characteristic the magnetic permeability µ, the incremental magnetic

permeability µd and the correlation between them are defined, and given respectively
by

µ ≡ µ(H) =
B

H
, µd ≡ µd(H) =

dB
dH

and µd = µ+H
dµ
dH

.

However, it is more convenient for magnetic field analysis to use the inverse mag-

netization characteristic model H = H(B) where the function H = H(B) is also
continuous, increasing and fulfilling ν0 (B − B0) � H � ν0 B, ν0 µ0 = 1. In this

case the magnetic reluctivity ν, the incremental magnetic reluctivity νd and their
mutual relation are given by

ν ≡ ν(B) =
H

B
, νd ≡ νd(B) =

dH
dB

and νd = ν +B
dν
dB

.

The basic condition (5), rewritten now in the form

(8) α0 � νd(B) � β0 or α0 � d
dB

[
B ν(B)

]
� β0,

says that the incremental magnetic reluctivity must be bounded from both sides by
positive constants. The main condition understood in the physical terms means that

the theoretical aspects of nonlinear magnetic field analysis require a two-sided bound
of the incremental magnetic reluctivity.

Let us turn our attention to the mathematical conclusions of (5). In the first place

notice that integrating (5) with respect to B from B1 to B2 � B1, we obtain

(9) α0 (B2 −B1) � B2 ν(x, y, B2)−B1 ν(x, y, B1) � β0 (B2 −B1)

and as a result for B1 = 0, B2 = B also

(10) α0 � ν(x, y, B) � β0.

Thus, bounding the incremental magnetic reluctivity νd implies the same bounding

of the magnetic reluctivity ν.

Before mentioning some more general mathematical conclusions of (5) let us

present the following lemma:

Lemma 1. Let X be a linear space with a scalar product. Choose a,b, c,d, e, f ∈
X so that ad = bc = 0 and simultaneously at least one of the triplets a, c, e or b,
d, f is linearly dependent. Then

(11) (a f) (be) (cd) + (c f) (de) (ab) = (ab) (cd) (e f).
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�����. In order to prove (11) begin with the linear dependence of the given

elemets, let for example ξa+ ηc+ ζe = 0 where ξ, η, ζ mean real numbers, at least
one of them being non-zero. Multiplying this relation successively by b, d, f and
using the above orthogonalities, we arrive at

(12)
ξ (ab) + ζ (be) = 0,

η (cd) + ζ (de) = 0,
ξ (a f) + η (c f) + ζ (e f) = 0.

This homogeneous system of linear equations has a non-trivial solution ξ, η, ζ and

therefore its determinant must be equal to zero. This fact implies (11). �

Let us note that respecting the above orthogonalities, the linear dependence of the
first and the second triplets implies the respective relations

(13) c = γ [(ab) e− (be)a] and d = δ [(ab) f − (a f)b],

γ, δ 
= 0 being real. Indeed, when determining e.g. c, we start from the linear
dependence relation used in the above proof. If η = 0 then (13) is valid, for c can
be arbitrary. If η 
= 0 then c = − 1η (ξa+ ζe) and thus

0 = bc =
1
η

∣∣∣∣
−ξ ζ

be ab

∣∣∣∣ .

This identity results in ξ = γηbe, ζ = −γηab, γ being real, and consequently in
(13). Notice also that the relation (11) is symmetric with respect to a ↔ c, b ↔ d
as well as with respect to a ↔ b, c ↔ d, e ↔ f . Moreover, for b = a, d = c,
aa = cc = 1 the simpler relation

(14) (a e) (a f) + (c e) (c f) = e f

is true. This relation in fact is a special case of the well-known Parseval identity in
the more general form.

By means of Lemma 1 and an idea of [15] the assertion of Lemma 2 from [15]
can be generalized. To this end denote by l2 the space of all infinite sequences

a = {a1, a2, . . .} with the scalar product ab =
∞∑

i=1
ai bi and the induced norm ‖a‖ =

(aa)
1
2 .

Lemma 2. Let a, e, f ∈ l2, a 
= 0. Let ν = ν(a) be a function fulfilling the
condition (8), a = ‖a‖. Then there exists c ∈ l2 orthogonal to a, c 
= 0, such that

(15)
∞∑

i=1

∂

∂ai

[
ν(a)af

]
ei = ν(a)

(c e) (c f)
c c

+ νd(a)
(a e) (a f)
aa

.
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�����. First suppose that at least one of the elements e, f differs from a. Let
for instance e 
= a. Then we put c = γ [(aa) e− (a e)a], γ 
= 0 being real. Evidently
a c = 0 and c c = γ2 (aa) [(aa) (e e) − (a e)2] > 0. Let us calculate

∞∑

i=1

∂

∂ai

[
ν(a)af

]
ei ≡

∞∑

i,j=1

∂

∂ai

[
aj ν(a)

]
ei fj = ν(a) e f +

1
a
ν′(a) (a e) (a f)

= ν(a) ef + a ν′(a)
(ae) (af)
aa

= ν(a)
(c e) (c f)
c c

+ νd(a)
(a e) (a f)
aa

.

