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DISCRETE-TIME STATE DESCRIPTЮN 
OF PURE DEADTIME PROCESSES1 

VÁCLAV SOUKUP 

This contribution deals with the discrete-time linear state models of pure deadtime 
multi-input, multi-output dynamic processes. A straightforward way is presented to obtain 
minimum-dimensional state realizations of these processes. 

1. INTRODUCTION 

Time delays (deadtimes) occur frequently in industrial technologies, transportation, 
communication or transmission processes, robotics and other branches. Mathemat­
ical models of the deadtime dynamic processes have long been treated and used 
in system and control theory. Especially, the input-output models in the time or 
frequency domain are usual in modeling, simulation and control. 

Unlike a continuous-time state description, discrete-time state models of dead-
time processes are finite-dimensional, and therefore preferred and widely introduced. 
The fundamental relations concerning the discrete-time state models of deadtime 
processes can be found, e.g., in [1] or [2]. Above all, single-input, single-output 
models are considered here. 

This work deals with the discrete-time description of pure deadtime multi-input, 
multi-output (MIMO) linear processes, when time delays dominate and other dy­
namics are missing or negligible. Pure deadtime processes can well approximate var­
ious systems and subsystems in the technologies above. State space models of these 
processes are considered and the way is presented to find the minimum-dimensional 
state realizations. 

The work is organized into several parts. Following Introduction several prelim­
inary relations are introduced in Section 2. The problem of the minimum state 
realization is then solved in Section 3 and briefly adapted to an intersample be­
haviour of process-oriented models in Section 4. Two illustrative examples are given 
in the last section. 

1This work was supported by the Grant Agency of the Czech Republic under Grant 
No. 102/97/0861. 
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2. PRELIMINARY RELATIONS AND PROBLEM FORMULATION 

A primary continuous-time, pure deadtime process is considered and described by 

Y(s) = G(s) l / (S) , (1) 

where Y(s) and U(s) are the Laplace transforms of p-dimensional output vector 
y(t) and r-dimensional input vector u(t), respectively, and G(s) is (p x r) transfer 
function matrix (TFM) with the entries 

Gij(s) = aij0 + a t j iexp(-s7v ; i) + . . . + « t ;>( t J)exp(-5r t j V ( { ) i )); (2) 

i= l , . . . , p and j = l , . . . , r . 

The corresponding time domain equations have the form 

r 

w(0 - X ^ ^ - 7 ' 0 ^ ^ ) + ^O'l^i(* " r«i1) + • - + aijK*J)ui(t ~ r»>(>\i))-> * = 1, • • • ,P-
i= i 

For computer simulation and control a discrete-time model of the process (1), (2) 
is usually required. It is assumed that yi(t) is observed at times kT only and Uj(t) 
sampled uniformly at kT and reconstructed subsequently by zero-order hold; T is a 
sampling time and k = 0 ,1 ,2 , . , . 

Let us put (without subscripts) 

T = mT + yT\ integer m > 0; 0 < /i < 1 (3) 

for any time delay r = rt;{ which stands in (2). 

Any T in (3) will be replaced in discrete-time form by 

qT=(m+ l)T if // > 0 and qT = mT if /i = 0. (4) 

Using .Z-transform we can write 

Y(z) = G(z) U(z), 

where G(z) is a (p x r) polynomial discrete-time TFM . Its general entry 

dj(z) = aij0 + aij(z"1)y (5) 

where dij(z~l) is a noncausal polynomial (z~~l divides a t J) 
aij(z~l) = aii i*"™1 + • - • + <Xijv(ij)Z~qtMi'j) with deg a t i = ?y„(.\j)- (6) 

An example is introduced here for illustration. A two-input, two-output pure 
deadtime process is originally described by 

yi(t) = -u i (« - 0.3) + 2ui(< - 2) + 0.5ti2(«) + u2(t - 1.4) 

and 

W ( t ) = t - i ( * - l ) + 0.5ti2(<-0.6) 
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and therefore 

G(s) = 
_ e - o . з . + 2e--» 0.5+ e - 1 4 5 

e— 0.5e-0-6ł 

For the discrete-time model with the sampling time T = 0.6 sec time delays are 
gradually referred to T as: 

0.3 : m = 0, џ = 0.5 
1.4 : m = 2, /. = 0.33 

2 : m = 3, џ = 0.33 
1 : 771 = 1, џ = 0.67 0.6 : m = 1, /i = 0. 

The discrete-time equations (in dimensionless time k) are 

yi(Jfc) = -ui(Jb - 1) + 2i*i(Jb - 4) + 0.5 u2(k) + u 2 ( * - 3) and 

y2(k) = Ul(k-2) + 0.5u2(k-l), 

G(z) = 
-z~x+2z~A 0.5 + z~3 

z-2 0.5*- 1 

0 0.5 
0 0 + 

- г - ! + 2 z - 4 

* - 2 
z - 3 

O.ðz-1 

and in accordance with (6) the degrees of a,j are 

_iii/(i,i) = 4, _i2i/(i,2) = 3, g2ii/(2A) = 2 and 0221/(2,2) = 1-

Consider now state equations of a discrete-time system 

x(k + 1) = Fx(k) + Hu(k) and y{k) = Cx(k) + Du(k)t (7) 

where *(k) is n-dimensional state vector, and JF1, if, C and D matrices of the 
dimensions (n x n),(n x r),(p x n) and (p x r) , respectively. 

