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M -ESTIMATORS OF STRUCTURAL PARAMETERS

IN PSEUDOLINEAR MODELS1

Friedrich Liese, Rostock, and Igor Vajda, Praha

(Received September 2, 1997)

Abstract. Real valued M -estimators θ̂n := min
n∑
1

�(Yi − τ (θ)) in a statistical model

with observations Yi ∼ Fθ0 are replaced by �
p-valued M -estimators β̂n := min

n∑
1

�(Yi −

τ (u(zT
i β))) in a new model with observations Yi ∼ Fu(zt

iβ0), where zi ∈ �p are regressors,
β0 ∈ �p is a structural parameter and u : � → � a structural function of the new model.
Sufficient conditions for the consistency of β̂n are derived, motivated by the sufficiency con-
ditions for the simpler “parent estimator” θ̂n. The result is a general method of consistent
estimation in a class of nonlinear (pseudolinear) statistical problems. If Fθ has a natural
exponential density eθx−b(x) then our pseudolinear model with u = (g ◦µ)−1 reduces to the
well known generalized linear model, provided µ(θ) = db(θ)/dθ and g is the so-called link
function of the generalized linear model. General results are illustrated for special pairs �
and τ leading to some classical M -estimators of mathematical statistics, as well as to a new
class of generalized α-quantile estimators.

Keywords: M -estimator, generalized linear models, pseudolinear models
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1. Introduction

We consider a sequence of random vectors Yn = (Y1, . . . , Yn) with independent
components Yi ∼ Fθ0 where the distribution function Fθ0 is from a family F =

{Fθ : θ ∈ Θ} parametrized by means of an interval Θ ⊂ �. A sequence of Θ-valued
measurable functions θ̂n = θ̂n(Yn) is an M -estimator if

θ̂n ∈ argminθ∈ΘMn(θ) a. s. for Mn(θ) =
1
n

n∑

i=1

�(Yi − τ(θ)),

1 Supported by the grants AS CR 2075703 and GA CR 102/99/1137.
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where � : � → [0,∞) and τ : � → �. The last condition can be rewritten into the

form

(1) θ̂n ∈ argminθ∈Θ

∫

�

�(y − τ(θ)) dF̂n(y),

where

F̂n(y) =
1
n

n∑

i=1

1(Yi,∞)(y)

is the empirical distribution function.
Let us consider the function

(2) M∗
θ0(θ) =→ EMn(θ) =

∫

�

�(y − τ(θ)) dFθ0 (y)

of variables θ0, θ ∈ Θ. In Section 2 regularity conditions are formulated under which
M∗

θ0
(θ) is for every θ0 ∈ Θ continuous in θ. By Theorem 1 in Section 3 below, under

these regularity conditions, the estimator (1) is consistent if for every θ0 ∈ Θ
(A) the function (2) satisfies the condition

inf
|θ−θ0|>ε

M∗
θ0(θ) > M∗

θ0(θ0) for all ε > 0

and

(B) there exists c = c(θ0) > 0 such that

limn→ P
(
inf

|θ−θ0|>c
Mn(θ) > Mn(θ0)

)
= 1.

Note that the continuity of � and τ assumed in Section 2 implies that the infima

considered in (B) are measurable functions of Yn (cf. e.g. Liese and Vajda [8]).
For estimators defined by minimization or maximization, the proof of consistency

is a first step necessary for further asymptotic analysis. While this step seems to
tell us relatively little about the asymptotics of the estimators, it is often formally

much more difficult than the steps leading to more detailed information about the
asymptotics such as e.g. the asymptotic linearity or asymptotic normality. The case

where the �-function is convex is an exception. Then the pointwise convergence
of Mn(θ) to M∗

θ0
(θ) implies the locally uniform convergence and the convexity of

Mθ0(θ). The locally uniform convergence together with the identifiability (A) already
implies consistency. Convex �-functions were considered e.g. by Koenker amd Basset

[6], Pollard [14], Morgenthaler [10], Jurečková and Procházka [4], and Zwanzig [16].
Authors dealing with nonconvexMn(θ) impose some verifiable regularity conditions
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guaranteeing the locally uniform convergence ofMn(θ), see e.g. Pollard [12], Pfanzagl

[11], Liese and Vajda [7, 8], van der Vaart and Wellner [15]. The condition (B) is then
needed too, because it guarantees that the estimates are asymptotically localized in
a compact neighborhood of the true parameter θ0. In our model this condition is

not needed in cases where the special structure enables us to avoid the need of such
a localization. In the remaining cases we formulate verifiable regularity conditions

which imply (B).

In this paper we verify (A), (B) for several M -estimators (functions � and τ) and
families F . In particular, we do it for the L2-estimators defined by �(y) = y2 and

Lα-estimators, 0 < α < 1, defined by

(3) �α(y) = |y|
(
α 1[0,∞)(y) + (1− α) 1(−∞,0)(y)

)

(α-quantile estimators, least absolute deviation estimators if α = 1
2 ), and for the

natural exponential families defined by densities

fθ(y) =
dFθ(y)
dν(y)

= eθy−b(θ),

where ν is a σ-finite measure and

b(θ) = ln
∫

�

eθy dν(y)

is finite on Θ ⊂ �. The set {θ ∈ � : 0 <
∫
eθy dν(y) < ∞} as well as the function

b(θ) are known to be convex, and in the interior of this set there exist all derivatives

of b(θ) and all moments of the natural exponential distributions. If b(θ) is strictly
convex in the interior of Θ, then the mean

(4) µ(θ) =
∫

�

y dFθ(y) =
db(θ)
dθ

is increasing and continuous on Θ. Since the family F is stochastically increasing,

the quantile functions

(5) µα(θ) = F
−1
θ (α), 0 < α < 1,

are nondecreasing. Under certain assumptions concerning b(θ) and the dominating

measure ν, also the quantile functions are continuous and increasing on Θ. For the
L2-estimators it is assumed that τ(θ) = µ(θ) and for the Lα-estimators, τ(θ) = µα(θ).
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The consistency ofM -estimators in familiesF = (Fθ : θ ∈ Θ) based on conditions
(A), (B) can be extended to statistical models with observables Yn = (Y1, . . . , Yn)
where the components are independent, given by the formula

