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FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS

FOR MATHEMATICAL PROGRAMS WITH

VANISHING CONSTRAINTS*

Tim Hoheisel, Christian Kanzow, Würzburg

Dedicated to Jiří V. Outrata on the occasion of his 60th birthday.

Abstract. We consider a special class of optimization problems that we call Mathematical
Programs with Vanishing Constraints, MPVC for short, which serves as a unified framework
for several applications in structural and topology optimization. Since an MPVC most
often violates stronger standard constraint qualification, first-order necessary optimality
conditions, weaker than the standard KKT-conditions, were recently investigated in depth.
This paper enlarges the set of optimality criteria by stating first-order sufficient and second-
order necessary and sufficient optimality conditions for MPVCs.
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1. Introduction

We consider a constrained optimization problem of the form

min f(x)(1)

s.t. gi(x) 6 0 ∀ i = 1, . . . , m,

hj(x) = 0 ∀ j = 1, . . . , p,

Hi(x) > 0 ∀ i = 1, . . . , l,

Gi(x)Hi(x) 6 0 ∀ i = 1, . . . , l,

*This research was partially supported by the DFG (Deutsche Forschungsgemeinschaft)
under grant KA1296/15-1.
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that we call a Mathematical program with vanishing constraints (MPVC for short),

where all functions f, gi, hj, Gi, Hi : Rn → R are assumed to be at least continuously
differentiable. This special class of optimization problems was first introduced in [1]

and shown to serve as a unified framework for several applications in structural and

topology optimization. The naming of the problem is motivated by the fact that, on

the one hand, it is closely related to the class of optimization problems called Math-

ematical programs with equilibrium constraints (MPECs for short), see [7], [10] for a

general treatment and [1] for the relation between MPVCs and MPECs, and, on the

other hand, that, due to the characteristic constraintsHi(x) > 0 andGi(x)Hi(x) 6 0,

the implicit sign restriction Gi(x) 6 0 vanishes as soon as Hi(x) = 0 holds. An

MPVC may also be viewed as a special case of a mathematical program with com-

binatorial constraints as discussed in [13].

The recent papers on MPVCs have already investigated first-order necessary op-

timality conditions in depth. For example, in [1] the notion of a strongly stationary

point was introduced and it was shown that a feasible point of an MPVC is strongly

stationary if and only if it satisfies the KKT-conditions from standard optimization,

and herewith, strong stationarity becomes a necessary optimality criterion under the

presence of certain constraint qualifications, like the Guignard CQ, see, in particu-

lar, [5] for a more detailed discussion.

In turn, in [6], it was pointed out that the Guignard CQ, the weakest constraint

qualification to garantuee the KKT-conditions to hold at a local minimizer of a stan-

dard optimization problem, holds under reasonable assumptions at a feasible point of

an MPVC, but may yet be violated in some non-pathological cases. Thus, borrowing

from the MPEC-theory, a weaker stationarity condition, called M-stationarity and

holding under weaker constraint qualifications, was introduced and investigated in [6].

The goal of this paper is to extend the set of optimality conditions that can

be stated in the MPVC-context. To this end, we state a new first-order sufficient

condition and present both a second-order necessary and a second-order sufficient

optimality condition for MPVCs.

The first-order sufficient condition, in particular, tells us that a strongly station-

ary point of an MPVC is already a local minimizer provided that the constraint

functions gi, hj , Gi, Hi have certain convexity properties. We find this result quite

astonishing since the MPVC itself is still a nonconvex program even if gi, hj , Gi,

Hi have nice convexity properties, due to the product constraint Gi(x)Hi(x) 6 0.

In that part, some ideas go back to related results for MPECs which can be found,

e.g., in [14].

As to the second-order conditions, our approach is motivated by corresponding

results from standard optimization theory as well as some related results in the

MPEC-setting, see, in particular, [11] and [7].
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The organization of the paper is as follows: We first introduce some important

index sets and preliminary definitions in Section 2. In particular, we recall the

above mentioned stationarity concepts: strong stationarity and M-stationarity. In

Section 3, the first-order sufficient optimality condition is stated, whereas the second-

order optimality conditions are presented in Section 4. We close with some final

remarks in Section 5.

The notation that we use in this paper is standard, with ‖ · ‖ being an arbitrary

norm in Rn . The directional derivative of a mapping f : Rn → R at x in the

direction d is denoted by f ′(x; d). Recall that we have f ′(x; d) = ∇f(x)T d whenever

f is differentiable at x.

2. Preliminaries

In this section, we introduce several index sets that turned out to be vital for

the analysis of MPVCs. Furthermore, we give definitions of two stationarity con-

cepts, strong stationarity and M-stationarity, which were introduced in the context

of MPVCs in [1] and [6], respectively.

For these purposes, let X denote the feasible set of (1), and let x∗ ∈ X be an

arbitrary feasible point. Then we define the index sets

J := {1, . . . , p},(2)

Ig := {i | gi(x
∗) = 0},

I+ := {i | Hi(x
∗) > 0},

I0 := {i | Hi(x
∗) = 0}.

Furthermore, we divide the index set I+ into the following subsets:

I+0 := {i | Hi(x
∗) > 0, Gi(x

∗) = 0},(3)

I+− := {i | Hi(x
∗) > 0, Gi(x

∗) < 0}.

Similarly, we partition the set I0 in the following way:

I0+ := {i | Hi(x
∗) = 0, Gi(x

∗) > 0},(4)

I00 := {i | Hi(x
∗) = 0, Gi(x

∗) = 0},

I0− := {i | Hi(x
∗) = 0, Gi(x

∗) < 0}.

