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K Y B E R N E T I K A — V O L U M E ЗĄ ( 1 9 9 8 ) , NUMBER 2, PAGES 1 6 3 - 1 6 9 

FINITE-TO-ONE FUZZY MAPS 
AND FUZZY PERFECT MAPS 

FRANCISCO G A L L E G O L U P I A N E Z 

In this paper we define, for fuzzy topology, notions corresponding to finite-to-one and 
k-to-one maps. We study the relationship between these new fuzzy maps and various kinds 
of fuzzy perfect maps. Also, we show the invariance and the inverse inveriance under 
the various kinds of fuzzy perfect maps (and the finite-to-one fuzzy maps), of different 
properties of fuzzy topological spaces. 

1. I N T R O D U C T I O N AND DEFINITIONS 

In General Topology, the open maps has been very studied. The efforts has been 
particularly concentrated on determining which classes of spaces are invariant or 
inverse invariant under various kinds of such maps: open compact maps, open finite-
to-one maps, open Ar-to-one m a p s , . . . [1,2,3,6,9,10,11,17,18,19,21,26]. 

Defini t ion 1. [19] Let X and Y be topological spaces and / : X —• Y be a m a p . 
The map is said finite-to-one if f~l(y) is a finite subset of X for each y G V , and is 
fc-to-one if f~l(y) consists of exactly k points in X for each y G Y. 

In this paper we define for fuzzy topology notions corresponding to these maps. 
We study the relationship between these new fuzzy maps and various kinds of fuzzy 
perfect maps. Also, we show the invariance and the inverse invariance under the 
various kinds of fuzzy perfect maps (and the finite-to-one fuzzy maps) of different 
properties of fuzzy topological spaces in the Chang's sense. 

All the maps are assumed to be continuous and onto. 
First, we summarize the definitions which we will use along this paper. 

Defini t ion 2. [13] Let (X} r ) be a topological space and W(T) be the set of all 
semicontinuous functions from (X, r ) to the unit interval equipped with the usual 
topology, then (X,U(T)) is called the weakly induced fuzzy topological space by 
(X,T). 



164 F.G. LUPIÁŇEZ 

Definition 3. [13] A fuzzy extension of a topological property is said to be good, 
when its is possessed by (X}U>(T)) if, and only if, the original property is possessed 
by(X}T). 

Definition 4. [20] If fi is a fuzzy set in X} the set {x G X\fi(x) > 0} is called the 
support of/i and is denoted by supp/i. 

Definition 5. [20] Let /ii,/i2 be two fuzzy sets in X} fi\is said to be quasi-
coincident with ^2, denoted by /iig/i2, if there exists x G X such that fi\(x) > 
fi>'2(x) where fi'2 is the fuzzy complement of \i2-

Definition 6. [20] A fuzzy set in X is called a fuzzy point if it takes the value 0 
for all y G X except one, say x G X. If this value at x is a (0 < a < 1) we denote 
this fuzzy point by xa. 

Definition 7. [4] Let / be a map from X to Y. Let /ibe a fuzzy set in Y, then 
the inverse of /i, denoted as f~1(fi)} is defined by f~l(fi)(x) = fi(f(x)) for all x in 
X. Conversely, if /i is a fuzzy set in X} the image of /i, written as f(fi) is a fuzzy 
set in Y given by 

, , w x f s u P*e/-i(y)M*))> i f / - 1 ^ ) ? ^ 
f(v)(y) = s n , 

[ 0, otherwise. 

Definition 8. [4] A map / from a fuzzy topological space (X} r) to a fuzzy 
topological space (Y, 5) is F-continuous if the inverse of each open fuzzy set is open 
fuzzy in (X} T). 

Definition 9. [27] A map / from a fuzzy topological space (X} T) to a fuzzy 
topological space (Y, s) is fuzzy closed (resp. fuzzy open) if /(//) is fuzzy closed 
(resp. fuzzy open) in (Y, s)} for each fuzzy closed (resp. fuzzy open) set /i in X. 

