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K Y B E R N E T I K A — VOLUME 35 ( 1 9 9 9 ) , N U M B E R 4, P A G E S 4 1 5 - 4 2 8 

R O B U S T S T A B I L I T Y O F N O N L I N E A R 

TIME V A R Y I N G S Y S T E M S 1 2 

E Z R A Z E H E B 

Systems with time-varying non-linearity confined to a given sector (Lure type) and a 
linear part with uncertainty formulated by an interval transfer function, are considered. 

Sufficient conditions satisfying the Popov criterion for stability, which are computation
ally tractable, are derived. 

The problem of checking the Popov criterion for an infinite set of systems, is reduced to 
that of checking the Popov criterion for a finite number of fixed coefficient systems, each 
in a prescribed frequency interval. 

Illustrative numerical examples are provided. 

1. INTRODUCTION 

A large group of "real life" engineering systems, which are non-linear and (possibly) 
time-varying, can be classified as Lure type systems. This class of systems will be 
defined formally in the next section, but it is a well known one and extensively 
treated in the literature for many years. Essentially, the (single input single output 
case) system is composed of a single non-linear and (possibly) time varying element, 
in cascade, or in the feedback path, of a linear system. 

The non-linear element, although constrained by some conditions, is of a very 
broad nature and allows a large class of non-linearities, so that uncertainties and 
ignorance about the exact type of non-linearity are taken care of, and do not im
pair stability analysis of the system. On the other hand, with a few exceptions 
[2] — [5], [10], [11] the linear part of the system is assumed, in the vast majority of 
publications on the subject, to be exactly known and precisely modeled by its trans
fer function or state-space description, with no uncertainties. This is obviously not a 
realistic assumption, even if the model is precise with no neglected dynamics, since 
the physical parameters of the system are never known exactly and, in addition, 
they are subject to changes. 

In [3], [5], [10], [11] continuous-time systems are considered, whereas in [2], [4] 
discrete-time systems are considered. In [10], [11] parameter uncertainties in the 

1 This work was supported by the fund for the promotion of research at the Technion. 
2 Paper presented at the 5th Mediterranean Conference on Control and Systems held in Paphos 

(Cyprus) on June 21-23, 1997. 
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linear part of the system are assumed, and sufficient conditions for the existence 
of the Popov stability criterion [8] are derived. Note that the Popov stability cri
terion is itself only a sufficient condition for stability, but not a necessary one. In 
[3], parameters uncertainties in the linear part of the system are again assumed, 
and a necessary and sufficient algorithm is derived for the existence of the Popov 
stability criterion. The price is in the computational complexity of the algorithm. 
The results in [5] pertain to uncertainty in the frequency response of the linear part 
of the system, which is a non-parametric form of uncertainty. 

In this paper, we consider the parametric form of uncertainty. We use some 
recent results [7] on the tight envelopes of the frequency response of a family of 
interval coefficients transfer function of a continuous-time system. These results 
allow us to obtain sufficient conditions satisfying the Popov criterion, which are 
computationally tractable. The computational tractability is the main advantage 
of the present approach relative to previous work. In fact, checking stability of the 
entire (infinite) family of systems, is reduced to checking the Popov condition for 
a finite number of systems, each with a fixed coefficient linear part, and each in a 
prescribed frequency interval. Some of these results are described in [12]. 

The structure of the paper is as follows: In Section 2, some preliminary derivations 
are presented and the problem is stated formally. The main results are presented in 
Section 3, illustrative numerical examples are provided in Section 4, and the paper 
is concluded in Section 5. 