The last identity is a consequence of (11). Now suppose that e = f = a. Then

∞∑

i=1

∂

∂ai

[
ν(a)aa

]
ai ≡

∞∑

i,j=1

∂

∂ai

[
aj ν(a)

]
ai aj = ν(a)aa +

1
a
ν′(a) (aa)2 = νd(a)aa.

In this case the element c 
= 0 can be chosen arbitrarily so that a c = 0. Such an
element always exists. Both terms on the right-hand side of (15) are finite because

of bounds of ν and νd and therefore the sum on the left-hand side converges. �

The above mentioned generalization of this lemma goes in three directions: First,
(15) is written in the form of an equality, the corresponding inequality from [15]

being obtained by using (5), (10) and then (11). Second, the equality holds generally
for infinite-dimensional vectors and not only for two-dimensional ones. Third, it is

generally valid for f 
= e and not only for f = e as the generalized inequality. Notice
also that the sum on the left-hand side of (15) can be interpreted as grada[ν(a)af ] e.

Hereinafter, the element a will be a function of a real parameter. Then the fol-
lowing lemma will be useful in the proof of Theorem 2.

Lemma 3. Let a, a, ν(a) and f fulfil the assumptions of Lemma 2. Assume that
a depends on a real parameter t, i.e. ai = ai(t), i = 1, 2, . . . and suppose all ai to be

differentiable. Then

d
dt

[
ν(a)a f

]
= ν(a)

(c f) (c dadt )
c c

+ νd(a)
(a f) (a dadt )
aa

where f is constant and c = γ a3 ddt
(
a
a

)
= γ [a2 dadt − a

2
da2

dt ], γ 
= 0 being real.

�����. The proof is based on the identity

d
dt

[
ν(a)a f

]
= grada[ν(a)af ]

da
dt

and the use of Lemma 2. �

153



In planar magnetic field applications only two-component vectors from l2 are

needed, i.e. we restrict ourselves to the elements a = {a1, a2} the components
a1 = a1(x, y), a2 = a2(x, y) of which are functions of two variables. In further
considerations we shall use the notation

(16)

gradu =
(∂u

∂x
,
∂u

∂y

)
, grad1 u =

gradu

| gradu| ,

curlu =
(∂u

∂y
,−∂u

∂x

)
, curl1 u =

curlu
| curlu| .

Now choose u, v, w ∈ H1(Ω), u 
= 0 arbitrarily and put

a = b = grad1 u, c = d = curl1 u, e = grad v, f = gradw.

Then (14) implies that

(17)
(grad1 u gradv) (grad1 u gradw) + (curl1 u gradv) (curl1 u gradw)

= gradv gradw

is valid for any u, v, w ∈ H1(Ω) when the expressions have sense. Let us emphasize
two important properties of (17): the identity is symmetric with respect to v ↔ w

and contains only non-negative terms for w = v.

5. Magnetic field problem solution

The results of the previous sections will be used to prove the basic theorem.

Theorem 2. Let all the above assumptions be fulfilled. Choose a nonempty
finite-dimensional subspace Vn ⊂ V . Then Problem 2 has a unique weak solution

u∗ ∈ V minimizing the magnetic energy in the whole V and a unique approximate

solution u ∈ Vn minimizing the same energy in Vn only. In the norm of H1(Ω) the
error between these two solutions satisfies the estimate

‖u− u∗‖ � κ ‖v − u∗‖ ∀v ∈ Vn,

κ > 1 being a real constant.

�����. The Dirichlet form (6) represents a bounded linear functional with
respect to the second argument because of |a(u, v)| � Ku‖v‖. According to the
Riesz Theorem, for any u ∈ V there exists F (u) ∈ V such that

〈F (u), v〉 = a(u, v) ∀v ∈ V.
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We have to show that the operator F fulfils the assumptions of Theorem 1.

First we determine the Gâteaux derivative of the Dirichlet form

a′u(v, w) =
d
dt

a(u+t v, w)
∣∣∣
t=0
=

∫

Ω

d
dt

[
ν(x, y, B(u+t v)) grad(u+t v) gradw

]∣∣∣
t=0
dΩ

After some rearrangements and simultaneous use of Lemma 3, putting f = gradw,
a = grad(u+ t v) and consequently dadt = grad v one obtains

(18)
a′u(v, w) =

∫

Ω

[
ν (curl1 u grad v) (curl1 u gradw)

+ νd (grad1 u grad v) (grad1 u gradw)
]
dΩ.

From (18) both the existence of a′u(v, w) for all u, v, w ∈ H1(Ω) and the relation

of symmetry a′u(v, w) = a′u(w, v) follow. Using these results, one can prove, in the
same way as in [8], that F is a potential operator with the potential

f(u) =
∫ 1

0
a(tu, u) dt =

∫

Ω

[∫ B(u)

0
ν(x, y, b) b db− J u

]
dΩ−

∫

Γ2

g2 u dΓ

representing the residual magnetic energy.
In order to verify (1) notice that the equalities

(19) 〈F (v) − F (u), v − u〉 = a(v, v−u)−a(u, v−u) =
∫ 1

0
a′u+t(v−u) (v−u, v−u) dt

are valid for any u, v ∈ V . To this end it is sufficient to estimate a′u(v, v) only.
Applying (18) for w = v, one can express this Gâteaux derivative in the advantageous

form
a′u(v, v) =

∫

Ω

[
ν (curl1 u gradv)2 + νd (grad1 u grad v)2

]
dΩ

where the integrand is expressed in the form of a linear combination of ν and νd

with non-negative coefficients, both reluctivities being bounded from both sides by
positive constants. Respecting (5), (10) and (17), we conclude that

α0

∫

Ω
grad2 v dΩ � a′u(v, v) � β0

∫

Ω
grad2 v dΩ.

