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NUMERICAL SOLUTION OF SEVERAL MODELS OF
INTERNAL TRANSONIC FLOW*

JAROSLAV FORT, KAREL KOZEL, Praha

Abstract. The paper deals with numerical solution of internal flow problems. It mentions
a long tradition of mathematical modeling of internal flow, especially transonic flow at our
department. Several models of flow based on potential equation, Euler equations, Navier-
Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered.
Some mathematical and numerical properties of the model are mentioned and numerical
results achieved by in-house developed methods are presented.
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1. INTRODUCTION

A fast progress in numerical solution of transonic flows in external and inter-
nal aerodynamics started by the first works published in 1971. Transonic flow (2D
cascades) was solved in the Czechoslovak Republic firstly by the model of small dis-
turbance potential equation [1]. Several extensions of this method were developed for
the model of full potential equation. These were the first methods in Czechoslovakia
which were used in practice for aerodynamical design of large axial compressors and
steam turbines. Some flow regimes (eg. choked flow in turbine cascades with super-
sonic outlet flow) were successfully solved several years later by methods based on
the model of Euler and Navier-Stokes equations.

Development of a proper scheme for discretization of convective terms is the main
problem of numerical solution of laminar as well as turbulent viscous flows. We
consider the same problem for all models, the flow through the plane cascade SE1050.

* This work has been supported by the grants No. 201/02/0684 and 101/02/0647 of the
Grant Agency of the Czech Republic and by the research plans of MSMT No. 210000010,
210000003.
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It is a part of a large steam turbine of Skoda Pilsen, Energo and, together with
experimental data of IT CAS, a test case of Qnet network.

2. POTENTIAL FLOW

The stationary isentropic irrotational flow of inviscid perfect gas can be described
by one partial differential equation of the second order for a velocity potential ®. It
can be used also for transonic flow problems provided we consider only weak shock

waves. The governing equation can be written in both the nonconservative

—1
1) (a® — ®2)D,, + 20,8, Dy + (a? — D2 i

y)q)yy =0 o= ag - (I)?c + @3)

and the conservative form

1

k—1, 4 N

(2) (0P2)z + (0Py)y =0, 0=00|l—

We denote by ® the velocity potential (¥ = (v1,v2) = grad ®), by o the density,
by a the local speed of sound, by x the ratio of specific heats (Poisson’s constant)
and by vp,vs the Cartesian components of velocity ¢. The potential equation is
the second order partial differential equation of mixed type. It is elliptic in the
region of the subsonic flow (v < a), hyperbolic in the region of the supersonic flow
(v > a) and parabolic along the sonic line (v = a). If subsonic inlet and outlet
flows are considered, the problem of flow through a plane cascade can be formulated
as a boundary value problem in the domain of one pitch of cascade. We assume
a uniform inlet ¥ = @, and outlet flow ¥ = ¥Uoy; (and consequently, the position
of these boundaries sufficiently far from the cascade profiles) and denote by ~ the
circulation of velocity around the profile P (7 is unknown in advance)

3) 7:—% vy dx + v dy.
oprP

Its value characterizes the lift force in the case of isolated airfoil or the work output
in the case of a (turbine) cascade of profiles. We split the boundary of the domain
of solution () into an inlet part Ij,, periodical boundaries I}, , I},, walls of pro-
files I, and an outlet part I',,t. A non-homogeneous Dirichlet’s boundary condition
is prescribed on [;:

(4) (2,y) = v2iny  V[z,y] € In.
The periodicity condition has the form
(5) O(z,y +b) = (z,y) + K(vin,b,7) V], y] € Ip,.
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Then [z,y +b] is a point of T},,, K is a constant and b denotes the distance of profiles
in the cascade. A non-permeability condition

(©) (grad @) = 00 =0 Yle,y] €T,

is given on the walls of the profile with normal vector 7. A non-homogeneous Neu-

mann condition
(7) (grad @,7) = (Vout, ) V[z,y] € Tout

is prescribed on the outlet boundary I}, (7 denotes again the normal vector). The
constants in boundary conditions are not independent, only two of them can be
prescribed [6], the other constants depend on the prescribed ones and the value of .

There are no complete results of existence or unicity of solution for transonic
potential flow problems. This is connected with the mixed type of the governing
differential equation and the possible existence of discontinuities in the velocity field.
An analysis of this general problem was done e.g. in [8], [9], unfortunately some
a posteriori considerations have to be taken into account.

The situation becomes much simpler, if only a subsonic flow is considered. Then
the potential equation is elliptical in the whole domain of solution. Several cases of
steady flow described by full or small perturbance potential equations in 2D and 3D
can be formulated as weak boundary value problems with V-elliptic operators. The
theory of monotone operators can be applied to prove existence and uniqueness of a
solution of these problems [6]. We show it for our problem of flow through a plane
cascade.