(6) Yi ∼ Fθi , θi = u(zt
i β0),

for a vector parameter β0 = (β01, . . . , β0p)t ∈ B, B ⊂ �
p , (nonrandom) regressors

zi = (zi1, . . . , zip)t ∈ Z , Z ⊂ �
p , and a function u : � → Θ. Statistical mod-

els of this pseudolinear structure will be called pseudolinear models with structural

functions u and structural parameters β0.
Our concept of pseudolinear model is wider than the classical generalized linear

model of mathematical statistics. The latter is using formula (6) too but it assumes
that F is a natural exponential family with a one-to-one mean function µ(θ). The

structural function is then defined by the formula u = (g ◦ µ)−1, where g is an
injective link function (g = µ−1 is the so-called natural link function, see Fahrmeir

and Kaufmann [2]). If e.g. Fθ is normal with mean θ and variance 1, i.e. if we
have a natural exponential family with b(θ) = θ2/2 and the dominating measure

ν ∼ N(0, 1), then the classical generalized linear model (6) reduces to the model of
nonlinear regression

(7) Yi = u(zt
i β0) + εi, → E εi = 0, → E ε2i = 1,

where the errors εi are independent normal (the natural link function leads to linear
regression). If the errors are independent logistic then the regression model (7) still

satisfies (6) for the logistic family

(8) Fθ(y) =
(
1 + e−�(y−θ)/

√
3
)−1

, θ ∈ �,

i.e. it remains to be pseudolinear but, since the logistic family is not natural expo-
nential, it is not generalized linear. Similarly, a linear model for scale in the logistic

family is not generalized linear. It is even not a regression model.

These examples at the same time demonstrate that the classes of pseudolinear
models and of the models of nonlinear regression have a nonempty intersection, and

that neither of these classes is included in the other.
By an M -estimator of structural parameters β0 in a generalized linear model we

mean a sequence of �p -valued measurable functions β̂n = β̂n(Yn, zn) of observables
Yn and p× n regressor matrices zn = (z1, . . . , zn) such that

(9) β̂n ∈ argmin
1
n

n∑

i=1

�(Yi − τ ◦ u(zt
i β)),

where the minimization extends over all β = (β1, . . . , βp)t ∈ B.
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The motivation of M -estimators, in particular of the Lα-estimators, 0 < α � 1, is
in our case the same as in the case of linear and nonlinear regression (cf. e.g. Pollard
[14], Morgenthaler [10], Jurečková and Procházka [4]). Our paper extends the method
of M -estimation to some of the models where the measurements are distorted by

random errors in a manner which is not necessarily additive.
In this paper we present alternatives to conditions (A), (B) which are sufficient

for the consistency of M -estimators of structural parameters of generalized linear
models. Our results extend the consistency theorems in Fahrmeir and Kaufman

[2], Liese and Vajda [7, 8], Jurečková and Procházka [4] and some other papers.
Note that for consistent M -estimators one can establish the asymptotic normality

relatively easily by using the methods developed recently by Pollard [12, 14] and
others (see Chap. 7 in Pfanzagl [11] or Sec. 3.2 in van der Vaart and Wellner [15]).

Thus in some sense the present paper opens the possibility to study also the higher
order asymptotic properties of estimators under consideration, like the efficiency and

robustness.

2. Regularity conditions

In this section we formulate regularity conditions imposed in the sequel on the

estimators and models under consideration.
(E1) The function � : � → [0,∞) is continuous and satisfies for every y ∈ � and

s > 0 the relation

(10) sup
|t|�s

�(y + t) � �(y + s) + �(y − s).

Obviously, (E1) follows from the following stronger condition.

(E1+) � : � → [0,∞) is continuous, nondecreasing on (0,∞) and nonincreasing on
(−∞, 0), with �(0) = 0.

(E2) The function τ : � → � is strictly monotone and continuous.

In the sequel we consider for N > 0 the functions

(11) χN (y) = 1[−N,N ](y), y ∈ �,

and

(12) ϕN (y, t) = �(y − t)χN (y), y ∈ �, t ∈ �.

(EM1) For every t ∈ � and a < b belonging to the interval Θ we have

lim
N→∞

sup
a<θ<b

∫
�(y − t) (1− χN (y)) dFθ(y) = 0.
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In the next condition we need the function

(13) �(y) = min{�(y), �(−y)}, y � 0,

and the extended real valued constants

(14) �(∞) = lim
y→∞

�(y) and �(−∞) = lim
y→−∞

�(y).

If (E1+) holds then �(∞) and �(−∞) exist and we can extend the definition (13) to
y =∞. Under (E1+) we consider the following condition.

(EM2) We have �(∞) = ϕ(−∞) = �(∞) and
∫
�(y − τ(θ0))dFθ0 (y) < �(∞).

This condition follows automatically from (E1+) when �(∞) = �(−∞) < ∞ and
�(y) < �(∞) for all y ∈ �. By Lemma 1 below, it follows also from (E1+), (E2) and
(EM1) when �(∞) = �(−∞) =∞.
(E1+), (E2), (EM1) and (EM2) hold for practically allM -estimators and families

F considered in statistics (cf. Lehman [9] and Hampel et al [3]). Next we give several

conditions concerning the model which are also satisfied in typical situations.
(M1) The family F is weakly continuous, i.e. the mapping θ → Fθ is continuous in

the sense of weak convergence of distributions.
(M2) The structural function u : � → Θ is strictly monotone and continuous.
(M3) All regressors z1, z2, . . . belong to a closed set Z ⊂ �

p bounded in the norm by
γ > 0.

(M4) The probability measure

µn =
1
n

n∑

i=1

δzi

defined on Z by the Dirac measures concentrated on regressors zi tends for

n→∞ weakly to a probability measure µ on Z , in symbols

µn |=⇒ µ.

Note that (M4) in some sense follows from (M3). Indeed, under (M3) there exists a

probability measure µ and a subsequence µnk
such that µnk

|=⇒ µ for k →∞.

Next, an important auxiliary result follows.