Definition 10. [4] A family of fuzzy sets {fij\j G J} is a cover of a fuzzy set /i 
if /i < \/{fJ>j\j G «/}. A subcover of {fij\j G J} is a subfamily of it which is also a 
cover. A fuzzy topological space is compact in the Chang's sense, if each cover has 
a finite subcover. 

Definition 11. [12] A fuzzy set /i in (X} T) is fuzzy compact in the Lowen's sense, 
if for all family of fuzzy open sets {fij \j G J} such that /i < \f{fij \j G J} and for all 
e > 0 there exists a finite subfamily {/ij|j G Jo} such that /1 — e < \J{Hj\j E Jo}-

Definition 12. [8] A collection U of fuzzy sets in (X} T) is called g-cover of a fuzzy 
sets /i if for each x G supp/i, x^x)q\Ju^uU. If each member of U is fuzzy open, 
then U is called an open g-cover. A fuzzy set /i in a fuzzy topological space (X} T) is 
called g-compact if for every open g-cover U} of/i, there exists a finite subcollection 
U0 of U such that sup{l - \fUeUo U)(z)\z G supp/i} < fi(x) for every x G supp/i. 
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Definition 13. [8] A map / from a fuzzy topological space (X,T) to a fuzzy 
topological space (Y,S) is called fuzzy perfect, in the Ghosh's sense, if / is onto, 
fuzzy closed, F-continuous and f~1(ya)is (/-compact, for each fuzzy point yQ in Y. 

Definition 14. [23] A map / from a fuzzy topological space (X} T) to a fuzzy 
topological space (Y, S) is called fuzzy perfect in the Srivastava and LaPs sense, if 
/ is onto, fuzzy closed, F-continuous and f"1(yQ) is fuzzy compact in the Lowen's 
sense, for each fuzzy point yQ in Y. 

Definition 15. [5] A map / from a fuzzy topological space (X,T) to a fuzzy 
topological space (Y, S) is called fuzzy perfect in the Christoph's sense, if / is onto, 
fuzzy closed, F-continuous and f~l(yo) is compact in the Chang's sense, for each 
fuzzy point yQ in Y. 

Let (X, T) and (Y, s) be two topological spaces and / : (X, r ) —* (Y, s) an 
onto map. We denote / : (X,U(T)) —• (Y,u(s)) the map given by f(xQ)(y) = 
suPtef-1(y){x°t(^)} - ° r e a c h fuzzy point xQ in X. 

Definition 16. Let (X, T), (Y} S) be two fuzzy topological spaces and / : (X, T) —• 
(YfS) be a fuzzy map. The map will be called finite-to-one fuzzy if supp f"1(yQ) is 
a finite jsubset of X for each fuzzy point yQ in Y, and will be called fc-to-one fuzzy 
if s u p p / - 1 (yQ) consists of exactly k points in X for each fuzzy point yQ in Y. 

Lemma 1.1. If the map / : (X,U(T)) —• (y,w(s)) is open fuzzy then the map 
/ : (X, T) —> (y, 5) is open. 

P roof . If A is open in (X,r), we have A = ^ ^ ( ( a , 1]) for all a £ [0,1), XA £ 

U(T), and then / (xA ) = Xf(A) £ u(s) and f(A) is open in (Y} s). D 

Proposit ion 1.2. If the map / : (X,U(T)) —> (Y,u(s)) is finite-to-one fuzzy (resp. 
fc-to-one fuzzy), then the map / : (X, r) —> (Y, s) is finite-to-one (resp. A:-to-one). 

P roo f . If there exists y eY such that f"1(y) is infinite (resp. card f~~x(y) 5-= k) 
let 

, ,x f 1 if 2/ = y 

[ 0 i f t / ^ y 

Then, for each x G -Y, 

r1(y1)(a:) = y1(/(x)) = - 1 , ч , ч , . , ч ч I - - / ( X ) = » í ! if 
x)) = i 

[ 0 if / (x) # У 

Thus, supp / 1(yi) and fl(y) have equal cardinals, and suPP /""1(yi) is infinite 
(resp. its cardinal is ^ fc). 