The weak problem is formulated in a suitable subset of the Sobolev space WZ().
We define the space of periodical test functions V':

(8) v
M:{fGOOO(Q)v f(xvy):f(zay+b) V[‘T,y] Erplv Suppfmrlnzw}

with the norm

1/2
©) fully = ([ Jsvadtu® azay)
Q

equivalent to the norm of W3 . Then we define a function uy € C%(9):

(10) uo(z,y) = viny V[z,y] € Iin,
uo(z,y) = uo(z,y +b) + K(vin, b,7) V[z,y] €L},
gradug(x,y) = grad ug(z,y + b) Yz, y] € Fpl,

(graduo(z,y), ) = Y[z, y] €
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Multiplying (2) by an arbitrary test function f € V, integrating over 2 and using
integration by parts we introduce

Definition. Let a proper set of constants Ui, Tout, 7 be given. Let (10) hold for
a function ug € C?(). Let operators 7: V — V* and F € V* be given by

(1) @) = [ ellerad(u+ u)) grad(u + o) rad £ a0,
= | el as

Then u € V is a weak solution of the problem if

(12) (Tu, f)=(Tu—-F, f)=0,

holds for all f € V.

Theorem. There exists a unique solution of problem (12) formulated in the
above definition.

To prove this theorem, we show that the operator 7 and consequently T have
such properties that Browder’s fix point theorem can be applied for (12).

We formally prolongate the density function o € C?(R). (2) holds for subsonic
velocities and for supersonic speeds |0] > a we define g equal to a suitable constant.

Lemma 1.

o 0=0(2), do(2)/dz, wdo(w?)/dw, where z = w? = |#|* are monotone functions;

e 2do(z)/dz, 2zdp/dz + o(z), where z = |#|> are monotone and bounded func-
tions;

e the Gateaux derivative of T exists and

(13) DT (u)(v,w) // ( gradz(u + uo) grad w grad v

0(2) grad w grad v) dz dy,

where z = |grad(u + ug)|? holds for all u,v,w € V.

Lemma 2. The operator T is strongly monotone, i.e. there exists an increasing
and continuous function c¢: (0,00) — (0,00), ¢(0) =0, lim ¢(r) = oo such that
T—00

(14) KTu—Tv,u—v) = c(|lu—v|)|u—2v|| Yu,veV.
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Proof. Let u,v € V, let us denote h = u — v, z = grad(u + ©h + Up). The
mean value theorem applied to the left-hand side of (14) gives

(15) [(Tu—Tv,u—v)| = //Q 20'(|z]?)(z grad h)? + o(|z|*)grad®h

> [[ 12602122 + ol eracth
Q
> CullhiR > Callalfy.

The inequalities hold due to the properties of arguments listed in Lemma 1. The
function ¢(r) in (14) can be defined as ¢(r) = Cor.

Lemma 3. The operator T is continuous on any finite dimensional subspace
Vi CV, ie. Y{un}2, un — u, u,u, € Vi the relation

(16) (Tup,v) — (Tu,v)

holds Vv € V.

Proof. Letu,v € V. Wedenote h =u—v, w=v+0(u—v), z=grad(w+ug).
The mean value theorem gives

(17) (Tu—Tv, f) =DT (u+0O(u—))(f,v—u)

= //Q 2%(|z|2)(grad(w + ug) grad h)(grad f grad(w + up)) dz dy

+// o(|z|*) grad h grad f dz dy
Q
< Gsl[fllvl Bllv < Call fllwz | Bl -

We have used again the properties listed in Lemma 1. Let now Vj, be an arbitrary fi-
nite dimensional subset of V', {u,}22 1, u,, — u, u, u,, € V. Then the inequality (17)
yields

(18)  [Tun, f) = (Tu, )| = (Tun — Tu, /)| < Kllu—unllwz lflwg =0 VfeV.

The operator 7 is strongly monotone in V' and continuous in any finite dimensional
subspace of V. The existence and unicity of the weak solution is then a consequence
of the following version of Browder’s fixed point theorem [7]:

Browder’s theorem. Let B be a reflexive Banach space, let T: B — B* be
strongly monotone and continuous in each finite dimensional subspace of B. Then
there exists a unique u € B such that

(19) (Tu,v) =0 Yov € B.
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The problem of the potential transonic flow through the cascade was solved nu-
merically by a finite difference method on a curvilinear body fitted grid.

The type of equation is tested at each grid point and the so called Jameson’s
rotated scheme, which combines upwind and central difference approximations of
derivatives in dependence on the type of the equation and the mutual position of the
streamline and grid coordinates is implemented. The system of equations is solved
by the block relaxation method SLOR.

Convergence of the iterative method is very slow and was later accelerated by
multi-grid methods (FAS or CS scheme).

We present a comparison of the computed result with the experiments of Institute
of Thermomechanics, CAS for SE1050 cascade on Fig. 1.

Figure 1. Turbine cascade SE1050. Comparison of computed results (potential model) with
experiment IT CAS.

3. EULER EQUATIONS
The 2D system of Euler equations can be written in the conservative vector form:

(20) W,+F,+G, =0,

where W = [p, ov1, 0v2, €]l are conservative variables and F = [gv1, gv? + p, ov1v2,
v1(e+p)]|T, G = [gv2, ov1v2, 003 + p, v2(e+p)]T are physical fluxes (convective). The
system (20) is a hyperbolic system of equations independently of the ratio of the
velocity and the speed of sound.
The weak solution from a proper functional set satisfies the integral form of (20).
A subsonic Mach number of normal velocity component is considered on both the

inlet and outlet boundaries. Then we prescribe three conditions on the inlet and one
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