Lemma 1. If (E1), (E2) and (EM1) hold then the functions M∗
θ0
(θ), θ0 ∈ Θ, are

finitely valued and continuous on Θ.
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�����. Let θ0, θ∗ ∈ Θ be arbitrary fixed. The finiteness of integrals
∫
�(y − t) dFθ0(y), t ∈ �,

follows from (EM1). If θn ∈ Θ is a sequence tending to θ∗ as n → ∞ then the

continuity in (E1) and (E2) implies that the functions �(y − τ(θn)) tend pointwise
to �(y − τ(θ∗)) and (10) implies that

sup
|t|<s

�(y − τ(θ∗) + t)

is an Fθ0-integrable majorant for all functions �(y − τ(θn)) with sufficiently large
index n. �

3. Parent M -estimators

Let the domain B of possible values of structural parameters considered in (6) and

(9) be open in �p , and let

Θ = {u(zt β) : z ∈ Z , β ∈ B}

be an open interval in �.

The family F is a parent model for the generalized linear model given by (6)

and by the respective regressors, structural parameters, and structural function.
Obviously, in the particular one-dimensional case B ⊂ � with constant regressors

z1 = z2 = . . . = z ∈ � and structural function u(y) = y the pseudolinear model
reduces to the parent model with the rescaled parameter θ = zβ, β ∈ B.
Similarly, the estimator θ̂n of the parameter of the parent model given by (1) is

a parent M -estimator of the estimator given by (9). Let us recall that in (1) it is

assumed that

Yi ∼ Fθ0

for the independent observations Y1, . . . , Yn figuring in the definition ofMn(θ). Thus

in this section the convergence in probability is considered with respect to the prob-
ability measure defined in the usual way by the distribution function Fθ0(y).

It is obvious that the consistency of parentM -estimators is necessary for the con-
sistency of all the corresponding M -estimators of structural parameters. Therefore

we start with the simpler problem of consistency of parent M -estimators (1). The
main result of this section is based on the following lemma.
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Lemma 2. Let (E1), (E2) and (EM1) hold. Then for every c > 0

sup
|θ−θ0|�c

|Mn(θ) −M∗
θ0(θ)|

P−→ 0 as n→∞.

If τ is bounded on Θ then

sup
θ∈Θ

|Mn(θ)−M∗
θ0(θ)|

P−→ 0 as n→∞.

�����. (I) Let τ be bounded on Θ. By using the assumed nonnegativity of �

and (E1), one obtains for s = sup{|τ(θ)| : θ ∈ Θ} and for the function (11) with
arbitrary N > 0 the inequality

0 � Wn(N)
�
= sup

θ∈Θ

1
n

n∑

i=1

�(Yi − τ(θ)) [1 − χN(Yi)]

� 1
n

n∑

i=1

[�(Yi − s) + �(Yi + s)] [1− χN (Yi)].

Therefore (EM1) implies

lim
N→∞

(
sup

n
→ EWn(N)

)
= 0.

Further, (E2) implies that τ is strictly monotone on the interval Θ. Thus the bound-
edness of τ implies for every δ > 0 the existence of a finite net θ1, . . . , θk in Θ decom-

posing Θ by the nearest neighbor rule into the so-called Voronoi cells V (θ1), . . . , V (θk)
such that

sup
θ∈V (θj)

|τ(θ) − τ(θj)| < δ, 1 � j � k.

Let now N be fixed. Denote by T the interval of values of the mapping τ . Since the

function ϕN (y, t) of (12) is continuous on [−N,N ] × T , the last result means that
for any ε > 0 one can find a finite net θ1, . . . , θk in Θ such that

sup
y∈� : θ∈V (θj)

|ϕN (y, τ(θ)) − ϕN (y, τ(θj))| < ε, 1 � j � k.

Finally, for each 1 � j � k the bounded random variables Xi = ϕN (Yi, τ(θj)),
1 � i � n, satisfy the law of large numbers

1
n

n∑

i=1

(Xi −→ EXi)
P−→ 0 as n→∞.
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By combining the last three facts, one obtains the desired uniform law of large

numbers:

sup
θ∈Θ

|Mn(θ)−M∗
θ0(θ)| = sup

θ∈Θ

∣∣∣∣
1
n

n∑

i=1

[�(Yi−τ(θ))−→ E �(Yi−τ(θ))]
∣∣∣∣

P−→ 0 as n→∞.

(II) Let now τ be unbounded on Θ. By (E2), it is bounded on the bounded set

Θ0 = {θ ∈ Θ: |θ − θ0| � c} for any c > 0. Thus all steps of part (I) are applicable
with Θ replaced by Θ0. �

Theorem 1. Let (E1), (E2) and (EM1) hold. Then (A) and (B) imply the
consistency of estimator (1). If τ is bounded on Θ then (A) alone implies this

consistency.

�����. (I) Let τ be bounded and let ε > 0 be arbitrary. Then

{|θ̂n − θ0| > ε} ⊂
{
inf

|θ−θ0|>ε
Mn(θ) � Mn(θ0)

}
⊂ An,

where

An =
{
inf

|θ−θ0|>ε
M∗

θ0(θ) � M∗
θ0(θ0) + 2 sup

θ∈Θ
|Mn(θ)−M∗

θ0(θ)|
}
.

Since (A) implies
inf

|θ−θ0|>ε
M∗

θ (θ)−M∗
θ0(θ0) > 0,

the desired relation limn→ P (An) = 0 follows from Lemma 2.

(II) Let now τ be unbounded and δ > 0 arbitrary. Choose any ε between 0 and c

figuring in (B). Similarly as in part (I),

{|θn − θ0| > ε} ⊂ {|θ̂n − θ0| > c} ∪ {ε < |θ̂n − θ0| � c}.

Since
{|θ̂n − θ0| > c} ⊂

{
inf

|θ−θ0|>c
Mn(θ) � Mn(θ0)

}
,

(B) implies for the first event on the right-hand side

limn→ P (|θ̂n − θ0| > c) = 0.

The second right-hand side event can be bounded as follows:

{ε < |θ̂n − θ0| � c} ⊂
{

inf
ε<|θ−θ0|�c

Mn(θ) < Mn(θ0)
}
⊂ Ãn
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where

Ãn =
{

inf
ε<|θ−θ0|�c

M∗
θ0(θ) < M∗

θ0(θ0) + 2 sup
|θ−θ0|�c

|Mn(θ)−M∗
θ0(θ)|

}
.