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM 

Consider a single-input single-output Lure type continuous-time system, as described 
in Figure 1 and formulated by its state space representation: 

x = Ax + bF(y, í), y = cx 

where 
x = x(t) eMn , Ae Rnxn , b € Rnxl , yEM, ceR ) І X П 

(1) 

(2) 

and F is a non-linear (possibly time-variable) continuous function from R to R 
satisfying the following sector conditions: 

^(0,0 = 0, o < K i < 
F(y,t) 

< I<2 < oo foг y ф 0. (3) 

• ^ . y F(y,0 
z 

G(s) 
ì 

J F(y,0 G(s) 

. i 
1 

Fig. 1. Luré type continuous-time (possibly time-variable) system. 
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The relationship between the state space representation and the transfer function 
G(s) of the linear part of the system, from input z to output r = —y, is given by 

G(s) = c(sI-A)-lb. (4) 

If the system is not time-variable, i.e. F(y,t) = F(y), then it was shown by Popov 
[8] that such a system is stable (the equilibrium x = 0 is asymptotically stable in the 
large) for every non-linearity as in (3), if the linear part of the system (the transfer 
function G(s) or the matrix A) is stable and, in addition, there exists a real number 
q such that 

1 + Re[(1 + juq) G(ju)] + „ K
t
2

 v \G(ju)\2 > 0 Vu, > 0. (5) 
K2-Ki iv • * */ v /J ' K2 + K1 

The time-variable case has been considered in [9], where it was shown that the 
system is stable for every non-linearity as in (3), if the Popov criterion is satisfied 
with q = 0. It can be verified that imposing q = 0 in (5) yields the condition 

Suppose now that the uncertainty is not only with regard to the non-linear part of 
the system, expressed in (3), but there is also parametric uncertainty with regard to 
the linear part of the system namely, the numerator and denominator of the rational 
transfer function G(s) are interval polynomials. In other words, their coefficients 
are not known exactly, but only known to take on values in given intervals. It will 
be shown in the next section how to check the above stability conditions, in this 
uncertainty case, 

3. CHECKING STABILITY IN THE CASE OF UNCERTAINTY 

G^ = W) (7) 

where 
m 1 

A(s) = J2 a*'*" - B(s) = £ bjS* (8.1) 
i=0 j = 0 

Oi<ai<ai (i = 0,...,m), bj < bj < bj (j = 0,...,£). (8.2) 

The first stability condition is to ensure the stability of the family of linear systems 
(7), (8). To this end, it is only necessary (and sufficient) to check that the following 
four Kharitonov [6] polynomials with fixed coefficients have all their zeros in the 
open left half complex plane: 

Bi(s) = 60 + 6is + 6 2s 2+63S 3 + 64s4 + --- (9) 

B2(s) = b0 + bts + b2s
2 + b3s

3 + b4s
4 + • • • 

Bs(s) = b0 + b1s + b2s
2 + b3s

3 + b4s
4+--

B4(s) = bo + blS + b2s
2 +b3s

3 + b^s4 + • • • 
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Turn now to the second stability condition, namely (6). It can be verified that 
its geometrical interpretation is that there is no intersection between the locus of 
G(juj) and a circle whose center is at (d, 0) and whose radius is r, where 

d=-í-(J- + ±) r=i(±-±) (10) 

Thus, condition (6) can be re-written as 

\-d+G(ju)\>r V C J > 0 . (11) 

Substituting (7) in (11) yields 

\A(ju>)-dB(jco)\ 

I-WI 
> г V ы > 0 (12) 

where the coefficients of A(ju) and B(ju) take on values in the intervals (8.2). 
Let 

a = a,- — dbi , i = 0 , 1 , . . . , max(i?, m) (13) 

where it is understood that a* = 0 for i > m or 6,- = 0 for i > L 
Then, a sufficient condition to ensure (12) is that at each frequency CJO > 0, the ratio 
between 

Min 

and 

Max 

is greater than r. 

max(/,m) 

X I c<Oo)' 
t = 0 

over a{ — db{ < a < a. — dbi (14) 

È ьowo)1 

i = 0 

over 6,- < 6,- < b{ (15) 

Remark 1. This condition is sufficient but not necessary, since 6X- and a were 
assumed to be independent interval coefficients, even though there is a dependency 
of the value of a on the value of 6j. 

Remark 2. The intervals of a in (14) were determined taking into account the 
fact that d < 0. 