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second sub-

script stands for the sign of Gi(x
∗).

With the above definitions, we are now in a position to define the above mentioned

stationarity concepts.
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Definition 2.1. Let x∗ be feasible for the MPVC (1). Then x∗ is called strongly

stationary if there exist scalars λi ∈ R (i = 1, . . . , m), µj ∈ R (j ∈ J), ηH
i , ηG

i ∈ R
(i = 1, . . . , l) such that

∇f(x∗) +

m∑

i=1

λi∇gi(x
∗) +

∑

j∈J

µj∇hj(x
∗)(5)

−
l∑

i=1

ηH
i ∇Hi(x

∗) +

l∑

i=1

ηG
i ∇Gi(x

∗) = 0

and

λi > 0, gi(x
∗) 6 0, λigi(x

∗) = 0 ∀ i = 1, . . . , m,(6)

ηH
i = 0 (i ∈ I+), ηH

i > 0 (i ∈ I0− ∪ I00), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I+− ∪ I0), ηG

i > 0 (i ∈ I+0).

From [1], we know that strong stationarity is equivalent to the usual KKT condi-

tions of an MPVC, i.e., strong stationarity is a necessary optimality condition under

the presence of, e.g., the Guignard constraint qualification. See [5] for a more detailed

discussion and sufficient conditions for the Guignard constraint qualification.

It may happen that a local minimum x∗ of an MPVC is not a strongly stationary

point even if all the mappings gi, hj , Gi, Hi are linear. In this case, a weaker

stationary concept was introduced in [6], with the terminology coming from a similar

concept for MPECs, see [9], [12], [3].

Definition 2.2. Let x∗ be feasible for the MPVC (1). Then x∗ is called

M-stationary if there exist scalars λi ∈ R (i = 1, . . . , m), µj ∈ R (j ∈ J), ηH
i , ηG

i ∈ R
(i = 1, . . . , l) such that

∇f(x∗) +

m∑

i=1

λi∇gi(x
∗) +

∑

j∈J

µj∇hj(x
∗)(7)

−
l∑

i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0

and

λi > 0, gi(x
∗) 6 0, λigi(x

∗) = 0 ∀ i = 1, . . . , m,(8)

ηH
i = 0 (i ∈ I+), ηH

i > 0 (i ∈ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηG

i > 0 (i ∈ I+0 ∪ I00),

ηH
i ηG

i = 0 (i ∈ I00).
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Note the difference between a strongly stationary point and an M-stationary point:

In the former, we have ηH
i > 0 and ηG

i = 0 for all i ∈ I00, whereas in the latter case,

we only have ηG
i > 0 and ηH

i ηG
i = 0 for all i ∈ I00. In particular, differences occur

only for indices from the crucial index set I00. In fact, this set will play an important

role also in the analysis of the subsequent sections.

From [6, Theorem 3.4], we know that M-stationarity is a necessary optimality

criterion under the presence of a condition that is called MPVC-GCQ, since it is

an MPVC-version of the standard Guignard constraint qualification. This MPVC-

GCQ condition is satisfied under very weak assumptions, in particular, it holds when

all the mappings gi, hj , Gi, Hi are linear, see [6] for more details.

In the analysis of optimality conditions for standard nonlinear programs, the so-

called Lagrangian plays an important role. As a counterpart of this Lagrangian in

our MPVC setting, we define the mapping L : Rn × Rm × Rp × Rl × Rl → R by
L(x, λ, µ, ηG, ηH) := f(x) +

m∑

i=1

λigi(x) +
∑

j∈J

µjhj(x)(9)

−
l∑

i=1

ηH
i Hi(x) +

l∑

i=1

ηG
i Gi(x)

and call this function the MPVC-Lagrangian. For example, a feasible point x∗

of (1) is strongly stationary (or M-stationary) if and only if there exist multipli-

ers (λ, µ, ηG, ηH) such that

∇xL(x∗, λ, µ, ηG, ηH) = 0

and (λ, µ, ηG, ηH) satisfies (6) (or (8)).

3. A first-order sufficient optimality condition

We know from the discussion of the previous section that both strong stationarity

and M-stationarity are first-order necessary optimality conditions. In the case of a

standard nonlinear program, the usual KKT conditions are also known to be sufficient

optimality conditions under certain convexity assumptions. In our case, however,

this result cannot be applied since the product term Gi(x)Hi(x) usually does not

satisfy any convexity requirements. Nevertheless, we will see in this section that M-

and strong stationarity are also sufficient optimality conditions for our nonconvex

MPVC problem, provided that the mappings gi, hj , Gi, Hi satisfy some convexity

assumptions (but not necessarily the products GiHi themselves). Our analysis here

is motivated by a related result from [14] in the context of MPECs.

In order to state the desired result, we first recall some well-known terms concern-

ing certain convexity properties of real-valued functions, see, for example, [2], [8].
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Definition 3.1. Let S ⊆ Rn be a nonempty convex set and let f : S → R. Then
f is called quasiconvex if, for each x, y ∈ S, the following inequality holds:

f(λx + (1 − λ)y) 6 max{f(x), f(y)} ∀λ ∈ (0, 1).

Definition 3.2. Let S ⊆ Rn be a nonempty open set and let f : S → R be
a differentiable function. Then f is called pseudoconvex if, for each x, y ∈ S, the

following implication holds:

∇f(x)T (y − x) > 0 =⇒ f(y) > f(x).