Since by Lemma 2

sup
|θ−θ0|�c

|Mn(θ) −M∗
θ0(θ)|

P−→ 0 as n→∞,

the same argument as in part (I) leads to the desired relation limn→ P (Ãn) = 0. �

The identifiability condition (A) must be verified separately for eachM -estimator

(i.e. for each pair � and τ) and each parent model (i.e. family F ). If τ is unbounded
on Θ, then one can prove a relatively weak sufficient condition for (B).

Lemma 3. If τ is unbounded on Θ then the conditions (E1+), (E2), (EM1) and
(EM2) imply (B).

�����. For τ unbounded on Θ the set SN = {θ ∈ Θ: |τ(θ) − τ(θ0)| � N} is
nonempty for every N > 0. By (E2), the open interval Θ must be unbounded and
SN is either a semiclosed unbounded interval, or the union of two disjoint semiclosed

intervals of which at least one is unbounded. Define

γθ0(N) =





θ0 − aN if SN = (−∞, aN ]

bN − θ0 if SN = [bN ,∞)
max{θ0 − aN , bN − θ0} if SN = (a, aN ] ∪ [bN , b),

where−∞ � a < aN < bN < b � ∞. Then |θ−θ0| � γθ0(2N) implies |τ(θ)−τ(θ0)| �
2N . Further, if the function

d(y, θ) = y − τ(θ), y ∈ �, θ ∈ Θ,

satisfies for some y ∈ � and θ0 ∈ Θ the condition

|d(y, θ0)| < N (i.e. χN (d(y, θ0)) = 1, cf. (11))

then |θ − θ0| � γθ0(2N) implies

|d(y, θ)| � |τ(θ) − τ(θ0)| − |d(y, θ0)| � N.
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Finally, (E1+) implies that the function (13) satisfies for all d ∈ � with |d| � N the

inequality

(15) �(d) � �(N).

Therefore, if for an arbitrary fixed N > 0 we define random variables

Wi = χN (d(Yi, θ0)), 1 � i � n,

then for |θ − θ0| � γθ0(2N), (15) implies

Mn(θ) =
1
n

n∑

i=1

�(d(Yi, θ)) � 1
n

n∑

i=1

Wi �(d(Yi, θ))

� 1
n

n∑

i=1

Wi �(N) = �(N)
1
n

n∑

i=1

Wi.

Consequently,

(16) inf
|θ−θ0|�γθ0(2N)

Mn(θ) � �(N)
1
n

n∑

i=1

Wi.

Here, by the law of large numbers,

1
n

n∑

i=1

Wi
P−→ w(N) as n→∞,

where

(17) w(N) =→ EW =→ E χN (Y − τ(θ0)) = Fθ0(τ(θ0) +N)− Fθ0(τ(θ0)−N).

It follows from (14) and (17) that

lim
N→∞

�(N)w(N) = �(∞).

On the other hand, (EM2) implies

M∗
θ0(θ0) =→ E �(Y − τ(θ0)) < �(∞).

It is clear from here and from (16) that there exists N > 0 such that (15) holds for

c(θ0) = γθ0(2N).

�
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Corollary 1. If the regularity conditions (E1+), (E2), (EM1) and (EM2) hold
then the identifiability assumption (A) implies the consistency of the parent M -
estimator (1).

The proof of consistency for as wide class of M -estimators of real parameter

as considered in Corollary 1 seems to be a new result of the parametric statistics
(cf. Lehman [9], Hampel et al [3], Pfanzagl [11], van der Vaart and Wellner [15]).

In the next section this result and the related proofs are adapted to the more com-
plicated reality of pseudolinear problems. Now, some examples illustrating the ap-

plicability of our results in the context of present as well as of the following section
follow.

�����	
 1 (least square error estimator). Let us consider an arbitrary family

F = (Fθ : θ ∈ �) with mean µ(θ) strictly monotone and continuous, and variance

σ2(θ) =
∫

�

(y − µ(θ))2 dFθ(y) <∞,

the L2-estimator for τ(θ) = µ(θ). Then

M∗
θ0(θ) = σ

2(θ0) + (µ(θ) − µ(θ0))2, Mn(θ) =
1
n

n∑

i=1

Y 2i −
2µ(θ)
n

n∑

i=1

Yi + µ2(θ),

and the assumptions of Corollary 1 are satisfied. Hence the estimator θ̂n is in this

case consistent. The value θ̂n can be explicitly evaluated, namely

θ̂n = µ
−1

(∫

�

y dFn

)
= µ−1

(
1
n

n∑

i=1

Yi

)
a. s.,

so that the consistency can thus be established also directly, via the law of large

numbers. All these facts are well known. If F is natural exponential then the
estimator (10) satisfies the maximum likelihood condition,

θ̂n ∈ argmax
(
θ

n

n∑

i=1

Yi − b(θ)

)
a. s.

To this end it suffices to take into account the formula (4) for µ(θ) and the fact
that b(θ) is continuously differentiable and convex. The consistency of maximum

likelihood estimators in natural exponential families is also well known (cf. e.g. Brown
[1]).
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�����	
 � (α-quantile estimator). Let 0 < α < 1 and let F = {Fθ : θ ∈ Θ},
Θ = � be a stochastically increasing family. Then the α-quantile function µα(θ)
given by (5) is nondecreasing on Θ. Assume in addition that µα(θ) is continuous and
increasing. Consider the Lα-estimator for τ(θ) = µα(θ). Then (E1+), (E2), (EM1)

and (EM2) hold. If a distribution function Fθ0(y) is continuous and increasing in the
neighborhood of y = µα(θ0) then, by Proposition 1 in Appendix, also assumption

(A) is satisfied. Therefore, by Corollary 1, the Lα-estimator of θ0 ∈ Θ is consistent.
Some of these facts are well known (cf. e.g. Koenker and Basset [6] in the case

of the location model F = {F (x − θ) : θ ∈ �} with absolutely continuous parent
distribution function F (x)). We have coined the term “α-quantile estimator” for the

Lα-estimator θ̂n because it employs the α-quantile function µα(θ) at the place of the
general τ(θ) figuring in the definition of Mn(θ). Let us point out that the estimates

θ̂n identify distributions from F with the α-quantiles least distant from the sample
α-quantiles.