The results in [7] are particularly applicable to carry out (14) and (15). It is 
shown in [7] that (14) must coincide, at each frequency CJO > 0, with one of the 
following nine possibilities: 

{ | G i O ) | , \C2(ju,)\, \C3(ju)\, |C4(iuO|, | R e [ O i O ) ] | , |Re[O4(i<-0]|, 

| Im[O 2 (iuO]Ulm[O 3 (iw)] | ,0} (16) 
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where C,(s), i = 1 , . . . , 4 are the four Kharitonov polynomials associated with the 
family 

max(/,m) 

C(s)= £ a*. (17) 
1=0 

Moreover, the frequencies where the minimum in (14) "jumps" from one expression 
in (16) to another expression in (16) are given by the real roots with odd multiplicity, 
of the following four equations: 

Re[d(ju)] = 0 (18.1) 

Re[d(ju)] = 0 (18.2) 

-lm[C2(jш)} = 0 
ÜJ 

-Im[CзO)] = 0. 
ІJÜ 

(18.3) 

(18.4) 

It can be readily verified that the various expressions in (16) which coincide with 
(14) can be chosen according to the following Table. 

Table 1. "Sign rule" to choose the pertinent expression for (14). 

Re[Ci(ju)] R [C4(JÜ7)] Im[C3(;u;)] Im [C2(jш)] (14) 

+ + or 0 + + or 0 \c*(H\ 
+ - + + or 0 |Im[C2(jü;)]| 

- o r 0 - + + or 0 \C2(ju>)\ 
- oг 0 - + - \Re[Cг(ju)]\ 
- o г 0 - - or 0 - IОДü/)| 

+ - - oг 0 - |Im[CзOV)]| 

+ -f or 0 - or 0 - \Cз(M\ 

+ + or 0 + - \Ћ*[d(ju>)]\ 

+ - + - 0 

This is due to the special structure of the polynomials C{(s) (i = 1, . . . , 4) e. g. 

Re[Ci(jw)] > Re[C4(ju)] 

lm[C3(joj)] > lm[C2(ju)] 

and the special shape of the value set of the family C(ju). (See Figure 2). 
Also, (15) must coincide, at each frequency UJQ > 0, with one of the following four 

possibilities 

{|Bi(jw)|, | B 2 ( » I . IB3(jw)|, IB4(ju;)|} (19) 

where -8,(5), i = 1,...,4, are defined in (9). Moreover, the frequencies where the 
maximum in (15) "jumps" from one expression in (19) to another expression in (19) 
are given by the real roots with odd multiplicity, of the following two equations: 

6° - 6 V + 6 V - б°o>6 + • • • = 0 
6? - b°гш

2 + b%uA - 6?w6 + • • • = 0 

(20.1) 

(20.2) 
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where 
ҺІ+ЬІ, ѓ = 0 , . . . ,J (21) 

Furthermore, since the polynomials -8»(s), i = 1,... ,4 are required to be Hurwitz 
polynomials by the first stability condition, so is the polynomial 

B°(s) = J2 *?-* 
t = 0 

(22) 

Im 

Re 

Im 

Re 

(a)M in lCt ico) l = I Q a c o ) l 
4 

(b) Min I CGco ) | = im [C (jco) ] 

C C 
Im 

3 

C 

1 

C 
4 2 

Re 

Л li 
Im 

C Cl 
3 

Cl 

C C Re 
4 2 

(c)MinlC(jco)l = IC 2(JCÚ)І 

, 1 Im 

Re 

C C 
3 1 

C
4 

C
2 

C
4 

C
2 

(d) Min I C(jco ) I = I Re [C (JCO) ] I 

i 

Im 

Re 

c
з C c
з 

1 

C C
2 4 

C
2 

(e )Min lC( | (D) l = IC ( J » ) l (f) Min I CG co ) I = I Im [ C (jco ) ] I 
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І ІПÌ 

Re 

c Cl 
3 

Cl 

C 4 S 

1 { 
Im 

S c S 1 

V V C 2 

Re 

(g)MinlC(jCû)l = I C з ( j í û ) | (h) Min I C ( j cû ) I = Re [C ( j co ) ] 
4 

Im 

Re 

(i) Min I C (j© ) I = 0 

F i g , 2 . T h e minimum amplitude of an interval polynomial. 