Now, let x∗ be an M-stationary point of the MPVC (1) with corresponding mul-

tipliers λ, µ, ηG, ηH . Then we define the following index sets:

J+ := {j ∈ J | µj > 0},(10)

J− := {j ∈ J | µj < 0},

I+
00 := {i ∈ I00 | ηH

i > 0},

I−00 := {i ∈ I00 | ηH
i < 0},

I+
0− := {i ∈ I0− | ηH

i > 0},

I+
0+ := {i ∈ I0+ | ηH

i > 0},

I−0+ := {i ∈ I0+ | ηH
i < 0},

I0+
+0 := {i ∈ I+0 | ηH

i = 0, ηG
i > 0} = {i ∈ I+0 | ηG

i > 0},

I0+
00 := {i ∈ I00 | ηH

i = 0, ηG
i > 0} = {i ∈ I00 | ηG

i > 0}.

Note that, for a strongly stationary point, the two index sets I−00 and I0+
00 are empty.

Using these index sets and definitions, we are able to state the main result of this

section.

Theorem 3.3. Let x∗ be an M-stationary point of the MPVC (1). Suppose

that f is pseudoconvex at x∗ and that gi (i ∈ Ig), hj (j ∈ J+), −hj (j ∈ J−),

Gi (i ∈ I0+
+0 ), Hi (i ∈ I−0+), −Hi (i ∈ I+

0+ ∪ I+
00 ∪ I+

0−) are quasiconvex. Then the

following statements hold:

(a) If I−00 ∪ I0+
00 = ∅ then x∗ is a local minimizer of (1).

(b) If I−0+ ∪ I−00 ∪ I0+
+0 ∪ I0+

00 = ∅ then x∗ is a global minimizer of (1).

P r o o f. Since x∗ is an M-stationary point of (1) there exist multipliers λ, µ,

ηG, ηH such that

∇f(x∗) +
∑

i∈Ig

λi∇gi(x
∗) +

p
∑

j=1

µj∇hj(x
∗) −

∑

i∈I0

ηH
i ∇Hi(x

∗)(11)

+
∑

i∈I+0∪I00

ηG
i ∇Gi(x

∗) = 0
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with

λi > 0 ∀ i ∈ Ig, ηH
i > 0 ∀ i ∈ I0−,(12)

ηG
i > 0 ∀ i ∈ I00 ∪ I+0, ηH

i ηG
i = 0 ∀ i ∈ I00.

Now let x be any feasible point of (1). For i ∈ Ig, we then have gi(x) 6 0 = gi(x
∗).

Thus, by the quasiconvexity of gi (i ∈ Ig), we obtain

gi(x
∗ + t(x − x∗)) = gi((1 − t)x∗ + tx) 6 max{gi(x), gi(x

∗)} = 0 = gi(x
∗)

for all t ∈ (0, 1), which implies

∇gi(x
∗)T (x − x∗) = g′i(x

∗; x − x∗)

= lim
t↓0

gi(x
∗ + t(x − x∗)) − gi(x

∗)

t
6 0 ∀ i ∈ Ig.

In view of (12), we therefore have

(13) λi∇gi(x
∗)T (x − x∗) 6 0 ∀ i ∈ Ig.

By similar arguments, we also obtain

∇hj(x
∗)T (x − x∗) 6 0 ∀ j ∈ J+, and −∇hj(x

∗)T (x − x∗) 6 0 ∀ j ∈ J−,

which gives

(14) µj∇hj(x
∗)T (x − x∗) 6 0 ∀ j ∈ J,

taking the definitions of J+ and J− into account.

Again, since x is feasible for (1), we have in particular −Hi(x) 6 0 for all i =

1, . . . , l. Thus, by the quasiconvexity of −Hi for i ∈ I+
0+ ∪ I+

00 ∪ I+
0−, we obtain by

the above arguments −∇Hi(x
∗)T (x − x∗) 6 0 and thus, in view of the definition of

the occurring index sets, we have

(15) −ηH
i ∇Hi(x

∗)T (x − x∗) 6 0 ∀ i ∈ I+
0+ ∪ I+

00 ∪ I+
0−.

We now verify the statement (b) first. To this end, let I−0+ ∪ I−00 ∪ I0+
+0 ∪ I0+

00 = ∅.

Then it is clear from (12), (15), and the definition of the index sets that we even

have

(16) −ηH
i ∇Hi(x

∗)T (x−x∗) 6 0 ∀ i ∈ I0, ηG
i ∇Gi(x

∗)T (x−x∗) 6 0 ∀ i ∈ I00∪I+0,
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where the second inequality is an equality due to the fact that ηG
i = 0 for all (re-

maining) indices i ∈ I00 ∪ I+0. Then (13), (14), (16) together with (11) imply

−∇f(x∗)T (x − x∗) =

(
∑

i∈Ig

λi∇gi(x
∗)T +

p
∑

j=1

µj∇hj(x
∗) −

∑

i∈I0

ηH
i ∇Hi(x

∗) + . . .

+
∑

i∈I+0∪I00

ηG
i ∇Gi(x

∗)

)T

(x − x∗) 6 0.

Hence we have ∇f(x∗)T (x − x∗) > 0, which implies f(x) > f(x∗), as f is pseudo-

convex by assumption. Since x is an arbitrary feasible point of (1), x∗ is a global

minimizer of (1) in the case that I−0+ ∪ I−00 ∪ I0+
+0 ∪ I0+

00 = ∅ holds, which proves the

assertion (b).

