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NECESSARY AND SUFFICIENT CONDITIONS 
FOR THE OSCILLATION OF FORCED NONLINEAR 
SECOND ORDER DELAY DIFFERENCE EQUATION 

E. THANDAPANI AND L. RAMUPPILLAI 

In this paper the authors give necessary and sufficient conditions for the oscillation 
of solutions of nonlinear delay difference equations of Emden-Fowler type in the form 
A2yn-i -f <7n.yLn\ = <7n, where 7 is a quotient of odd positive integers, in the superlinear 
case (7 > 1) and in the sublinear case (7 < 1). 

1. INTRODUCTION 

In several recent papers [1, 5, 6, 9, 10, 11, 13, 15] oscillation and nonoscillation 
of solutions of second order nonlinear difference equations have been investigated. 
Difference equations appear as natural description of observed evolution phenomena 
is well as in the study of discretization methods for differential equations. The 
application of the theory of difference equations is rapidly growing to various fields 
such as numerical analysis, economics, chemistry, population dynamics, queueing 
theory, control theory and computer science, in particular, the connection between 
the theory of difference equations and computer science has become more important 
in recent years, because of the successful use of computers to solve difficult problems 
arising in applications. For general background on difference equations and for 
applications to many diverse fields, one can refer to [1, 7]. 

This paper deals with the study of the oscillation problem for the solutions of the 
forced nonlinear difference equation 

A2yn_i + qnyl(n) = gnj n E N = {1,2,3,. . .} (1) 

where A denotes the forward difference operator defined by Ayn = yn+\ — yn) j \s 
a quotient of odd positive integers, {qn}, {gn} are non-negative real sequences and 
{cr(n)} is an increasing sequence of integers with cr(n) < n and limcr(n) —* 00 as 
n —• 00. When cr(n) = n, equation (1) takes the form 

A2yn^l + qnyl = 0 n , 7 > 0 (2) 

which is the forced discrete Emden-Fowler equation. 
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By a solution of equation (1), we mean a real sequence {yn} satisfying equation 
(1) so that supn>m \yn \ > 0 for any m G N'• We always assume that such solutions of 
equation (1) exist. A solution of equation (1) is called oscillatory if there is no end of 
ni and n2 (n\ < n2) in M such that yni yn2 < 0; otherwise it is called nonoscillatory. 
Clearly a nonoscillatory solution of equation (1) must be eventually of fixed sign. 

Although several results regarding oscillation theory in the discrete case are sim­
ilar to those of already known in the continuous case, the adaptation from the con­
tinuous to the discrete is not direct, but it requires some special devices. Further it 
has been shown in [4] that there exist some properties of differential equations which 
do not carry over directly to the corresponding difference equations. Therefore, it is 
useful to study the oscillatory and nonoscillatory behavior of solutions of difference 
equations. 

In [1, 2, 3, 12, 14], one can find different conditions sufficient for the oscillation of 
all solutions of equation of type (2). The technique of the proof mainly depends on 
the assumption that there exists an oscillatory sequence {hn} such that A2/in_i = 
<7n. Other results on forced oscillations on nonlinear second order equations can be 
found in [1, 11, 12] and for linear equations in [9]. 

In the present paper, for nonnegative {qn} and bounded {hn} (A2/in_i = gn), 
we give necessary and sufficient conditions for equation (1) to be oscillatory in the 
sublinear and the superlinear cases. The conditions resemble those obtained earlier 
for the unforced equation [1, 5]. 

All our results here could be obtained equally well for the difference equation 

A 2 t / n _ i +?n|y<7(n)|7sgn ya(n) = gn, 7 > 0 

with no essential change in the proofs given. For simplicity of notation, we instead 
restrict 7 to be a quotient of odd positive integers and discuss equation (1). 

2. SUPERLINEAR EQUATIONS 

Let 7 > 1 in equation (1) and assuming the following conditions: 

(0 Qn > 0 for all n > 1, and for every 1V > 1, qn > 0 for some n > IV, 

(ii) there exists a bounded sequence {hn} such that A2 / in_i = gn 

and let \hn\ < M for all n. 

Theorem 1. Assume conditions (i) and (ii) are satisfied. If 

00 

^2 n qn < 00 (3) 
n = 1 

then equation (1) has a nonoscillatory solution. 

