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K Y B E R N E T I K A — V O L U M E 3 7 ( 2 0 0 1 ) , N U M B E R 3, P A G E S 3 0 9 - 3 2 3 

DECENTRALIZED CONTROL OF INTERCONNECTED 
LINEAR SYSTEMS WITH DELAYED STATES 

CARLOS E. DE SOUZA 

This paper addresses the problems of stability analysis and decentralized control of in­
terconnected linear systems with constant time-delays in the state of each subsystems as 
well as in the interconnections. We develop delay-dependent methods of stability anal­
ysis and decentralized stabilization via linear memoryless state-feedback. The proposed 
methods are given in terms of linear matrix inequalities. Extensions of the decentralized 
stabilization result to more complex control problems, such as decentralized static output 
feedback, decentralized Tloo control, decentralized robust stabilization, and decentralized 
robust Hoo control are also discussed. 

1. INTRODUCTION 

Many control problems of modern industrial society are associated with the control 
of complex large-scale interconnected systems which are in general subject to time-
delay in the interconnections. Typical examples can be often encountered in a large 
spectrum of applications such as electrical power systems, chemical process control 
systems, etc. During the past 30 years, control problems for interconnected systems 
have received considerable attention and a very popular way to dealing with these 
problems is to make use of local or decentralized feedback controllers to stabilize 
the overall system (see, e.g. [9, 14, 16] and [20]). In recent years, the problems of 
robust stability analysis and robust stabilization for interconnected uncertain lin­
ear systems have been widely studied by many researchers; see, e.g. [2, 5, 8] and 
[21]. On the other hand, the problems of stability analysis and stabilization of 
interconnected systems with time-delays have also received a lot of attention and 
a number of results have been reported in the literature over the past years; see, 
e.g. [7, 10, 15, 19] and [22]. A common feature of the latter results is that they are 
independent of the length of the time-delays in the system, i. e. the time-delays are 
allowed to be arbitrarily large, and as such they cannot be applied in many impor­
tant applications, more specifically, in situations where the stability or stabilizability 
of the system depends on the length of the time-delays, which is a fairly common 
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situation. Although increasing attention has recently been devoted to the study of 
delay-dependent methods of stability analysis and stabilization for "isolated" sys­
tems (e.g. [4], [11]-[13], [17] and [18]), the problems of delay-dependent stability 
and stabilization for interconnected systems have not yet been fully investigated. 

This paper addresses the problems of stability analysis and decentralized control 
of interconnected linear systems with state delays. The time-delays are constant and 
may appear in state of each subsystems as well as in the interconnections. First, 
delay-dependent methods of stability analysis and decentralized stabilization via 
linear memoryless state feedback are developed. More precisely, using a Lyapunov 
functional approach and linear matrix inequalities (LMIs) techniques, we propose a 
stability criterion and a design method of decentralized stabilizing controllers which 
incorporate information on the length, or an upper-bound, of the time-delays in the 
system. The proposed methods have the advantage that they can be implemented 
numerically very efficiently using recently developed algorithms for solving linear 
matrix inequalities; see, e.g. [1]. Then, extensions of the decentralized stabiliza­
tion result to more complex control problems are analysed, including decentralized 
stabilization via static output, decentralized HQQ control, decentralized robust sta­
bilization, and decentralized robust HQQ control. This paper extends results of [4] 
to the context of interconnected linear systems with delayed states. 

N o t a t i o n . 3?n denotes the n-dimensional Euclidean space, 5Rnxm is the set of 
n x m real matrices, diag{- • •} denotes a block-diagonal matrix, and the notation 
X > 0, for a real matrix X, means that X is symmetric and positive definite. 
£2 denotes the space of square integrable vector functions on [0,oo) with norm 

|| . ||2 := (Jo°° || . | | 2d£) 2 , where || • || stands for the Euclidean vector norm. 

2. PROBLEM FORMULATION 

Consider the large-scale linear time-delay system composed of the interconnection 
of N subsystems described by 

N 

(Si): ±i(t) = AiXi(t) + y2AijXj(t - Tij) + BiUi(t), i = l , . . . , /V, 
(1) 

Xi(t) = <j)i(t), Vt e [-Tmax,0]; Tmax = max{r i i ) i, j = 1 , . . . ,1V} 

where for the zth subsystem (Si), Xi(t) G 5ftn* is the state, Ui(t) G JR771' is the control 
input, TU > 0 is the time-delay in the subsystem, T^ > 0, j = 1 , . . . ,N, j ^ i are 
the time-delays in the interconnections, &(-) is the initial condition, Ai, Aij, j = 
1 , . . . , N, and Bi are known real constant matrices of appropriate dimensions. 