To verify the statement (a), we only need to show, in view of the above arguments,

that for any feasible x sufficiently close to x∗, we have

(17) −ηH
i ∇Hi(x

∗)T (x − x∗) 6 0 ∀ i ∈ I−0+

and

(18) ηG
i ∇Gi(x

∗)T (x − x∗) 6 0 ∀ i ∈ I0+
+0 ,

since then we see that (13), (14) and (16) are satisfied, and thus, by analogous

reasoning as above, we obtain f(x) > f(x∗) for all feasible x sufficiently close to x∗.

First let i ∈ I−0+. By continuity, it follows that Gi(x) > 0 and thus Hi(x) = 0 for

any x ∈ X sufficiently close to x∗. Invoking the quasiconvexity of Hi (i ∈ I−0+), this

implies ∇Hi(x
∗)T (x − x∗) 6 0, and since we have ηH

i < 0 (i ∈ I−0+), (17) follows

immediately.

Second, let i ∈ I0+
+0 . By continuity, it follows that Hi(x) > 0 and thus Gi(x) 6 0

for any x ∈ X sufficiently close to x∗. Invoking the quasiconvexity of Gi (i ∈ I0+
+0 ),

this implies ∇Gi(x
∗)T (x−x∗) 6 0, which gives (18), since we have ηG

i > 0 (i ∈ I0+
+0 ).

�

We next state a simple consequence of Theorem 3.3 where the M-stationarity of x∗

is replaced by the strong stationarity assumption.

Corollary 3.4. Let x∗ be a strongly stationary point of the MPVC (1). Suppose

that f is pseudoconvex at x∗ and that gi (i ∈ Ig), hj (j ∈ J+), −hj (j ∈ J−), Gi

(i ∈ I0+
+0 ), Hi (i ∈ I−0+), −Hi (i ∈ I+

0+∪I+
00∪I+

0−) are quasiconvex. Then the following

statements hold:

(a) x∗ is a local minimizer of (1).
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(b) If I−0+ ∪ I0+
+0 = ∅ then x∗ is a global minimizer of (1).

P r o o f. Since the assumptions of Theorem 3.3 are satisfied and strong station-

arity implies that I−00∪I0+
00 = ∅, (a) and (b) follow immediately from Theorem 3.3 (a)

and (b), respectively. �

In nonlinear programming, the case of a convex program, where all the equality

constraints are supposed to be (affine) linear and the inequality constraints are con-

vex, is often considered. However, due to the GiHi-constraints, being a product of

two non-constant functions, our MPVC (1) is very likely a nonconvex optimization

problem. Alternatively, the concept of an MPVC-convex program was therefore in-

troduced in [6], where all the functions hj , Hi, Gi are supposed to be (affine) linear

and the functions gi are supposed to be convex. For the class of MPVC-convex pro-

grams, we now get the following first-order sufficient optimality condition as a direct

consequence of our previous results.

Corollary 3.5. Let the program (1) be MPVC-convex such that f is convex.

Furthermore, let x∗ be a strongly stationary point of (1). Then the following state-

ments hold:

(a) x∗ is a local minimizer of (1).

(b) If I−0+ ∪ I0+
+0 = ∅, then x∗ is a global minimizer of (1).

P r o o f follows immediately from Corollary 3.4, since convex functions are both

pseudo- and quasiconvex. �

We would like to point out that we find the above result somehow remarkable: The

MPVC-convex program, though being equipped with convex and linear functions gi,

hj , Hi, Gi, must yet be assumed to be a nonconvex program, due to the GiHi-

constraints. Nevertheless, Corollary 3.5 tells us that strong stationarity (and thus

the KKT-conditions themselves) are sufficient optimality conditions. That means,

we have shown the KKT-conditions to be a sufficient optimality criterion for a class

of usually nonconvex programs.

At this point it might be useful to go through a simple example of an MPVC, in

order to illustrate some of the above introduced concepts and results.

E x am p l e 3.6. For a, b ∈ R consider the following two-dimensional MPVC:
min f(x) := (x1 − a)2 + (x2 − b)2(19)

s.t. H(x) := x1 > 0,

G(x)H(x) := x2x1 6 0.

Its feasible set and also some relevant points for the upcoming discussion are given

in Fig. 1. Geometrically speaking, in (19), one is searching for the projection of (a, b)

onto the feasible set.
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(−1, 1) (1, 1)
x∗ = x̂

x̄

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0.5

1

1.5

2

Figure 1. Feasible set of (19).

First of all, we see that the gradients ∇H(x) = (1, 0)T and ∇G(x) = (0, 1)T

are linearly independent for all x ∈ R2 , hence, the MPVC-LICQ, which will be

introduced in Definition 4.1, is satisfied at any feasible point. Therefore, strong

stationarity is a necessary optimality condition.

Furthermore, the function f is convex and the functions G, H are linear. Thus,

the program is MPVC-convex (but still nonconvex!). By Corollary 3.5, we know

then that strong stationarity is a sufficient condition for a local minimizer and,

under some additional condition concerning certain index sets, even for a global

minimizer. Together, the above considerations yield that a feasible point of (19) is a

local minimizer if and only if it is a strongly stationary point. We will verify this by

considering the above MPVC for two different choices of (a, b) and calculating the

respective strongly stationary points.