However, for this special case, it is shown in [7] that (19) can be more explicit: 
In the interval between w = 0 to the next "change frequency" (the smallest positive 
u which is an odd multiplicity root of (20)), (15) coincides with |£i(ju>)|. At each 
consecutive frequency interval, created by the "change frequencies", the order of 
expressions coinciding with (15) is given by the cycle: 

IBiOuOl =t> | B 3 ( » I =» IB4CMI =*• IB.O0I =*> IB iO)l => • • • (23) 

To conclude this section, it is clear from the above discussion that to ensure 
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stability of a system as described in Figure 1, with uncertainty in the linear part as 
formulated in (8), it is sufficient to: 

1. Check J3t(s), i = 1 , . . . ,4, in (9), to be Hurwitz polynomials. 

2. Solve Eqns. (18) and (20) to find their real positive roots with odd multiplicity. 
It can be shown that the maximal number of such roots is (n — 1) for Eqns. (20) 
and 2 ( n - l ) for Eqns. (18). 

3. Divide the positive frequency axis into a finite number of intervals created by 
the roots found in Step 2, and choose an arbitrary frequency u>t in the interior 
of each of these intervals. 

4. Determine which of the expressions in (19) coincides with (15) at each CJ, (and 
hence, at each interval associated with cjt) by the sequence (23). Determine 
which of the expressions in (16) coincides with (14) at each cjt (and hence, at 
each interval associated with cjt) by Table 1. 
Note that the intervals associated with o;t may be different for (14) than for 
(15). 

5. For each interval created in Step 3, check if the fixed coefficient expressions 
determined in Step 4 satisfy, 

W>> r- (24) 

4. EXAMPLES 

Consider the following nominal plant studied in [1]: 

r ( s _ ag + ais _ 1 - s 
U ( ) ~ 60 + 61s + 62S2 " 1 + 2* + 5- W 

and let 
A'i = 1/2, K2 - 1, (26) 

so that the circle defined in (10) is given by 

c / = - 3 / 2 , r = l / 2 . (27) 

Example 1. 

Suppose the coefficients of the nominal plant are subject to 40 % tolerance, namely: 

0.6 <aQ< 1.4, -1 .4 < ai < -0 .6 (28.1) 

0.6 < 60 < 1-4, 1.2 < bi < 2.8, 0.6 < 62 < 1.4. (28.2) 

Using (28) and (27) we have for the coefficients ct defined in (13), the following 
intervals (needed in (14)): 

1.5 < c0 < 3.5 , 0.4 < ci < 3.6 , 0.9 < c2 < 2.1 (29) 
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so that the four Kharitonov polynomials associated with the family (17) are 

Oi(s) = 3.5 +3.6s + 0.9s2 (30.1) 

O2(s) = 3.5 + 0.4s + 0.9s2 (30.2) 

C3(s) = 1.5 +3.6s + 2.1s2 (30.3) 

O4(s) = 1.5 +0.4s + 2.1s2. (30.4) 

Refer now to the steps numbered in the summary of the test algorithm at the end 
of Section 3. 

1. Bi(s), i = 1,. . . ,4 are obviously Hurwitz polynomials, since their coefficients 
b{ and 6. are all positive and the degree of the polynomials is 2. 

2. Solving Eqns. (18) we obtain: 

Re[Ox(ju;)] = 3.5 - 0.9a;2 = 0 =5> o> = 1.972 

Re[O4(jo;)] = 1.5-2.1a;2 = 0 =^ a> = 0.845 

Im[O2(ja;)] = 0.4a; 

Im[O3(ja;)] = 3.6w. 

Therefore, the "jump" frequencies of the Min expression in (14) are 

a; = 0.845 and w = 1.972. (31) 

Solving Eqns. (20) we obtain 

6° = 6°=2, 6°=4 

a n d 2-2o> 2 = 0 => u = 1. 

