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K Y B E R N E T I K A — VOLUME 34 ( 1 9 9 8 ) , NUMBER 4, P A G E S 3 6 3 - 3 6 8 

THE BHATTACHARYYA METRIC 
AS AN ABSOLUTE SIMILARITY MEASURE 
FOR FREQUENCY CODED DATA 

FRANK J. AHERNE, NEIL A. THACKER AND PETER I. ROCKETT 

This paper highlights advantageous properties of the Bhattacharyya metric over the 
chi-squared statistic for comparing frequency distributed data. The original interpretation 
of the Bhattacharyya metric as a geometric similarity measure is reviewed and it is pointed 
out that this derivation is independent of the use of the Bhattacharyya measure as an 
upper bound on the probability of misclassification in a two-class problem. The affinity 
between the Bhattacharyya and Matusita measures is described and we suggest use of the 
Bhattacharyya measure for comparing histogram data. We explain how the chi-squared 
statistic compensates for the implicit assumption of a Euclidean distance measure being 
the shortest path between two points in high dimensional space. By using the square-
root transformation the Bhattacharyya metric requires no such standardization and by its 
multiplicative nature has no singularity problems (unlike those caused by the denominator 
of the chi-squared statistic) with zero count-data. 

1. INTRODUCTION 

When we wish to compare one data set to a known distribution, or to compare 
two equally unknown distributions, a commonly used technique is to apply the chi-
squared statistic. In this paper we propose the Bhattacharyya metric as an alter
native similarity measure when comparing Poisson distributed data and we demon
strate certain advantages of this measure over the chi-squared statistic. Also we give 
an example where the chi-squared statistic is not an accurate comparison measure 
over large distances in a statistical pattern space. We demonstrate this for the case 
of 2-dimensional measurements having Poisson errors. 

2. BHATTACHARYYA'S ORIGINAL DERIVATION 

Bhattacharyya's original interpretation of the measure was geometric [2]. He con
sidered two multinomial populations each consisting of k classes with associated 
probabilities px , p2 , • • • ,Pib, and pi,p'2, • •. ,P*, respectively. Then, as £ \ = 1 Vi = 1 
and Yli=i pj- = 1, he noted that (y/vi, • • •, \/Pk) and (\/Pi", • • • > V P D could be con
sidered as the direction cosines of two vectors in fc-dimensional space referred to a 
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system of orthogonal co-ordinate axes. As a measure of divergence between the two 
populations Bhattacharyya used the square of the angle between the two position 
vectors. If 0 is the angle between the vectors then: 

cos(0) = £ s/prfi- (2-1) 

t" = l 

Thus if the two populations are identical we have equation (2.2): 

k 

cos(0) = £ p , = l (2.2) 
i= l 

corresponding to 0 = 0, hence we see the intuitive motivation behind the definition 
as the vectors are collinear. 

3. THE BHATTACHARYYA BOUND 

In this section we consider the Bhattacharyya bound as commonly used in pattern 
recognition. Consider a two-class problem where each sample belongs to one of 
two mutually exclusive classes (the conditional density functions and the a priori 
probabilities are assumed known). The sample serves as input to a decision rule 
whereby we classify each sample to one of the two classes. In general, decision rules 
do not lead to perfect classification and in order to evaluate the performance of a 
decision rule we must calculate the probability of error - that is the probability that 
the sample is assigned to the wrong class. If we define the a posteriori probability 
of class /given x as P(u)[\x) and similarly P(u)[j\x) for class II then the conditional 
error r(x)} given, x, is either P(uj[\x) or P(uj[[\x) (whichever is smaller), as described 
by Fukunaga ([4]). That is: 

r(x) = min[P(wj|*), P(un\x)] (3.1) 

The total error, (or Bayes error) is computed by the expectation of r(x)} E[r(x)]: 

E[r(x)]= [ r(x)P(x)dx (3.2) 
Jx 

where P(x) is the probability of observing the pattern X = x. An upper bound on 
the above integrand can be obtained by making use of the fact that min[a, b] < asbl~8 

for all 0 < s < 1, a, b > 0. This is commonly known as the Chernoff bound and 
taking the case of s = 0.5 gives the Bhattacharyya bound (3.3): 

I P(iOi\x)°-5P(un\x)°-5P(x) dx (3.3) 
Jx 

or equivalently (3.4): 

/ 
J X 

Ыx)0ЪЫx)0Ъdx (3.4) 
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where fi(x) = P(ui\x)P(x) and f2(x) = P(uu\x)P(x). Thus the Bhattacharyya 
bound integrates over all positions in the domain and assumes that the sample be
longs to only one of the two classes. This assumption is a major restriction on the 
scope of the method as it should strictly only be applied to simple two class problems 
where this is known to be the case. It is therefore used as a relative separation mea
sure. Below we propose an alternative interpretation of the Bhattacharyya measure 
which has far wider potential for application. 