166 F.G. LUPIÁŇEZ 

2. RELATIONSHIP BETWEEN THESE FUZZY MAPS AND FUZZY 
PERFECT MAPS 

It is known that every open Ar-to-one continuous and onto map is a perfect map [1, 
Lemmas 1 and 2]. Then it is natural to study the relationship between Ar-to-one 
fuzzy maps and the various kinds of fuzzy perfect maps. 

Remark 2.1. In general, / open-Ar-to-one fuzzy map ft f fuzzy perfect map in 
the Christoph's sense. 

Indeed, let lx : (X} T) —> (X, T) be the identity fuzzy map. Clearly, lx is 1-to-one 
fuzzy map. But l~l(x\) for x± crisp fuzzy point in Xy is not fuzzy compact in the 
Chang's sense, because if xi < Vje(o.i)'ii» t h e n 1 = sup{/i/(ar)|.7 G (°> 1)}> a n d i f N 
is an open fuzzy set in X such that fij(x) = j , for all j G (0,1), there is not a finite 
subfamily J 0 C (0,1) such that 1 = sup{/ij(x)\j e Jo}. Then, lx is not fuzzy perfect 
map in the Christoph's sense. 

Proposition 2.2. If / : (X, T) —» (Y, S) is a finite-to-one fuzzy map, then f~x(ya) 
is fuzzy compact in the Lowen's sense for each fuzzy point ya in Y. 

P r o o f . Let supp f~1(ya) = {xr\r = 1,.. ., Ar} for some fuzzy pont ya in Y, and 
{jJij\j G J} be a family of open fuzzy sets in X such that f"1(ya) < VjeJ/2;-
Then a < sup{fij(xr)\j G J} for every r = 1,.. ., A:. Thus, for each e > 0 and each 
r = 1,. . . , Ar there exists j r G J such that a — e < /J>jr(xr). We denote Jo = {jr\r = 
1,. . . , A:}, and we have that a — e < sup{/j,j(xr)\j G Jo} for every r = 1,.. ., k} and 
f~~x(ya) — € < VjeJo W* Hence f"l(yQ) is fuzzy compact in the Lowen's sense. • 

Corollary 2.3. If/ is an onto, F-continuous, finite-to-one closed fuzzy map, then 
/ is fuzzy perfect in the Srivastava and Lai's sense. 

Proposition 2.4. If/ : (XyT) —• (Y, S) is a finite-to^one fuzzy map, then f~l(ya)is 
g-compact for each fuzzy point ya in Y. 

P r o o f . Let s u p p / " 1 (r/a) = {xr\r = 1 , . . . , &} for some fuzzy point ya in Y, andW 
be an open g-cover of f~x(ya). Then for each x G supp / _ 1 (y a ) , xaq\JUeU U. Thus, 
we have that a > 1 - Vc/ew ^(^r) for each r = 1 , . . . , Ar, and there exists an Ur G U 
such that Ur(xr) > 1 - a for each r = 1 , . . . , Ar. Let U0 = {I7 r | r= l,..,Ar}. We have 
that UQ is a finite subcollection of U and (1 - Vc/euo ^ X * ' ) = 1 " sup{U(arr)|U G 
U0} < a. Thus, sup{(l - \JUeUo U)(xr)\r = 1 , . . . , Ar} < a = /"1(t/a)(ar) for every 
x G s u p p / " " 1 ^ ) . Hence f"l(ya) is ^-compact. ---

Corollary 2.5. If / i s an onto, F-continuous, finite-to-one closed fuzzy map, then 
/ is fuzzy perfect in the Ghosh's sense. 
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3. INVARIANCE THEOREMS 

Now, we show the invariance's theorems for the various kinds of fuzzy perfect maps: 

Proposit ion 3.1. If the map / : (X,U(T)) —• (Y,u(s)) verifies that /~ 1 (y a ) i s 
a-compact for every fuzzy point ya in y , then f"l(y) is compact for every y GY. 