4. Main results

Unless otherwise explicitly stated, throughout this section we assume the validity
of regularity conditions (E1), (E2), (EM1) and (M1)–(M4).

In a pseudolinear model the expectation → Emn(β) of the function mn(β) min-

imized in (9) depends not only on the true parameter β0 figuring in the definition
(6), but also on the matrix of regressors zn = (z1, . . . , zn) ∈ Z n. We formulate

conditions (a), (b) analogous to the above considered (A), (B). The new conditions
are essentially obtained from the previous ones by replacing the functions Mn(θ) by

(18) mn(β) =
1
n

n∑

i=1

�(Yi − ϕ(zt
i β)) where ϕ = τ ◦ u (cf. (9))

and the expectations (2) by the corresponding alternatives

(19) m∗
n,β0(β) =→ Emn(β) =

1
n

n∑

i=1

∫
�(y − ϕ(zt

iβ)) dFu(zt
i β0)(y).

Note that by (E2) and (M2), ϕ : � → � is continuous and strictly monotone. The
expectation (19) can be expressed in terms of the function M∗

θ0
(θ),

m∗
n,β0(β) =

1
n

n∑

i=1

M∗
u(zt

i β0)
(u(zt

i β)).
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One can argue similarly as in the proof of Lemma 1 that the functions (19) are

finitely valued and continuous in β.
It is convenient to introduce on Borel sets C ⊂ �

2 probability measures Γn and Γ
by the formulas

Γn(C) =
∫

C

dFu(ztβ0)(y) dµn(z)

and
Γ(C) =

∫

C

dFu(ztβ0)(y) dµ(z),

where µn and µ are the probability measures figuring in (M4). By (M1), for every
continuous and bounded f : � ×Z → �, the function

ψ(z) =
∫

�

f(y, z) dFu(ztβ0)(y)

is bounded and continuous on Z . Therefore (M4) implies
∫

�×Z

f(y, z) dΓn(y, z) =
∫

Z

ψ(z) dµn(z) −→
∫

�×Z

f(y, z) dΓ(y, z) as n→∞.

Let us define

(20) m∗
β0(β) =

∫

�×Z

�(y − ϕ(ztβ)) dFu(ztβ0)(y) dµ(z), β, β0 ∈ B.

Lemma 4. For any β0 ∈ B and β ∈ B the functions (19) and (20) satisfy the

relation

limnm
∗
n,β0(β) = m

∗
β0(β),

where the convergence is locally uniform in β and the limit function is continuous in

β.

�����. Let β0 and β be fixed. Then

(21) ϕ(y, z, β) = �(y − ϕ(ztβ))

is continuous on � ×Z and the functions (19) and (20) satisfy the relations

m∗
n,β0(β) =

∫

�×Z

ϕ(y, z, β) dΓn(y, z) and m∗
β0(β) =

∫

�×Z

ϕ(y, z, β) dΓ(y, z).

If � is bounded then f(y, z) is bounded, too and the desired convergence follows
directly from the limit relation preceding (20). For an unbounded � this argument

still applies since, under (E1), (E2), (EM1) and (M3), the function

ψ(z) =
∫

�

ϕ(y, z, β) dFu(ztβ0)(y)
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remains to be continuous and bounded on Z . As ϕ(y, z, β) is continuous on � ×
Z ×B, for each bounded subset B0 ⊂ B the class of functions

{fβ(y, z) = ϕ(y, z, β) : β ∈ B0}

is equicontinuous on � × Z . Hence the convergence is locally uniform. This con-

vergence thus extends the above mentioned continuity of functions m∗
n,β0
(β) to the

limit m∗
β0
(β). �

Next we establish a property of the function ϕ defined in (18) which is useful in

the sequel.

Lemma 5. If ϕ(ztβ) is bounded on Z × B then for every δ > 0 there exists a

finite decomposition {B1, . . . , B�} of B and points βk ∈ Bk such that

max
1�k��

sup
β∈Bk,z∈Z

|ϕ(ztβ)− ϕ(ztβk)| < δ.

�����. (I) As said above, ϕ is continuous and strictly monotone on �. We

shall prove that for every ε > 0 and γ > 0 there exists intervals I0 = (−∞, a0],
I1 = (a0, a1], . . . , Im = (am,∞) such that for every b, b∗ ∈ Ij

sup
b,b∗∈Ij

sup
a∈� : |c|�γ

|ϕ(a+ bc)− ϕ(a+ b∗c)| < ε, 0 � j � m.

It follows from the properties of ϕ that there exist intervals J0 = (−∞, t0], J1 =

(t0, t1], . . . , Jn = (tn,∞) such that |ϕ(x) − ϕ(y)| < ε/2 if both x, y belong to the
same interval. Let ∆ > 0 and a natural r satisfy the conditions

γ∆ = min
1�i�n

(ti − ti−1), r∆ � max{|t0|, |tn|},

and let

(−∞,−r∆], (−r∆,−(r − 1)∆], . . . , (r∆,∞)
be the intervals Ij . If b, b∗ ∈ Ij then either |b− b∗| < ∆, i.e. |a+ bc− (a+ b∗c)| < γ∆,

or both b and b∗ belong to the same boundary interval J0 or Jn. In either case
x = a + bc and y = a + b∗c belong to the same Jk, or to the neighboring intervals
Jk, Jk+1, so that |ϕ(x) − ϕ(y)| < ε.

(II) Consider now arbitrary β, β∗ ∈ B and z ∈ Z and denote by (β)s, (β∗)s and
(z)s the respective s-th coordinates of these vectors for 1 � s � p. Further, define
for 1 � s � p+ 1 new vectors

β(s) =
(
(β∗)1, . . . , (β∗)s−1(β)s, . . . , (β)p

)
∈ �p .
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Then

ϕ(ztβ)− ϕ(ztβ∗) = ϕ(ztβ(1))− ϕ(ztβ(p+ 1))

=
p∑

i=1

[
ϕ(ztβ(s)) − ϕ(ztβ(s+ 1))

]
.

Let as be defined for 1 � s � p by the formula

as = z
tβ(s)− (z)s (β)s ≡ ztβ(s+ 1)− (z)s(β∗)s.