Then TFM G(z) with the entries (5) is 

G(z) = G0 + G1(z), 

where the following relations hold: 

Go = [otijo] = D (8) 

and 

Gj(z) = [aijťz-1)] = C(zl - F)-*H = C(I - F'z~l)Hz"1. (9) 

A way to find simply the minimal (i.e., reachable as well as observable) state 
realization (7) of a pure deadtime process will be shown in the next section. Since 
D= Go does not change in various state space forms, hereafter only G\(z) will be 
considered. 

To check system properties the following theorem will be useful. 
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Theorem. [3] A system realization (7) is 

i) reachable if and only if there exists no left eigenvector 7 T ^ 0 of F} which 
satisfies 

7 T ( F - A J ) = 0 and 7
T i J = 0, (10) 

ii) observable if and only if there exists no right eigenvector p ?-. 0 of F> such 
that 

(F-\I)p = 0 and Cp = 0, (11) 

where A are eigenvalues of F. 

Hereafter, the leading column degrees in G\(z) are denoted by 

qj = max qiju(i}j)\ j = 1 , . . . , r, (12) 

and the notation 
0 

J-y+1 = 

0 . . . 0 

where I„ is the (v x v) identity matrix, will be used. 

3. DISCRETE-TIME MINIMUM STATE MODEL 

In general it is not easy to find directly the minimum model dimension and a cor­
responding minimum state realization of a MIMO dynamic process. Either Hankel 
matrices of system Markov parameters or irreducible TFM fractions have to be de­
termined, ([3]). Minimal diagonalizable Gilbert realization can be determined for 
systems with all distinct eigenvalues only; unfortunately it is just not the case for 
deadtime models. Also, there is a technique of successive steps to search for MSR. 
It includes 

i) finding a reachable realization R\ 

ii) checking the observability of R\ 

iii) arranging R into an observable, i.e., minimum state realization form, 
if R is found not to be observable in ii). 

The present work aims to show that this general approach becomes very simple 
in the case of pure deadtime processes, when state variables are selected to be the 
delayed inputs. 

Generally, the dual way starting with an observable realization is also possible. 
Nevertheless it is without a natural and transparent character in our case of pure 
deadtime processes and therefore not considered here. 

Thus, having a nonsingular TFM G\(z) with no zero columns (i.e., all inputs Uj 
are delayed and qj > 0 for any j ) , the initial reachable realization may be directly 
written in the controller-canonical form ([3]) as 

x(k) .= [m(t - <zi) • • • " ! (* - 1 ) ; . . . ; " r (* - ?r) • • • ur{k - 1 ) ] , (13) 
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F = block diag Jqj = 

*qi 

0 

'ч- J 

, н = 

Hг 

Hr 

(14) 

where Hj is the (qj x r) matrix the entries of which are zeros except the unit at the 
jth column position in the last row, 

C = 

cц 

Cpl 

Clt 

^pr 

(15) 

where Cij is the (1 x qj) row vector constructed from the corresponding coefficients 
of a{j(z~1)) zeros included. 

Using (9) the reader can simply verify that (13) to (15) gives the TFM; at the 
same time all eigenvalues of JF are found to be A = 0. Therefore the realization (13) 
to (15) is always reachable since the condition (10) has the form 7 T [F H] = 0 
which has the only solution 7 = 0. 

Secondly, observability of the realization (13) to (15) is checked using (11). Let us 
consider a right eigenvector of F to be p = [ p T ; . . . ; pT]T with pj = [pj\... pjqj]

T. 
Then the first condition (11) resulting into Fp = 0 yields pj2 = ... = pjqj = 0 for 
any j and the first terms pji in pj can only be nonzero. 

Hence the second condition (11) is reduced into 

Ci[P 11 Prlf = 0, (16) 

where C\ is a (p x r) column leading matrix formed by r columns of C which are 
at the same position as zero columns in F. 

In view of (16) the condition 

rank C^ = r (17) 

is found to be necessary as well as sufficient for (13) to (15) to be observable and 
therefore minimal. 

If (17) fails and rank C\= a < r, the minimal model dimension is n\ = n — r+a; 
a minimum state realization is given by the new ni-dimensional state vector 

x(k) = 
Cíav(k) 

w(k) 
= Kx(k) = C\a 

0 
0 

J-n—r 
Qx(k), 

where v(k) = [u\(k — qi)... ur(k — <1r)]
T and 

w(k) = [ui(k -qi + 1)... ux(k - 1); . . . ; ur(k - qr + 1 ) . . . ur(k - 1)]T, 
Cia is the (a x r) matrix containing a independent rows of C\ and Q is the (n x n) 
nonsingular matrix of units and zeros, by means of which x(k) is reordered into 
Qx(k)= [vT(k)\ wT(k)]T, and the new system matrices F , H and C follow from the 
relations 

FK = KF, H = KH and CK = C. 
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Note that r has to be replaced by Tr < r if there are r — r\ undelayed inputs Uj 
with qj = 0. 