Therefore, there is only one "jump" frequency of the Max expression in (15): 

u = 1. (32) 

3. Let the arbitrary frequencies a;,- in the interior of each interval be chosen as 
(see Figure 3): 

o;i = 0.5, o;2 = 1.3, w3 = 3. (33) 

"2 и 3 

1.0 
0.845 1.972 

Fig. 3. Divison of the frequency axis into a finite number of intervals (Example 1). 



424 E. ZEHEB 

4. In the interval /nA iX 

0 < u < l ( 3 4 1 ) 

expression (15) coincides with 

IfliO'o;)! = \l0 + liju-ka»2\ (34-2) 
= [(1.4-0.6a;2)2 + (2-8o;)2] ^ 

In the interval , , 
1 < C J < O O (^5.1) 

expression (15) coincides with 

\B3(ju)\ = \b0+1^-12^1 (35-2) 

= [(0.6- 1.4a;2)2 + (2.8a;)2] . 

For a>i = 0.5 we readily obtain 

Re[OiO'0.5)] = 3.275 > 0, Re[O40'0.5)] = 0.975 > 0, 

Im[O20'0.5)] = 0.2 > 0, Im[O30'0.5)] = 1.8 > 0. 

Hence, by Table 1, in the interval 

0 < u < 0.845 (36.1) 

expression (14) coincides with 

|O40'o;)| = [(1.5 - 2.1a;2)2 + (0.4a;)2] * ' . (36.2) 

For a;2 = 1.3 we readily obtain 

Re[OiO'1.3)] = 1.979 > 0, Re[O4(jl.3)] = -2.049 < 0, 

Im[O20'1.3)] = 0.52 > 0, Im[O30'1.3)] = 4.68 > 0. 

Hence, by Table 1, in the interval 

0.845 < u < 1.972 (37.1) 

expression (14) coincides with 

|Im[O20'a;)]| = 0.4a;. (37.2) 

For W3 = 3 we readily obtain 

Re[Oi0'3)] = -4 .6 < 0, Re[O40'3)] = -17.4 < 0, 

Im[O20'3)] = 1.2 > 0, Im[O30'3)] = 10.8 > 0. 

Hence, by Table 1, in the interval 

1.972 < w < o o (38.1) 

expression (14) coincides with 

|C20'o;)| = [(3.5 - 0.9a;2)2 + (0.4a;)2] ̂  . (38.2) 
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5. Using the results in Step 4, stability is ensured by the following four condi
tions: 

j j j | | > r = ± for 0 < u , < 0.845 (39.1) 

| I | | > r = i for 0.845 < a; < 1 (39.2) 

!H>r=i ^ 1 < W < 1.972 (39.3) 

| | | ^ | j > r = | for 1 . 9 7 2 < « < o o . (39.4) 

It is readily verified that, say (39.1), is not satisfied. Hence, we cannot determine 
that the system is robustly stable with the uncertainty of 40 % tolerance. Note, 
however, that the nonlinear nominal system (25)-(26) is stable. Therefore, it is 
reasonable to assume that the system is stable for a smaller tolerance. To this end, 
consider 

Example 2. 

Suppose the coefficients of the nominal plant (25) are subject to 10% tolerance, 
namely: 

0.9 <a0< 1.1 - 1.1 < ai < -0 .9 (40.1) 

0.9 < 60 < 1.1 1.8 < 6i < 2.2 0.9 < 62 < 1.1 (40.2) 

and 
2.25 < co < 2.75 1.6 < cx < 2.4 1.35 < c2 < 1.65 (41) 

so that the four Kharitonov polynomials associated with the family (17) are: 

Ci(s) = 2.75 + 2.4s + 1.35s2 (42.1) 

C2(s) = 2.75+1.6s + 1.35s2 (42.2) 

C3(s) = 2.25 + 2.4s + 1.65s2 (42.3) 

C4(s) = 2.25+1.6s + 1.65s2. (42.4) 

The test algorithm is thus: 