For all choices (a, b), the strong stationarity conditions of (19) read

(20) 0 =

(
2x1 − 2a

2x2 − 2b

)

− ηH

(
1

0

)

+ ηG

(
0

1

)

with

(21) ηH







= 0, if x1 > 0,

> 0, if x1 = 0, x2 6 0,

free, if x1 = 0, x2 > 0,

ηG

{

> 0, if x1 > 0, x2 = 0,

= 0, else.

For the choice (a, b) := (1, 1), it is quickly calculated that there are two strongly

stationary points. The first one is x̂ := (0, 1)T with associated multipliers η̂G := 0,

η̂H := −2. The second point is x̃ := (1, 0)T , where the corresponding multipliers

are given by η̃G := 2, η̃H := 0. These are the only local minimizers of (19), as
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was argued above, for the special choice (a, b) := (1, 1). In fact, they are even

global minimizers as can be seen easily by geometric arguments, even though the

sufficient condition from Corollary 3.5 (b) is not satisfied, illustrating that this is

only a sufficient criterion.

The next choice is (a, b) := (−1, 1), where we can compute only one strongly sta-

tionary point x∗ := (0, 1)T with multipliers given by ηG := 0, ηH := 2. In particular,

we then have I−0+ ∪ I0+
+0 = ∅, so that, in this case, we can invoke Corollary 3.5 (b) to

ensure that this is not only a local, but a global minimizer of (19).

4. Second-order optimality conditions

The goal of this section is to provide (necessary and sufficient) second-order op-

timality conditions for MPVCs. The analysis is motivated by general results from

optimization or, more specialized, from the MPEC-field.

In order to state second-order optimality results for nonlinear programs, a suitable

cone, usually a subset of the linearized cone, is needed, on which the Hessian of the

Lagrangian is or is shown to be positive (semi-)definite. The cone which plays that

role in our context will be defined below and is a subset of the so-called MPVC-

linearized cone which was initially introduced in [5]. Given a feasible point x∗ of (1),

the MPVC-linearized cone is defined by

LMPVC(x∗) := {d ∈ Rn | ∇gi(x
∗)T d 6 0 (i ∈ Ig),(22)

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d > 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d 6 0 (i ∈ I+0),

(∇Hi(x
∗)T d)(∇Gi(x

∗)T d) 6 0 (i ∈ I00)}.

In many situations of MPVC-analysis, the MPVC-linearized cone has been used

instead of the usual linearized cone. Thus, it is not surprising that it occurs in the

context of second-order optimality conditions for MPVCs, too.

For the definition of the above mentioned subset of the MPVC-linearized cone, we

assume that we have a strongly stationary point (x∗, λ, µ, ηG, ηH) of (1). Then we

define C(x∗) by

C(x∗) := {d ∈ LMPVC(x∗) | ∇gi(x
∗)T d = 0 (i ∈ I+

g ),(23)

∇Hi(x
∗)T d = 0 (i ∈ I+

00 ∪ I+
0−),

∇Gi(x
∗)T d = 0 (i ∈ I0+

+0 )},
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that is, in fact, we have (taking into account that I−00 = ∅ at a strongly stationary

point)

C(x∗) = {d ∈ Rn | ∇gi(x
∗)T d 6 0 (i ∈ I0

g ),(24)

∇gi(x
∗)T d = 0 (i ∈ I+

g ),

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d > 0 (i ∈ I0

00 ∪ I0
0−),

∇Hi(x
∗)T d = 0 (i ∈ I0+ ∪ I+

00 ∪ I+
0−),

∇Gi(x
∗)T d 6 0 (i ∈ I00

+0),

∇Gi(x
∗)T d = 0 (i ∈ I0+

+0 ),

(∇Hi(x
∗)T d)(∇Gi(x

∗)T d) 6 0 (i ∈ I00)},

where we put

I+
g := {i ∈ Ig | λi > 0},(25)

I0
g := {i ∈ Ig | λi = 0},

I+
00 := {i ∈ I00 | ηH

i > 0},

I0
00 := {i ∈ I00 | ηH

i = 0},

I+
0− := {i ∈ I0− | ηH

i > 0},

I0
0− := {i ∈ I0− | ηH

i = 0},

I00
+0 := {i ∈ I+0 | ηG

i = 0},

I0+
+0 := {i ∈ I+0 | ηG

i > 0}

in accordance with (10).

The definition of these index sets may, again, appear a bit complicated and make

the proof of our theorems somewhat technical, but on the other hand we prove pretty

strong results, showing that we can use the same cone C(x∗) for both the necessary

and the sufficient second-order condition.

The following lemma is a direct preparation for the upcoming theorem on second-

order necessary optimality conditions. Its technique of proof goes back to similar

considerations in the context of standard nonlinear programs, see [4], for example.

Note, however, that we cannot simply apply these standard results since, e.g., the

usual LICQ assumption typically does not hold for MPVCs, see [1]. Instead of this,

we use the MPVC-version of LICQ which was initially introduced in [5]. We recall

its definition below.
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Definition 4.1. We say that MPVC-LICQ is satisfied at a feasible point x∗

of (1) if the gradients

∇hj(x
∗) (j = 1, . . . , p),

∇gi(x
∗) (i ∈ Ig),

∇Hi(x
∗) (i ∈ I0),

∇Gi(x
∗) (i ∈ I00 ∪ I+0),

are linearly independent.

Note that for the whole section, all functions occurring in (1) are assumed to be

at least twice continuously differentiable.