In order to change the seminorm in H1(Ω), appearing in these inequalities, to the

corresponding norm we use the Friedrichs inequality

∫

Ω
v2 dΩ � c

∫

Ω
grad2 v dΩ ∀v ∈ V,
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where c > 0 is a constant. Then we have in the norm of the space H1(Ω) that

α0
1 + c

‖v‖2 � a′u(v, v) � β0 ‖v‖2.

Combining it with (19) we arrive at

α0
1 + c

‖v − u‖2 � 〈F (v)− F (u), v − u〉 � β0 ‖v − u‖2

and thus (1) is satisfied for α(t) = α0
1+c t2 and β(t) = β0 t2. It is evident that

κ =
√
(1 + c) β0

α0
> 1. �

So, if e.g. the domain Ω has a polygonal boundary and linear triangular finite
elements are used which approximate u∗ with the accuracy of the first order then

also the error between u and u∗ is at worst of the first order.

6. Main condition in practice

The magnetization characteristic, given as a rule empirically, can be modelled

by various functions. Let us mention some models of the type H = H(B) from
[9] and study the validity of (5) or, which is the same, of (8). It is sufficient to

investigate the incremental reluctivity in the bounded interval [0, Bmax] only because
the magnitude of the real flux density is finite and relatively not very high (usually

Bmax
.
= 2.5T in the heavy current electrical engineering). This fact enables us to

determine α0, β0 for most of the magnetization characteristic models. The survey

of the results is presented in Table 1 where a, b, c, d, e denote real numbers chosen
so that the corresponding function represents a real magnetization characteristic, n

means a natural number and ω = νd(Bmax). Similarly in the case when only the
model B = B(H) is at one’s disposal, one calculates positive bounds α̂0, β̂0 of the

incremental magnetic permeability and puts α0 = 1/β̂0, β0 = 1/α̂0, see Table 2
where κ = 1/µd(Hmax).

7. Conclusion

In solving the nonlinear stationary magnetic field distributed over a planar re-
gion composed of different isotropic materials, an important role is played by the

incremental magnetic reluctivity (or permeability). Its positive bound from below
guarantees the unique existence of the weak and approximate solutions. If it is also

bounded from above then the error estimate between these solutions is given. We
point out that on the basis of this theory and the use of the finite element method
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H = H(B) α0 β0 Notes
a

b−B
a
b2 ω a > 0, Bmax < b

aB
b−B

a
b ω a > 0, Bmax < b

aB+b
B+c B min(a, b

c) max(a, b
c ) a, b, c > 0

a+ bB + cBn b ω c > 0, n > 1√
a2 + 2bB + c2B2 + d+min ( b

|a| , |c|) d+max ( b
|a| , |c|) a 
= 0, |c|+ d > 0

+dB + e b+ |a|d > 0

a exp (bB) ab ω a, b > 0

a [1− exp (−bB)] min(ab, ω) max(ab, ω) ab > 0

−a ln (1− bB) min(ab, ω) max(ab, ω) ab > 0, bBmax < 1

a sh (bB) ab ω ab > 0

aArth (bB) ω ab ab > 0, b2B2max < 1

a tg (bB) + cB + d ab+ c ω 2bBmax < �, ab > 0

Table 1. Determination of the condition coefficients for H = H(B)

B = B(H) α0 β0 Notes

aArth (bH) + c H κ 1
ab+c b2H2max < 1

ab+ c > max(cb2H2max, 0)

a+ bH + cHn κ 1
b b, c > 0

exp( H
a+b H ) min(a, q) max(a, q) a, b > 0, q = 1

a (a+ b H)2

Table 2. Determination of the condition coefficients for B = B(H)

with a triangular mesh and linear splines, an algorithm for the planar nonlinear sta-

tionary magnetic field computation has been constructed. The system of nonlinear
discretization equations has been solved by the Newton method, each Newton iterate

having been inverted by the Gaussian elimination respecting symmetry and the band
structure of the system matrix. Within years a large number of practical problems,

mostly from the heavy current electrical engineering, has been resolved (see e.g. [1]),
one of the solved problems being illustrated on the case of a synchronous machine in

an on-load state (see Figs. 1–3). The convergence in spite of strong nonlinearity of
the problem, material discontinuity and geometric complexity of the region has been

relatively very fast, for in nearly all solved cases the number of Newton iterates has
fluctuated somewhere between 8 and 12 to get a numerical fixed point.
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Fig. 1 Fig. 2

Fig. 3
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