P r o o f . Choose N £j\f sufficiently large so that 

Ž »«» < ^ m i n { ( 2 M + l)-t' 7 ( 2 M ! 1 ) 7 - 1 / • (4) 
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Consider the complete metric space S consisting of all real sequences y = {r/n}, 
n G M and satisfying the inequalities 

\ < Vn < 2M + 1 (5) 

endowed with the metric 

The operator T defined by 

p(x,y) = sup \xn -yn\. 
n 6 N 

{Ty)n = (M + l) + hn- J T (s - n) q, ^ ( j ) , n > N, 
s=n + l 

= TyNi l<n<N 

maps S into itself. In fact, if y G S then (Ty)n < 2M + 1 since hn < M. Moreover 
from (4) and (5) we see that 

oo oo ^ 

(Ty)n > 1 - J2 *9. Vlit) >l-(2M+iyY/sq,> -. 
S = N S = N 

Now, we shall show that T has a fixed point. For this, 

oo oo 

\(Ty)n - (Tz)n\ < ] T > - n ) ? , yl(s) ~ zl(,)\ < E S<1 vy - zy 

Уа(s) 2<т(.) 
s=N s=N 

Using the Mean value theorem applied to the function f(x) = x 7 , we see that 

p(Ty,Tz)<1p(y,z)f^sqsx^s) 
S=N 

where z<-(s) lies between yG(s) and za(s)} s > TV, that is, satisfies the inequalities (5). 
So, we have 

oo 

° Ï 5 -p(Ty, Tz) < 7p(y, z) (2M + l ) 7 " 1 £ sqs 

s=N 

From (4), we see that p(Ty, Tz) < \p(y, z). Thus T is a contraction on 5, so by 
the known Banach contraction mapping theorem, T has a unique fixed point y G S} 

that is 
oo 

yn = M + 1 + hn - ^ (5 - n) g, y^ ( i ), n > N. 
s=n + l 

Taking difference twice, we see that {yn} is a nonoscillatory solution of equation (1). 
The proof is now complete. • 

Next we prove that the condition 

00 

S n ? - - °° (6) 
n = l 
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is sufficient for all solutions of equation (1) to be oscillatory assuming that {hn} is 
oscillatory and satisfies the condition: 

(iii) {hn} is oscillatory and there exist two sequences {nj}, {n ;} tending to infinity 
such that for al l j 

hnj = inf {hn : n > n,-} 

hnj = sup {hn '. n >nj} . 

Theorem 2. Assume that conditions (i),(ii) and (iii) are satisfied. If condition 
(6) holds then all solutions of equation (1) are oscillatory. 

P r o o f . Suppose {yn} is a nonoscillatory solution of equation (1), and assume 
without loss of generality that yn > 0, y<-(n) > 0 for all n > 1V, for some N > 0. 
Put yn = zn + hn. Then zn satisfies the equation 

A 2z n_i + g n ^ ( n ) = 0 . (7) 

From this we see that A2zn_i < 0. Hence zn is of one sign and, definitely, it is 
positive otherwise {hn} will not be oscillatory. Further, if Azn < 0 for n > N, 
then there exists an integer Ni > N such that Azn < AzNl < 0. Summing the 
last inequality from Ni to n — 1 and then taking n —+ oo, we see that zn —• - co , a 
contradiction. Thus Azn > 0 and we have 

* n > 0 , A z n > 0 , A 2 z n _ i < 0 . (8) 

From the increase of {zn} and condition (iii) on {/in}, we easily see that there exists 
an integer N\ > N such that zn + hn > /?0 > 0 for all n > N\, that is, 

yn>Po>0 f o r n > N 1 . (9) 

This implies that there exists a positive number /3 such that 

yn>PZn- (10) 

If this is not true, then there exists a sequence {n;-} tending to infinity such that 

ynj = znj + hnj < - znj. (11) 

go M _ i J 2rn. -f / i n . < 0. If znj —• oo, then hnj will tend to —oo which contradicts 
the fact {hn} is bounded. If, on the other hand, znj —> constant, then ynj —> 0 
which contradicts (9). Hence (10) is true. Now, put 

- n A z n _ i 
wn = —1 , n>Nx. 

Zo{n-\) 
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From equation (7), we obtain 

A _ n < l " £ ( n ) Azn , " A Z n - j A * ^ 
--— Wfl y *y + .y -y 

Za(n) Za(n) Za(n-l)Za(n) 

From (8) and (10) and the Mean value theorem, we have 

A - , ffl AZ<") , CTlWn + l 

Awn >(31nqn Y+— + -——^~ 
(n + 1) 

'<т(») 
2 ' 

Л " 1 

where c = J z\N _xy Summing the last inequality from Ni to n — 1, we get 

n - l 

wn > wNl 

n — 1 i-z i \ i n — ì 2 
nr< V ^ ľ ( П ) d $ V ^ 5 W Vf-l 

í=.ЛГl ^ ^ ( i V i ) * = # - . V ^ ' 