Lemma 4.2. Let x∗ be a strongly stationary point of (1) such that MPVC-

LICQ holds. Furthermore, let d ∈ C(x∗). Then there exists an ε > 0 and a twice

continuously differentiable curve x : (−ε, ε) → Rn such that x(0) = x∗, x′(0) = d,

x(t) ∈ X for t ∈ [0, ε) and such that, in addition, we have

gi(x(t)) = 0 (i ∈ I+
g ),(26)

hj(x(t)) = 0 (j ∈ J),

Hi(x(t)) = 0 (i ∈ I+
00 ∪ I+

0− ∪ I0+),

Gi(x(t)) = 0 (i ∈ I0+
+0 ).

P r o o f. Let d ∈ C(x∗) and let (λ, µ, ηG, ηH) be the (unique) multipliers such

that (x∗, λ, µ, ηG, ηH) is a strongly stationary point. We define some further subsets

(depending on x∗ and the particular vector d chosen from C(x∗)) of the index sets

which were defined previously:

I0
g,= := {i ∈ I0

g | ∇gi(x
∗)T d = 0},(27)

I0
g,< := {i ∈ I0

g | ∇gi(x
∗)T d < 0},

I0
00,= := {i ∈ I0

00 | ∇Hi(x
∗)T d = 0},

I0
00,> := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0},

I0
0−,= := {i ∈ I0

0− | ∇Hi(x
∗)T d = 0},

I0
0−,> := {i ∈ I0

0− | ∇Hi(x
∗)T d > 0},

I00
+0,∗= := {i ∈ I00

+0 | ∇Gi(x
∗)T d = 0},

I00
+0,∗< := {i ∈ I00

+0 | ∇Gi(x
∗)T d < 0},

I0
00,>= := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0, ∇Gi(x

∗)T d = 0},

I0
00,>< := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0, ∇Gi(x

∗)T d < 0}.
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Then we define the mapping z : Rn → Rq , where q := |I+
g ∪ I0

g,=|+ |J |+ |I0+ ∪ I+
00 ∪

I+
0− ∪ I0

00,= ∪ I0
0−,=| + |I0+

+0 ∪ I00
0+,∗= ∪ I0

00,>=|, by

(28) z(x) :=







gi(x) (i ∈ I+
g ∪ I0

g,=)

hj(x) (j ∈ J)

Hi(x) (i ∈ I0+ ∪ I+
00 ∪ I+

0− ∪ I0
00,= ∪ I0

0−,=)

Gi(x) (I0+
+0 ∪ I00

+0,∗= ∪ I0
00,>=)







,

and denote the jth component function of z by zj . Furthermore, let H : Rq+1 → Rq

be the mapping defined by

Hj(y, t) := zj

(
x∗ + td + z′(x∗)T y

)
∀ j = 1, . . . , q.

The system H(y, t) = 0 has a solution (y∗, t∗) := (0, 0), and the partial Jacobian

Hy(0, 0) = z′(x∗)z′(x∗)T ∈ Rq×q

is nonsingular since the matrix z′(x∗) has full rank q due to the MPVC-LICQ assump-

tion. Thus, invoking the implicit function theorem and using the twice continuous

differentiability of all mappings involved in the definition of z, there exists an ε > 0

and a twice continuously differentiable curve y : (−ε, ε) → Rq such that y(0) = 0

and H(y(t), t) = 0 for all t ∈ (−ε, ε). Moreover, its derivative is given by

y′(t) = −
(
Hy(y(t), t)

)−1
Ht(y(t), t) ∀ t ∈ (−ε, ε).

In particular, this implies

y′(0) = −(Hy(0, 0))−1Ht(0, 0) = −(Hy(0, 0))−1 z′(x∗)d
︸ ︷︷ ︸

=0

= 0,

due to the properties of d. Now define

x(t) := x∗ + td + z′(x∗)T y(t).

Then x(·) is twice continuously differentiable on (−ε, ε), and we obviously have

x(0) = x∗ and x′(0) = d. Hence, we still need to show that x(t) ∈ X and that

x(·) satisfies (26) for all t sufficiently close to 0.

For these purposes, first note that Hj(y(t), t) = 0 implies zj(x(t)) = 0 and thus

we obtain

gi(x(t)) = 0 (i ∈ I+
g ∪ I0

g,=),(29)

hj(x(t)) = 0 (j ∈ J),

Hi(x(t)) = 0 (i ∈ I0+ ∪ I+
00 ∪ I+

0− ∪ I0
00,= ∪ I0

0−,=),

Gi(x(t)) = 0 (i ∈ I0+
+0 ∪ I00

+0,∗= ∪ I0
00,>=),
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so that (26) and the feasibility of x(t) for the above occurring index sets is guaranteed

for all t ∈ (−ε, ε).

By simple continuity arguments, one can also verify that we have gi(x(t)) < 0

(i /∈ Ig), Gi(x(t)) < 0 (i ∈ I0− ∪ I+−) and Hi(x(t)) > 0 (i ∈ I+) for all t sufficiently

close to 0. Thus, taking the definition of C(x∗) into account, it remains to show that

gi(x(t)) 6 0 (i ∈ I0
g,<),(30)

Hi(x(t)) > 0 (i ∈ I0
00,> ∪ I0

0−,>),

and that

(31) Gi(x(t))Hi(x(t)) 6 0 (i ∈ I0
00,>< ∪ I0

0−,> ∪ I00
+0,∗<)

for t > 0 sufficiently small.

In order to verify (30), let i ∈ I0
g,<. Then we have ∇gi(x

∗)T d < 0 by definition.