Proof . For every open cover U of f"1(y)) we have that W = {Xu\U G U] is open 
a-coverof f"l(ya). Indeed: for each x € supp f~l(ya) is f~l(ya)(x) = ya(f(x)) = a, 

then f(x) = y, *r-*(y.)(*)+X\Jueu
u{x) = a+l>l> thuS *f-i(,.)(.)« *[)„*„ U' 

By the hypothesis, there exists a finite subcollection UQ oiW such that sup{(l — 

\fxueU;Xu)(x)\x G supp / _ 1 (y a )} < f"1(ya)(x)1 for every x G supp f"l(ya) (or, 

equivalently x G f"1(Va))- Then, (\fXu£U* Xu)(x) + f"l(ya)(x) > 1 for every 

x G f"l(y) [8, Corollary 2.1], x\ I rr(a:) + a > 1 for every x G f~x(y) (where 

U0 C U is a finite subfamily), x G Uc/euo ^ ^or a'^ x ^ /-1(-V) a n ^ ' finally £/n covers 
f~l(y). Thus f"l(y) is compact. • 

Corollary 3,2. If the map / : (.K,cj(r)) —• (Y}u(s)) is fuzzy perfect in the Ghosh's 
sense, then the map / : (X, r ) —• (Y) s) is perfect. 

P roof . It follows from the proposition and Lemmas 2.1 and 2.2 in [15]. O 

Proposit ion 3.3. If the map / : (z,u;(r)) —• (Y)u(s)) is fuzzy perfect in the 
Srivastava and LaPs sense (or in the Christoph's sense), then the map / : (Xy r) —• 
(y, s) is perfect. 

P roo f . We have proved this in [15]. -~ 

Theorem 3.4. Let (.K,u;(r)), (Ytu(s)) be two weakly induced fuzzy topological 
spaces and / : (X,U(T)) —• (y,u;(s)).be fuzzy perfect in the Ghosh's sense (resp. in 
the Srivastava and Lai's sense, or in the Christoph's sense), if: 

(a) (X,u;(r)) verifies the fuzzy version of a property V of topological spaces, 

(b) the property V is invariant under perfect maps, 

(c) the fuzzy version of V is a good extension of V. 

Then (Y,w(s)) verifies the fuzzy version of V. 

Proof . The map / : (X,T) —> (Y,s) is perfect by Corollary 3.2 and Proposition 
3.3. Then the result is clear. ~-
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Corol laries 3.5. 

1. Hausdorff fuzzy topological spaces [24] are invariant by fuzzy perfect maps in 
the various senses. 

2. All the good extensions of paracompactness are invariant by fuzzy perfect m a p s 
in the various senses. 

T h e o r e m 3.6. Let (X)u(r))i(Y1uj(s)) be two weakly induced fuzzy topological 
spaces and / : ( X , C J ( T ) ) —• (Y,u>(s)) be fuzzy perfect in the Ghosh's sense (resp. in 
the Srivastava and Lai's sense, or in the Christoph's sense), if: 

(a) ( Y , C J ( S ) ) verifies the fuzzy version of a property V of topological spaces. 

(b) the property V is inverse invariant under perfect maps, 

(c) the fuzzy version of V is a good extension of 'P . 

Then (X,U(T)) verifies the fuzzy version of V. 

P r o o f . The m a p / : (X, r) —• (Y, s) is perfect by Corollary 3.2 and Proposit ion 
3.3. Then the result is clear. O 

Corol laries 3.7. 

1. Haussdorff fuzzy topological spaces are inverse invariant by fuzzy perfect m a p s 
in the various senses. 

2. All the good extensions of paracompactness are inverse invariant by the various 
kinds of fuzzy perfect maps. 

(Received December 30, 1996.) 
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