1. Bi(s), i = 1 , . . . ,4 are obviously Hurwitz polynomials, as in Example 1. 

2. Solving Eqns. (18) we obtain: 

Re[d(ju)] = 0 =* w = 1.427 (43.1) 

Re[C4(jcu)] = 0 => u = 1.168. (43.2) 

Solving Eqns. (20) we obtain 
w = l. (43.3) 



426 E. ZEHEB 

3. Let the arbitrary frequencies U{ in the interior of each interval be chosen as 
(see Figure 4): 

C J I = 0 . 5 , 0/2 = 1.3, u/3 = 2. (44) 

0) , û) ( 0 . 

1-^-r 
i 

1.168 1.427 

Fig. 4. Divison of the frequency axis into a finite number of intervals (Example 2). 

4. In the interval 
0 < o , < 1 

expression (15) coincides with 

\Bl(ju)\= [ ( l . l - 0 . 9 u , 2 ) 2 + (2.2u,)5 
1/2 

In the interval 

1/2 

1 < 0/ < CO 

expression (15) coincides with 

\B3(ju>)\= [ ( 0 . 9 - l . l o / 2 ) 2 + (2.2o/)2" 

For u)\ = 0.5 we readily obtain 

R e C i > 0 , R e C 4 > 0 , ImC 2 > 0, ImC 3 > 0. 

Hence, by Table 1, in the interval 

0 < o / < 1.168 

expression (14) coincides with 

|C4(jo/)| = [(2.25 - 1.65o/2) + (1.6o/)2j . 

For 0/2 = 1.3 we readily obtain 

R e C i > 0 , R e C 4 < 0 , ImC 2 > 0, ImC 3 > 0. 

Hence, by Table 1, in the interval 

1.168 < o / < 1.427 

expression (14) coincides with 

Im[C2(jo/)] = 1.6o/. 

(45.1) 

(45.2) 

(46.1) 

(46.2) 

(47.1) 

(47.2) 

(48.1) 

(48.2) 
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For CJ3 = 2 we readily obtain 

ReCi < 0 , ReC4 < 0, 

ImC 2 > 0 , I m C 3 > 0 . 

Hence, by Table 1, in the interval 

1.427 <u < o o (49.1) 

expression (14) coincides with 

\C2(ju)\ = [(2.75 - 1.35a;2)2 + (1.6CJ)2] ^ . (49.2) 

5. Using the results in Step 4, stability is ensured by the following four condi
tions: 

j § ! ! > r = i ^ 0 < W < 1 (50.1) 

j ^ | > r = ± for 1 < « < 1.168 (50.2) 

^ ^ > r = i for 1.168 < w < 1.427 (50.3) 
(46.2) 2 

j H | l > r = i for 1.427 <u,<<x>. (50.4) 

It is readily verified that all four conditions are satisfied, hence we conclude 
that the nonlinear system (25) - (26) is robustly stable with the uncertainty of 
10% tolerance. 

5. CONCLUSION 

A non-linear time-varying system is considered, where both the non-linear part and 
the linear part are only partially known. There is a lot of uncertainty about the 
behaviour of the system which, presumably, makes it very difficult to analyze the 
system, even just for stability. Nevertheless, sufficient conditions, for the paramet
ric type uncertainty of the linear part and Lure type uncertainty of the nonlinear 
part, which ensure stability of the system and which are computationally tractable, 
are presented here. These conditions are based on some recently derived results 
on the frequency response of continuous-time systems with uncertainties formulated 
by interval transfer functions. Using these results, we are able to reduce the ne
cessity to check the Popov condition for an infinite set of systems, to checking the 
Popov condition for a finite number of fixed coefficients systems, each in a prescribed 
(calculated) frequency interval. 

A final remark concerns the sufficiency of the conditions. Since necessary and 
sufficient conditions for stability of a Lure type non-linear system do not exist even 
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for the standard case of a completely specified and exact linear part and time-
invariant non linear part, it would be too ambitious and non-realistic to expect such 
for the case with uncertainty. 

(Received April 8, 1998.) 
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