This implies ∇gi(x(τ))T x′(τ) < 0 for all |τ | sufficiently small. From the mean value

theorem, we obtain a τt ∈ (0, t) such that gi(x(t)) = gi(x(0)) + ∇gi(x(τt))
T x′(τt)×

(t−0) = t∇gi(x(τt))
T x′(τt) < 0 for all t > 0 sufficiently small, which proves the first

statement of (30).

In order to prove the second statement, let i ∈ I0
00,> ∪ I0

0−,>. Then it fol-

lows, by definition, that ∇Hi(x
∗)T d > 0, and thus by continuity, it holds that

∇Hi((x(t))T x′(t) > 0 for all t sufficiently close to 0. Since we have Hi(x(0)) =

Hi(x
∗) = 0, this implies Hi(x(t)) > 0 for all t > 0 sufficiently small, using the above

arguments.

To verify (31), first let i ∈ I0
0−,>. Then we have Gi(x(t)) < 0 by continuity, and

by the above reasoning we get Hi(x(t)) > 0 for t > 0 sufficiently small, so that

Gi(x(t))Hi(x(t)) 6 0 holds in this case.

Now, let i ∈ I0
00,><. Then, by definition, we have ∇Hi(x

∗)T d > 0 and

∇Gi(x
∗)T d < 0. Then, by analogous reasoning as above, it follows that Hi(x(t)) > 0

and Gi(x(t)) < 0 for t > 0 sufficiently small, which gives (31) in this case.

Finally, let i ∈ I00
+0,∗<. Then we have Hi(x(t)) > 0 for |t| sufficiently small. And

since we have ∇Gi(x
∗)T d < 0, we obtain Gi(x(t)) < 0 for all t > 0 sufficiently small,

which eventually proves (31). �

The proof of the following theorem exploits the existence of the curve x from the

above lemma.

Theorem 4.3. Let x∗ be a local minimizer of (1) such that MPVC-LICQ holds.

Then we have

dT∇2
xxL(x∗, λ, µ, ηG, ηH)d > 0 ∀ d ∈ C(x∗),
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where λ, µ, ηG, ηH are the (unique) multipliers corresponding to (the strongly sta-

tionary) point x∗ of (1).

P r o o f. First recall from [5] that MPVC-LICQ implies that there exist (unique)

multipliers such that (x∗, λ, µ, ηG, ηH) is a strongly stationary point.

Let d ∈ C(x∗). Using the curve x(·) (and ε > 0) from Lemma 4.2, we are in a

position to define the function ϕ : (−ε, ε) → R by
ϕ(t) := L(x(t), λ, µ, ηG, ηH),

where L denotes the MPVC-Lagrangian from (9). Then ϕ is twice continuously

differentiable with

ϕ′(t) = x′(t)T∇xL(x(t), λ, µ, ηG, ηH)

and

ϕ′′(t) = x′′(t)T∇xL(x(t), λ, µ, ηG, ηH) + x′(t)T∇2
xxL(x(t), λ, µ, ηG, ηH)x′(t).

Using Lemma 4.2, we therefore obtain

ϕ′(0) = dT∇xL(x∗, λ, µ, ηG, ηH) = 0

and

ϕ′′(0) = dT∇2
xxL(x∗, λ, µ, ηG, ηH)d,

since we have ∇xL(x∗, λ, µ, ηG, ηH) = 0, as (x∗, λ, µ, ηG, ηH) is a strongly stationary

point of (1).

Now, suppose that ϕ′′(0) = dT∇2
xxL(x∗, λ, µ, ηG, ηH)d < 0. By continuity, we

thus have ϕ′′(t) < 0 for t sufficiently close to 0. Invoking Taylor’s formula, we obtain

ϕ(t) = ϕ(0) + tϕ′(0) +
t2

2
ϕ′′(ξt)

for all t ∈ (−ε, ε) and a suitable point ξt depending on t. Since we have ϕ′(0) = 0 and

ϕ′′(ξt) < 0 for t sufficiently close to 0, we thus have ϕ(t) < ϕ(0) for these t ∈ (−ε, ε).

Since (x∗, λ, µ, ηG, ηH) is a strongly stationary point of (1), we have

ϕ(0) = f(x∗)+
∑

i∈Ig

λigi(x
∗)+

∑

j∈J

µjhj(x
∗)+

∑

i∈I+0

ηG
i Gi(x

∗)−
∑

i∈I0

ηH
i Hi(x

∗) = f(x∗)

and, in view of (26) and the feasibility of x(t) for t > 0 sufficiently small, we also

have

ϕ(t) = f(x(t)) +
∑

i∈Ig

λigi(x(t)) +
∑

j∈J

µjhj(x(t))

+
∑

i∈I+0

ηG
i Gi(x(t)) −

∑

i∈I0

ηH
i Hi(x(t)) = f(x(t)),
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which yields f(x(t)) < f(x∗) for all t > 0 sufficiently small, in contradiction to

x∗ being a local minimizer of (1). �

We next state a second-order sufficiency condition. Note, again, that this re-

sult makes use of the same set C(x∗) as the second-order necessary condition from

Theorem 4.3.

Theorem 4.4. Let (x∗, λ, µ, ηG, ηH) be a strongly stationary point of the

MPVC (1) such that

(32) dT∇2
xxL(x∗, λ, µ, ηG, ηH)d > 0 ∀ d ∈ C(x∗) \ {0}.

Then x∗ is a strict local minimizer of (1).