4. PROCESS-ORIENTED MINIMUM STATE MODEL 

The presented method is applicable unchanged for the process description which 
takes the intersample behaviour into account. 

Considering a continuous time t = kT + cT, 0 < c < 1, then 

qT = (m + 1)T if c < /i and qT = mT if c > /i 

is true instead of (4). 
Thus, for a given c the minimum state realization can be found in the same way 

as described above. Of course, a minimum dimension of the state realization will be 
different within various ranges of c. 

5. EXAMPLES 

Example 1. Assume a discrete-time TFM is given by 

G(z) = 
z-^ + ïz-"1 - 1 + Зz- 2 

2 2*" 1 

2 - Зz" 1 » - i 

and a minimum state realization should be found. 

First, 

Gn = 
Г o -1 " 

2 0 
0 2 

and Gi(z) = 
z-l + 2z-2 Зz" 2 

0 2 z _ 1 

» - i -Ъz - 1 

n = 4, q\ = 2 and q2 = 2 are determined. 

Then the initial reachable state realization defined by (13) is 

x(k) = [Ul(k - 2) ux(k - 1) u2(k - 2) u2(k - 1)] T , 

ғ = 

0 1 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

, н = 

0 0 
1 0 
0 0 
0 1 

, c = 
2 1 3 0 
0 0 0 2 
0 1 0 - 3 

., and D = G o-

Then d = 
' 2 3 " 

0 0 

L ° 0 
with rank C\ = 1. 

Hence n\ = 3 and 

v(k) = [u1(k-2)u2(k-2)]T

) w(k) = [u1(k-l)u2(k-l)]T

} C i a = [2 3] f 
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Q = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

and K = 
2 0 3 0 
0 1 0 0 
0 0 0 1 

Then the minimum state realization is described by 

x(k) = [2ui.(k - 2) + 3«2(ib - 2) tii(Jb-l) « 2 ( * - l ) ] T , 

F = 
0 2 3 0 0 1 1 0 
0 0 0 , н = 1 0 , c = 0 0 2 
0 0 0 0 1 0 1 -3 

and D = D = Gгj. 

Example 2. A pure deadtime process given by 

2/i(0 = " ! ( * - 1 - 5 ) - « 2 ( < - 0 . 7 ) 

and 
y2(0 = 2«i(ť - 0.2) + u2(t - 2.2) 

should be described in the discrete-time process-oriented state-space form provided 
it is sampled with T = 1. 

We have 

a) for 0 < e < 0.2 

yl(k + i) = ul(k-2)-u2(k-\), 

y2(k + e) = 2Ul(k - 1) + «2(A; - 3), 

9i = 2, q2 = 3, n = 5 and the realization 

x(k) = [ui(k - 2); Ul(k - 1); u2(k - 3); u2(k - 2); u2(k - 1)]T, 

F = 

0 1 0 0 0 " " 0 0 " 
0 0 0 0 0 1 0 
0 0 0 1 0 ,н = 0 0 ,c = 
0 0 0 0 1 0 0 
0 0 0 0 0 0 1 

1 0 0 0 - 1 
0 2 1 0 0 

and D = 0, 

b) for 0.2 < e < 0.5 

Vi(k + e) = «i(A; - 2) - «2(A: - 1), 

y2(k + c) = 2«i(fc) + u2(k - 2), 

1i = 2,q2 = 2,n = A. and the realization 

x(k) = [ui(* - 2); Ul(k - 1); u2(k - 2); «2(* - 1)]T, 
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0 1 0 0 0 0 
0 0 0 0 
0 0 0 1 

,н = 1 0 
0 0 

,c = ' 1 0 0 
0 0 1 

- 1 ' 
0 

and D = 
" 0 0 

2 0 
0 0 0 0 0 1 

ғ = 

c) f o г 0 . 5 < £ < 0 . 7 

Уl(k + c) = щ(k - 1) - u2(k - 1), 

У2(k + e) = 2щ(k) + u2(k-2), 

9i = 1) 92 = 2, n = 3 and 

ae(Jb) = [щ(k - 1); u2(k - 2); ti 2(i - l ) f , 

F = 
0 0 0 1 0 
0 0 1 ,н = 0 0 
0 0 0 0 1 

,c = 
1 0 - 1 
0 1 0 

and D = 

d) for 0.7 < £ < 1 

yi(k + e) = u1(k-l)- u2(k), 

y2(k + e) = 2u1(k) + u2(k-2), 

9i = 1, 92 = 2, n = 3, x(k) stands in (18), F and H in (19) and 

0 0 
2 0 

(18) 

(19) 

C = 
1 0 0 
0 1 0 

0 - 1 
2 0 and D = 

[ u i u j 

Since 

C\ = n - and rank C\ = 2 = r 

in all four cases, the presented realizations have the minimum dimensions. 

(Received October 15, 1996.) 
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