Then

|ϕ(ztβ)− ϕ(ztβ∗)| =
∣∣∣∣

p∑

s=1

[ϕ(as + (z)s(β)s)− ϕ(as − (z)s (β∗)s)]
∣∣∣∣

�
p∑

s=1

|ϕ(as + bscs)− ϕ(as + b
∗
scs)|,

where

bs = (β)s, b∗s = (β
∗)s and cs = (z)s.

By applying to each summand the result of part (I), one obtains intervals Isj such

that

sup
bs,b∗s∈Isj

sup
as∈� : |cs|�γ

|ϕ(as + bscs)− ϕ(as + b
∗
scs)| < ε, 1 � j � m.

If γ is the same as in the regularity assumption (M3) then this result implies for any

integers 1 � j1, . . . , jp � m the inequality

sup
β,β∗∈I1j1×...×Ipjp

sup
z∈Z

|ϕ(ztβ)− ϕ(ztβ∗)| < pε.

Thus if A is the algebra of subsets of B induced by all rectangles I1j1 × . . . × Ipjp

then the class B = {B1, . . . , B�} of atoms of A is the desired decomposition. The

points β1, . . . , β� from the respective atoms may be arbitrary. �

Next we introduce conditions (a), (b) analogous to the consistency conditions (A),
(B) for the parent estimator. As proved in Theorem 2 below, if for every β0 ∈ B

(a) the function (20) satisfies the condition

inf
‖β−β0‖>ε

m∗
β0(β) > m∗

β0(β0) for every ε > 0
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and

(b) for every δ > 0 there exists c = c(β0, δ) such that

lim infn→ P
(
inf

‖β−β0‖>c
mn(β) > mn(β0)

)
> 1− δ

then the estimator (9) is consistent. Theorem 2 is based on the following analogue
of Lemma 2.

Lemma 6. For all c > 0,

sup
‖β−β0‖�c

|mn(β) −m∗
β0(β)|

P−→ 0 as n→∞.

If ϕ(ztβ) is bounded on Z ×B then

sup
β∈B

|mn(β) −m∗
β0(β)|

P−→ 0 as n→∞.

�����. (I) Let ϕ(ztβ) be bounded. Similarly as in the proof of Lemma 2, one

can use
s = sup

z∈Z ,β∈B
|ϕ(ztβ)| <∞

to prove that the random variables

Wn(N) = sup
β∈B

1
n

n∑

i=1

�(Yi − ϕ(ztβ)) [1 − χN (Yi)], N > 0,

satisfy the relation

lim
N→∞

(
sup

n
→ EWn(N)

)
= 0.

Since
ϕN (y, z, β)

�
= ϕ(y, z, β)χN (y) (cf. (11) and (21))

is continuous in (y, z, β) ∈ [−N,N ]×Z ×B, Lemma 5 implies that for every ε > 0

one can find points β1, . . . , β� in the corresponding sets of a decomposition B1, . . . , B�

of B such that

max
1�k��

sup
[−N,N ]×Z×Bk

|ϕN (y, z, β)χN(y)− ϕN (y, z, βk)| < ε.

This together with the fact that for any fixed N > 0 and 1 � k � � the random

variables
Xi = ϕN (Yi, zi, βk), 1 � i � n,
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satisfy the law of large numbers

1
n

n∑

i=1

(Xi −→ EXi)
P−→ 0 as n→∞,

implies the first stochastic convergence of Lemma 6 with m∗
β0
(β) replaced by

m∗
n,β0
(β). However, by Lemma 4 this convergence holds without this replacement

as well.

(II) Let ϕ(ztβ) be unbounded on Z ×B. Due to the continuity, it is bounded on
the bounded set

Z ×B0 for B0 = {β ∈ B : ‖β − β0‖ � c}

for any c > 0. Thus all steps of part (I) are applicable with B replaced by B0. �

In the proof of Theorem 2 below the following sharpening of Lemma 4 is needed.

Lemma 7. If ϕ(ztβ) is bounded on Z ×B then the convergence in Lemma 4 is

uniform in β ∈ B.

�����. It follows from Lemma 5 that in this case the whole class

{fβ(y, z) = ϕ(y, z, β) : β ∈ B}

considered in the proof of Lemma 4 is equicontinuous. The rest is the same as in the

proof of Lemma 4. �

Theorem 2. Let the regularity conditions (E1), (E2), (EM1) and (M1)–(M4)
hold. Then assumptions (a) and (b) imply the consistency of the estimator (9).

If ϕ(ztβ) is bounded on Z × B then assumption (a) alone is sufficient for this
consistency.

�����. (I) Let ϕ(ztβ) be bounded. Then similarly as in the proof of Theorem 1

{‖β̂n − β0‖ > ε} ⊂ An,

where

An =
{
inf

‖β−β0‖>ε
m∗

n,β0(β) < m∗
n,β0(β0) + 2 sup

β∈B
|mn(β)−m∗

n,β0(β)|
}
.
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Obviously, An is dominated by

Ãn =
{
inf

‖β−β0‖>ε
m∗

β0(β) < m∗
β0(β0) + 2 sup

β∈B
|m∗

n,β0(β)−m∗
β0(β)|

+ 2 sup
β∈B

|mn(β)−m∗
n,β0(β)|

}
.

Assumption (a) implies

inf
‖β−β0‖>ε

m∗
β0(β) −m∗

β0(β0) > 0.

By Lemmas 6 and 7, both suprema in Ãn tend in probability to zero. Therefore

→ P (Ãn)→ 0 as n→∞.

(II) Let now ϕ(ztβ) be unbounded and choose ε between 0 and c from the as-

sumption (b). Since (b) implies

lim infn→ P (‖β̂n − β0‖ > c) > 1− δ,

it suffices to prove analogously as in part (II) of the proof of Theorem 1 that the

probability of

Ãn =
{

inf
ε<‖β−β0‖�c

m∗
β0(β) < m∗

β0(β0) + 2 sup
‖β−β0‖�c

‖m∗
n,θ0(θ) −m∗

θ0(θ)‖

+ 2 sup
‖β−β0‖�c

|mn(β) −m∗
n,θ0(β)|

}

tends to zero. Similarly as at the end of part (I), by using (a) this can be reduced
to the proof that both the suprema tend to zero. But this was already proved in

Lemmas 4 and 6. �

Assumption (b) is needed only when ϕ(ztβ) is unbounded on Z × B. We shall

show in Lemma 9 that then (b) is almost always fulfilled, similarly as it has been
observed in the parent model in Lemma 3. In the present case we need the additional

assumptions

(22) lim
s→∞

lim
c→∞

liminfn Mn(c, s) > 0

or

(23) lim
s→∞

lim
c→∞

liminfn Mn(c, s) = 1,
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where

(24) Mn(c, s) = inf
‖β‖>c

µn(z ∈ Z : |ztβ| > s)

and the limits exist due to the monotonicity of the corresponding functions.