П - l 

= TDTVi + /? 7 ^ 5 g, + 
1 

w. 
- 7 + 1 - 7 + 1 

— ү LZ*(») " V-voJ ^ " Z ^ fв + n2 ш*+i-
s=Nt ' 8=Nг V ' 

n - 1 

+ « E 
s 

From (6), we see that there exists an integer N2 > -Vi such that 

n - l 

Wn>-c E (7^1)2 ^2+i • n > W.- ( 1 2 ) 

1 u;2+ 1. From (12), CП 

(ïï+Гp Letting Rn = cJ2"=Nl ( j f i y ^ + i , w e s e e t h a t AI?n 

we get AI£n = I 777̂ -y-f Rn+i- Dividing by I?n+i and summing from N2 to n — 1 
we get 

["• <i* ^ ДЯ, n-ì 

Thus 
i 

Í = / V 2 

n - 1 

-Ç («+ < 
(5 + I)2 - RN2 

%, — j . » -j 

which proves a contradiction as n—>oo. This completes the proof of the theorem. • 

3. SUBLINEAR EQUATIONS 

Assume 0 < 7 < 1 in equation (1). 

Theorem 3. Assume that conditions (i) and (ii) are satisfied. If 

Y^m qn < 00 

n = l 
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then equation (1) has a nonoscillatory solution. 

P r o o f . Choose IV G M large enough so that 

OO .j 

£ > 7 < 1 n < g , N>8M. (13) 
n=IV 

Let Bjy be the Banach space of all real sequences y = {yn}, n > IV, with norm 
\\y\\ = supn>yV \yn\. We define a partial ordering on BN as follows: for given x, y G 
-9Iv, x < y means xn < yn for n > IV. Let S = {t/ G #Iv : f < 2/n < n, n G IV}. 
Define the operator T acting in S by 

n oo 

(Ty)« = ^ + M + hn + ^sqs yl(s) + n J2 Is ^ ( # ) ) n > AT. 
*=IV « = n - r l 

Now we will show that T maps S into itself. In fact, for y G S, (Ty)n > ^, and from 
(13) we have 

n oo 

(Ty)n <^ + 2M + n ^ s 7 ^ + " E * 7 ^ < f + ^ + ^ + ^ = "-
5=7V 5=IV 

From the hypotheses one can easily see that T is an increasing mapping. Hence, by 
the Knaster-Tarski fixed point theorem [8] there exist y G S such that Ty = y, that 
is, 

n oo 

yn = ^ + M + /in+X!s<?»^(,) + n J2 i>yl(sy 
s=N 5 = n - f l 

Taking difference twice, we see that {yn} is a nonoscillatory solution of equation (1). 
This completes the proof. • 

Finally, we give sufficient conditions for the oscillation of all solutions of equation 
(1) when 0 < 7 < 1. 

Theo rem 4. Assume that conditions (i), (ii) and (iii) are satisfied. If 

oo 

] P n 7 g n = oo (14) 
n = l 

then all solutions of equation (1) are oscillatory. 

P r o o f . Suppose {yn} is a nonoscillatory solution of equation (1), and assume 
without loss of generality that yn > 0, ya(n) > 0 for all n > IV, for some iVEIV. Put 
yn = zn+hn. Then zn satisfies equation (7). Further from the proof of Theorem 2, 
we obtain 

A 2 z n < 0 , A z n > 0 , * n > 0 , yo(n)> Pzo{n) for n > IV (15) 
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and from the Lemma 4.1 of Hooker and P a t u l a [5], there exists some constant 6 > 0 

such that 

zn < bn. (16) 

Now define wn = z^—-^----J- and we obtain 

A _ nl*nyl{n) ArfAzn t " 7 A * n - 1 A ^ ( n - l ) 
/\Wn y -y -f- y J 

Za(n) Za(n) Za(n-l)Za(n) 

From (15) and (16) and the Mean value theorem yields 

Awn > /T mqn - T („ + l ) - 1 ^ + T ^ T - 7 " 1 «*+i-
X " ) 

Summing from IV to n — 1, using the assumption (14) of the theorem and t h a t 

0 < 7 < 1, we get for sufficiently large n 

" - 1 * 2 7 - l 

• — Л Í > ' 

Rest of the proof is similar to tha t of Theorem 2 and hence the details are omit ted. 
D 

R e m a r k . When gn = 0, the theorems of Hooker and Patu la [5] for the oscillation 
of unforced equation (2) follow as consequences of Theorems 1 - 4 . Further, the proof 
given here for the Theorems 2 and 4 are different from that of Hooker and Pa tu la [5]. 

(Received March 4, 1998.) 
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