P r o o f. Assume that x∗ is not a strict local minimizer of (1). Then there

exists a sequence {xk} ⊆ X tending to x∗ with f(xk) 6 f(x∗) for all k. Now,

put tk := ‖xk − x∗‖. Then we have tk ↓ 0. Furthermore, we define the sequence

{dk} ⊆ Rn by dk := (xk − x∗)/tk. Since we have ‖dk‖ = 1 for all k ∈ N, we can
assume, without loss of generality, that {dk} has a limit d ∈ Rn \ {0}. Furthermore,

by construction, we see that d lies in the tangent cone T (x∗) of (1) and thus, invoking

Corollary 2.5 from [5], we have in particular d ∈ LMPVC(x∗). Hence, we have

∇gi(x
∗)T d 6 0 (i ∈ Ig),(33)

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d > 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d 6 0 (i ∈ I+0),

as well as

(34)
(
∇Gi(x

∗)T d
)(
∇Hi(x

∗)T d
)

6 0 (i ∈ I00).

Furthermore, since we have f(xk) 6 f(x∗) for all k by assumption, the mean value

theorem yields a vector ξk on the connecting line between xk and x∗ such that

∇f(ξk)T (xk − x∗) 6 0 for all k. Dividing by ‖xk − x∗‖ and passing to the limit thus

implies

(35) ∇f(x∗)T d 6 0.

Now, we consider two different cases, which both lead to a contradiction.
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First, consider the case that equality holds in (33) for all indices i ∈ I+
g ∪ I+

0− ∪

I+
00 ∪ I0+

+0 . Then we have d ∈ C(x∗). Since xk is feasible for (1) for all k and we have

xk → x∗, the following statements hold for all k sufficiently large:

λi gi(x
k)

︸ ︷︷ ︸

60

6 0 (i ∈ Ig),(36)

µj hj(x
k)

︸ ︷︷ ︸

=0

= 0 (j ∈ J),

ηH
i Hi(x

k)
︸ ︷︷ ︸

=0

= 0 (i ∈ I0+),

−ηH
i Hi(x

k)
︸ ︷︷ ︸

>0

6 0 (i ∈ I0− ∪ I00),

ηG
i Gi(x

k)
︸ ︷︷ ︸

60

6 0 (i ∈ I+0),

where we use continuity arguments as well as the fact that we have Gi(x
k)Hi(x

k) 6 0

for all i = 1, . . . , l and all k, for the third and fifth statement. Invoking (36) and the

properties of the multipliers (λ, µ, ηG, ηH), we obtain

f(x∗) > f(xk) > f(xk) +
∑

i∈Ig

λigi(x
k) +

∑

j∈J

µjhj(x
k)(37)

+
∑

i∈I+0

ηG
i Gi(x

k) −
∑

i∈I0

ηH
i Hi(x

k) = l(xk),

where we put l(x) := L(x, λ, µ, ηG, ηH). Applying Taylor’s formula to (37) yields a

vector ξk on the connecting line between x∗ and xk such that

f(x∗) > l(xk)(38)

= l(x∗)
︸ ︷︷ ︸

=f(x∗)

+ ∇l(x∗)T

︸ ︷︷ ︸

=∇xL(x∗,λ,µ,ηG,ηH )=0

(xk − x∗) +
1

2
(xk − x∗)T∇2l(ξk)(xk − x∗)

= f(x∗) +
1

2
(xk − x∗)T∇2

xxL(ξk, λ, µ, ηG, ηH)(xk − x∗),

also exploiting the fact that (x∗, λ, µ, ηG, ηH) is a strongly stationary point of (1).

Dividing by ‖x∗ − xk‖2 and letting k → ∞ gives

(39) dT∇2
xxL(x∗, λ, µ, ηG, ηH)d 6 0,

which contradicts the assumption (32) of our theorem, because we have 0 6= d ∈

C(x∗).
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Second, consider the opposite case, that is, assume that there is an index i ∈

I+
g ∪ I+

0− ∪ I+
00 ∪ I0+

+0 such that a strict inequality holds in (33). We only consider

the case that there exists an index i ∈ I+
g such that ∇gi(x

∗)T d < 0, since the other

cases can be treated in the same way. Now, let s ∈ I+
g be such that ∇gs(x

∗)T d < 0.

Then it follows from (33) and (35) that

0 > ∇f(x∗)T d

= −

(
∑

i∈Ig

λi∇gi(x
∗)T d +

∑

j∈J

µj∇hj(x
∗)T d +

∑

i∈I+0

ηG
i ∇Gi(x

∗)T d

−
∑

i∈I0

ηH
i ∇Hi(x

∗)T d

)

> −
∑

i∈I
+
g

λi∇gi(x
∗)T d > −λs∇gs(x

∗)T d > 0,

which yields the desired contradiction also in this case. �

Closing this section, we would like to point out that for Example 3.6 the conclusion

of Theorem 4.3 as well as the assumptions of Theorem 4.4 are obviously satisfied,

since the Hessian of the MPVC-Lagrangian is a positive multiple of the identity at

any feasible point and thus in particular positive definite on the whole Rn .

5. Final remarks

This paper contains three main results: First, it shows that the strong stationarity

conditions (which are known to be equivalent to the standard KKT conditions) are

sufficient optimality conditions for an interesting class of MPVCs. Second, we prove

a necessary and a sufficient second-order optimality condition using the same cone

in both results. It would be interesting to see whether the MPEC-counterparts of

our second-order conditions are actually identical to existing second-order conditions

for MPECs, cf. [7], [11], or whether we can use our technique of proof in order to

obtain better results also in the context of MPECs.
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illustrating some of the presented concepts and results is due to him.
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