The next result provides simple sufficient conditions for (22), (23) in terms of the

measure µ figuring in the regularity assumption (M4).

Lemma 8. Relation (22) follows from the condition

(25) µ(z ∈ Z : ztβ = 0) < 1 for every nonzero β ∈ B,

and relation (23) from the condition

(26) µ(z ∈ Z : ztβ = 0) = 0 for every nonzero β ∈ B.

�����. Denote

α = lim
ε↓0
liminfn inf‖β‖=1

µn(z ∈ Z : |ztβ| > ε).

By Lemma 5 in Liese and Vajda [7], (25) is equivalent to α > 0 and (26) is equivalent
to α = 1. Taking into account that for β ∈ �p with ‖β‖ > c > 0

µn(z ∈ Z : |ztβ| > s) � µn

(
z ∈ Z :

|ztβ|
‖β‖ � s

c

)
for all s > 0,

one obtains from (24) for all positive s and c

Mn(s, c) � inf
‖β‖=1

µn(z ∈ Z : |ztβ| > s/c).

Consequently,

lim
c→∞

liminfn Mn(s, c) � α for all s > 0.

It is clear from here that (25) implies (22) and (26) implies (23). �

In the next lemma we consider the function � defined by (13) and (14), and also
ϕ defined by analogous formulas

ϕ(y) = min{|ϕ(y)|, |ϕ(−y)|}, y > 0,

ϕ(∞) = lim
y→∞

ϕ(y),
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for ϕ introduced in (18). As said at the beginning of this section, ϕ is continuous and

strictly monotone. Therefore ϕ is continuous and increasing in the domain (0,∞).
If ϕ(∞) =∞, then the inverse ϕ−1 is continuous and increasing in the same domain
and

(27) ψ(s)
�
= ϕ−1(s)→∞ as s→∞.

Lemma 9. Let ϕ(∞) = ∞ and let also the regularity assumptions (E1+) and
(EM2) hold. Then (23) implies (b). The weaker assumption (22) implies (b) if
�(∞) =∞.

�����. Let β ∈ B be arbitrary and define for N > 0

mN
n (β) =

1
n

n∑

i=1

�(|yi − ϕ(zt
iβ)|)χN (Yi) (cf. (11)).

Then mn(β) � mN
n (β). If M > N > 0 then similar arguments as in the proof of

Lemma 3 lead to the inequalities

mn(β) � �(M −N)
1
n

∑

i : |ϕ(zt
iβ)|>M

χN (Yi)

� �(M −N)
1
n

∑

i : ϕ(zt
iβ)>M

χN (Yi)

� �(M −N)

[
−1 + 1

n

n∑

i=1

χN (Yi) + µn(z ∈ Z : ϕ(ztβ) > M)

]
.

Hence for any c > 0 and ψ(M) = ϕ−1(M) we have

(28) inf
‖β‖>c

mn(β) � �(M −N)

[
Mn(c, ψ(M))−

1
n

n∑

i=1

(1− χN (Yi))

]
(cf. (24)).

For �(∞) < ∞ it follows from (EM2) and (20) that one can find α > 0 with the
property

(29) �(∞) (M − α) > m∗
β0(β0) + α,

where M = 1 is the limit figuring in (23). Similarly for � = ∞ it follows from the
finiteness of m∗

β0
(β0) (see Lemma 4) that there exists α > 0 such that (29) remains

satisfied for the limit 0 < M � 1 figuring in (22). If we define for α figuring in (29)

AN
n =

{
1
n

n∑

i=1

(1 − χN(Yi)) � α

}
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then for every δ > 0 there exist n0 and N0 such that N > N0, n > n0 implies

→ P (AN
n ) � 1− δ/2. Similarly if

A∗n = {mn(β0) � m∗
β0(β0) + α}

then Lemma 4 implies the existence of n1 such that → P (A∗n) > 1− δ/2 for n > n1.
Further, by (28) and the definition of AN

n and A
∗
n, for all c, n, M and N under

consideration we have
{
inf
‖β‖>c

mn(β) > mn(β0)
}

⊃
{
�(M −N)

[
Mn(c, ψ(M))−

1
n

N∑

i=1

(1− χN (Yi))

]
> mn(β0)

}

⊃
{
�(M −N) [Mn(c, ψ(M))− α] > m∗

β0(β0) + α
}
∩AN

n ∩A∗n.

Suppose now that (23) holds, or that (22) holds and �(∞) =∞. Then (27) and (29)
imply

lim
N→∞

lim
c→∞

lim infn �(N2 −N) [Mn(c, ψ(N2)− α)] > m∗
β0(β0) + α.

Hence there exist N∗ > N0 and c∗ > 0 such that for all sufficiently large n

�(N2∗ −N∗) [Mn(c∗, ψ(N
2
∗ )− α)] > m∗

β0(β0) + α.

Thus it follows from the above inclusions that

lim infn→ P
(
inf
‖β‖>c

mn(β) > mn(β0)
)

� lim infn P (AN∗
n ∩A∗n) � 1− δ,

i.e. that (b) holds. �

Next we introduce two corollaries of the main result of this paper.

Corollary 2. Let ϕ(∞) = ∞ and let the regularity conditions (E1+), (E2),
(EM1), (EM2) and (M1)–(M4) hold. Then the identifiability assumption (a) together

with (23) implies the consistency of the M -estimator (9). If �(∞) =∞ then the last
statement remains true with (23) replaced by the weaker condition (22).

�����. Clear from Theorem 2 and Lemma 9. �

Corollary 3. Corollary 2 holds with (23) replaced by (26) and (22) replaced by
(25).