4. THE MATUSITA METRIC 

The Matusita ([5]) distance between two probability density functions is defined by: 

(VH^-y/fM) <-* (4-1) 

and is related to the Bhattacharyya metric by (4.2): 

(y/fM-VfM) dx = 2-2 y/Ux)Vf^)dx. (4.2) 
-oo x ' J-oo 

5. EUCLIDEAN DISTANCE ASSUMPTION OF X
2 STATISTICS 

In the field of pattern recognition we often need to determine the similarity between 
two observations in a high dimensional space. In such domains the way the errors 
on the observations or measurements vary over the space can influence the shortest 
path between two observations. For example consider the case of Poisson distributed 
measurements in two dimensions. Since the mean and variance of a Poisson distribu
tion are equal the space can be considered as a region of smoothly changing variance 
as illustrated by the ellipses of Figure 1(a). For example, the bottom row of ellipses 
correspond to a fixed error in the y direction paired with an increasing error in the 
x direction. In this space the shortest distance between two observations that are 
close to each other can be reasonably approximated by a straight line. However, 
for two distant observations the shortest distance between them is not necessarily 
a straight line but a curved path as shown by the dotted line in Figure 1(a). This 
presents obvious difficulties when trying to construct a simple similarity measure in 
such a space. Moreover, if a chi-squared statistic (such as (6.1)) was used in such a 
case the Euclidean distance term in the numerator of the statistic implicitly assumes 
that a straight line distance is the shortest path between the observations, when in 
fact a curved path integral would be a more accurate description. 

6. ADVANTAGES OF THE BHATTACHARYYA STATISTIC 

The square-root transformation is frequently used throughout statistics for produc
ing a homogeneous variance for count data [3] and it can be shown that for count 
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data following a Poisson distribution, the square-root transformation maps all er
rors to a constant. Moreover, by mapping to a domain where all errors are constant 
the problem of evaluating the minimum of a curved path integral is avoided by en
suring that a straight line measure is always the minimum distance between two 
observations - as shown in Figure 1(b). 

DOOOOO 
pooooo 

fy 

(a) Before application of 
Bhattacharyya metric 

oooooooo 
po ooooo 
pooxooooo 
pooooooo 
pooooooo 
oooooooo 
oooooooo 
oooooooo. 

(b) After application of Vx 
Bhattacharyya metric 

Fig. 1. Illustration of shortest distance between 2 observations having 2D Poisson errors. 

(Ri-Sj)2 

*'=£ RІ + SІ 
(6.1) 

7. BHATTACHARYYA APPROXIMATION TO THE X

2 

We now show how the Bhattacharyya metric can approximate the chi-squared for 
small distances. The purpose of this section is to highlight how the Bhattacharyya 
statistic can be considered as an approximation to the chi-squared with the advan
tage that the Bhattacharyya metric has no problems comparing zero count-data 
(which can lead to singularities in the chi-squared statistic). For an arbitrary func
tion, /(•) acting on binned, frequency coded data of unknown distribution we can 
approximate the chi-squared measure as (7.1): 

x'2 = E 
(f(Ri)-f(Si))* 

ґ&ъ + Ф2*' 
(7.1) 

The denominator of the right-hand side of (7.1) is produced by using a first-order 
Taylor approximation. Now substituting / = \/(0 into (7.1) gives (7.2): 

£ (^;S^.=2S(^-^)' M 
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which is a scaled Matusita distance measure and rearranging this gives (7.3): 

2 ] T ( v ^ - \ / % ) = constant- 4 ^ \/fy\/S~i. (7.3) 
i i 

Thus the Bhattacharyya measure approximates the chi-squared statistic. It should 
also be noted that by transforming all variances to be constant the Bhattacharyya 
measure avoids the singularity problem of the chi-squared statistic when comparing 
empty histogram bins. 

8. THE DIMENSIONLESS EXAMPLE 

In this section we highlight an example where the Bhattacharyya statistic is di-
mensionless. Consider two univariate Gaussian probability density functions where 
l*A # V>B and aA ^ aB: 

Consider the integral below as a general similarity measure (8.3): 

J—< 
(fA(x))n(fB(x))ndx. (8.3) 

t/ — o o 

This has a solution given by: 

y/2TO*Aol/n f -n(nA - nB? ] (g ,, 
-vW+^y 1 2 K + . D / l8-4J (2waAaB) 

and therefore the case of n = 0.5 gives a solution: 

ĘҖ-ęXj-}^-^П (8.5) 
<тA + <тв l 4 ( * л + 4 ) 1 

__ДcT 

and n = 1 gives the solution: 

V2,K + 4 ) e x p U K + 4 ) r ( 8 6 ) 

From the negative natural logarithm of (8.6) we can consider (8.6) to be a scaled 
chi-squared type statistic. The constant term in (8.6) is not dimensionless, thus 
the statistic will depend upon the measurement scale used. In contrast the constant 
term of the Bhattacharyya measure in (8.5) is dimensionless, thus the Bhattacharyya 
metric is independent of the measurement scale. 
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9. BHATTACHARYYA MEASURE APPLIED T O HISTOGRAMS 

The Bhat tacharyya measure can be used to compare the similarity between two 
histograms as follows: If we let R{ be the frequency coded quanti ty in bin i for 
the first histogram and Si a similar quanti ty for the second histogram. We propose 
the Bhat tacharyya statistic ]T^ y/Rly/Sl as a measure of similarity between the two 
histograms. For the case of two identical histograms we obtain ]T\ R( = 1 indicat
ing a perfect match. The successful application of the Bhat tacharyya statistic for 
histogram matching can be found in numerous applications, ([1, 6]). 

10. SUMMARY 

In this work we have presented the original geometric interpretation of the Bhat
tacharyya similarity measure and explained the use of the metric in the Bhat
tacharyya bound. We emphasize tha t the use of the statistic should not be limited to 
the upper bound on misclassification in a two-class problem and recommend its use 
for comparing frequency-coded data . Several examples have been described where 
the Bhat tacharyya statistic has more desirable properties than the chi-squared met
ric, such as it being dimensionless. We have described the importance of the square-
root variance stabilizing transformation with respect to the Bhat tacharyya metric 
and explained how the statistic can be used to compare histogram data . 

(Received December 18, 1997.) 
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