�����. Clear from Lemma 8. �
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Corollaries 2 and 3 present verifiable regularity conditions which are sufficient for

consistency, and which are applicable to a great variety ofM -estimators and pseudo-
linear models. For the pseudolinear and generalized linear models these conditions
are new. Their nontriviality can be checked when they are applied to a special class

of linear models where they can be compared with similar conditions derived in lit-
erature directly for this special case. One can easily verify that they either directly

coincide with, or are very close to the conditions which can be found for the linear
case in Hampel et al [3], Pollard [13, 14], Jurečková and Procházka [4], Jurečková and

Sen [5], Liese and Vajda [7, 8] and other references. This is illustrated in Example 5
of the next section.

5. Applications

Corollaries 2 and 3 are of considerable practical importance. As we have mentioned

(and practically illustrated by several examples) in Section 2, regularity conditions
(E1+), (E2), (EM1) and (EM2) hold for practically all M -estimators and families

F considered in statistical applications. The families F considered in applications
usually fulfil also conditions (M1) and (M2). The other conditions (M3), (M4) and

(22), (23) (or their simpler alternatives (25), (26)) characterize designs of experiments
reducing consistency to the identifiability condition (a). This condition is then in

fact necessary and sufficient for consistency (cf. the linear regression example in Liese
and Vajda [9]). The design of an identifiable experiment and the choice of a class of

estimation procedures able to identify the true parameter in the sense of (a), are the
primary tasks of the statistician. To this end he has at his disposal two universal

tools: the functions � and τ . The only restrictions on these tools are the quite
tolerant regularity conditions (E1+), (E2), (EM1) and (EM2). As soon as this task

is fulfilled, further criteria can be involved in the process of final specification of the
estimation procedure, e.g. the efficiency or robustness.

Now we illustrate the applicability of Corollaries 2 and 3, and of the results sum-
marized in Examples 1–4, to pseudolinear statistical models.

�����	
 � (α-quantile estimator). Let 0 < α < 1 and let F = {F (y −
θ), θ ∈ �} be a location family with F (y) strictly increasing in the neighborhood
of y = F−1(α). By the result of Example 2, in this case the conditions (E1+),
(E2), (EM1) and (EM2) hold. The generalized linear model (6) with β0 ∈ B = �

p

reduces to the nonlinear regression model (7) where the independent errors εi are
distributed by F (y). Suppose that the function u : � → � figuring in our model (7)

is strictly monotone and continuous, so that (M2) holds. If u is the identity mapping
then we are within the framework of the classical linear regression with i.i.d. errors.
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Obviously, also (M1) holds in our case. If (M3), (M4) and (25) hold then for all

β0 ∈ �p

µ
(
z ∈ Z : inf

‖β−β0‖>ε
|zt(β − β0)| > 0

)
> 0, ε > 0.

Since u is strinctly monotone on �, this implies

µ
(
z ∈ Z : inf

‖β−β0‖>ε
|u(zt β)− u(zt β0)| > 0

)
> 0, ε > 0.

One can deduce from here that also

inf
‖β−β0‖>ε

m∗
β0(β) −m∗

β0(β0) > 0,

i.e. that the assumption (a) is satisfied. Therefore, by Corollary 3, the consistency

of the α-quantile estimator of the regression parameter β0 takes place if the con-
ditions (M3), (M4) and (25) hold. These conditions are simpler and in most cases

weaker than the consistency conditions which can be obtained from Theorem 1 in
Jurečková and Procházka [4] establishing, however, not only the consistency but also

the asymptotic normality of the estimator under consideration.

Appendix: Quantiles

We say that a real valued functionM∗(θ) defined on an interval Θ ⊂ � is unimodal
with the mode at θ0 in M∗(θ) if it is nondecreasing in the subdomain θ � θ0 and

nonincreasing in the subdomain M∗(θ).
Consider an arbitrary 0 < α < 1 and a probability distribution F (x) continuous

from the left on �. The α-quantile

xα = xα(F )

is the real number satisfying the condition

(30) F (xα) � α � F (xα + 0).

The α-quantiles are not unique in general. For every F and α under consideration,

the quantile function (generalized inverse)

F−1(α) = inf{x ∈ � : F (x) � α}

represents the smallest α-quantile.

268



Each α-quantile is a solution of a minimization problem. To this end consider

�α(x) =

{
αx if x > 0

−(1− α)x if x � 0
(cf. (3))

and the function

Φα(x) =
∫
�α(y − x) dF (y),

and suppose that
∫
|x| dF (x) <∞. Since �α(x) is piecewise linear, there exists c > 0

such that ∣∣∣ 1
h
(�α(x+ h)− �α(x))

∣∣∣ � c|x| for all h 
= 0.

If D+ and D− denote the right and left hand derivatives then, by the Lebesgue
theorem,

D+Φα(x) =
∫

(x,∞)
(−α) dF (y) +

∫

(−∞,x]
(1− α) dF (y)

= (1− α)F (x + 0)− α(1 − F (x+ 0))

= F (x+ 0)− α

and, similarly,

D− Φα(x) = F (x)− α.

It follows from here that xα minimizes Φα(x) on �. This result has been established
previously by Koenker and Basset [6] for absolutely continuous distribution functions

F (x).

Proposition 1. Let F (x) be an arbitrary distribution function on �. If∫
|x| dF (x) <∞ then every α-quantile xα minimizes Φα(x) on �.

Now we can formulate the main result of Appendix which guarantees the con-
sistency condition (A) of Section 1 for functions (2) with � = �α and 0 < α < 1.

Let F = (Fθ : θ ∈ Θ), Θ ⊂ �, be an arbitrary family of probability distribution
functions on � satisfying for some θ0 ∈ Θ the condition

∫
|y| dFθ0(y) < ∞. Define

for fixed 0 < α < 1 functions

µα(θ) = F
−1
θ (α)

and

M∗
θ0(θ) =

∫
�α(y − µα(θ)) dFθ0(y)

of the variable θ ∈ Θ. The next proposition follows from Proposition 1.

269



Proposition 2. Let 0 < α < 1 be arbitrary. If µα(θ) is monotone on Θ then the

function M∗
θ0
(θ) is unimodal with the mode at θ = θ0. If µα(θ) is strictly monotone

on Θ and F−1θ0
(α) or F−1θ0

(α∗) belongs to the support of the distribution Fθ0 then

the respective mode is unique.
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