In this paper we shall develop delay-dependent conditions for stability and de­
centralized stabilization for the interconnected system of (1). The stability problem 
to be addressed is as follows. Given scalars fij > 0, i, j = 1 , . . . ,1V, find condi­
tions which ensure that the system of (1) with Ui(t) = 0, i = 1 , . . . , N, is globally 
asymptotically stable for any constant time-delays r^ satisfying 0 < r^j < fij, i, j = 
1.....H. 
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On the other hand, the stabilization problem under investigation consists in: 
Determine a decentralized memoryless control law Ui(t) = KiXi(t), i = 1,. . . ,1V, 
for the interconnected system of (1) such that the resulting closed-loop system is 
globally asymptotically stable for any constant time-delays T^ satisfying 0 < Tij < 
Tij, i, j = 1, • • • ,-V. In this case, the system of (1) is said to be decentralized 
stabilizable. A linear matrix inequality approach will be developed for solving the 
above problems. 

3. MAIN RESULTS 

We first deal with the problem of stability analysis for the unforced system of (1) 
with Ui(t) = 0, i = 1 , . . . , N. A criterion for global asymptotic stability is provided 
by the following theorem. 

Theorem 1. Consider the unforced system of (1) with Ui(t) = 0, i = 1, . . . ,1V, 
and let ffj > 0, i, j = l,...,iV, be given scalars. Then this system is globally 
asymptotically stable for any constant time-delays T^ satisfying 0 < r^ < fij , i, j = 
1,. . . , TV, if there exist Ui x Ui symmetric positive definite matrices Xi, Rij and Sijk, 
z, j , k = 1, . . . , N, satisfying the following LMI: 

where 

Ф 

Фi 

A21xl+X2Aľ2 

Ф Л T ӣT 

л -n 0 
ӣ 0 -J 

A^X-І+X^ 

Ф2 

< 0 (2) 

MNXҢ + XiÄң^ 

MNXҢ -h X2ÄҢ2 

ф L -4/viXi + XңÄţN AN2X2 + XNAJN 

ФІ = (AІ + AЦ)XІ + XІ(AІ + Aц)т + Y^ тijAijŔijAjj 

N 

N 

І = l 
N 

JrCij — rCij + / ^ djki 

j = 1 

A = diag{Ai, . . ., AN} , fi = diag{fîi, . . . , ClN} 

n = diag{TZu ...,TIN}, J = diag{Ji, . . . , JN} 

Af = [ fuXiAf f2iXiAj . . . fNiXiAj ] 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

ílf = [ XÍMZ XiMl ... XiMli ], Ml=[ fklA£ fk2A
T

2i ... fkNANi ] (9) 
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TІІ = diag {rцRц , Г2І-R2І, • • -, ГNІRNІ} (Ю) 

Ji = d iag{Jü , J 2 І , . . . , J/VІ} , Jki = dia.g{тkiSuk, тk2S2ik,---,тkNSNik} (П) 

P r o o f . The proof technique is inspired by that used to prove Theorem 1 in [11]. 
Let Xi(t), i = 1, . . . , IN, be the trajectory of the unforced system of (1) with Ui(t) = 0, 
i = 1, . . . , IV. Then we have that for t > rmax* 

j \ ij) — *^j\ . 

= Xj(t 

Substituting xj (t — Tij 

Iv 

*^i\t) ~~ J^iXi\t) ~r y JiijXj 

j=i 

- f Xj(t + 0)d0 
J-Tij 

- I \AjXj(t + 0) + ^2 Ajkxk(t - Tjk + 9)j 
J~T'i k=l 

in (1), we obtain that Xi(t) satisfies: 

N ,0 

-)-£-*« / 
j=i J-T<i 

d . 

AjXj(t + ) +Y^Ajkxk(t - тjk + ) d . 

In view of the above, it follows that (1) with Ui(t) = 0 is a special case of the 
following system: 

IV 

Ut) = Mi(t)+Y/AiJtJ(t) 
j=l 

N .0 

E^ / 
i=l J~Tii 

N 

Mi (* + #) + £ A^k ( ť " Tik + 0) 
fc=l 

&(<) = &(*), V t € [ - 2 r m a x , 0 ] , i = l,...,N 

d , i = l,...,N (12) 

(13) 

where ipi(-) -s the initial condition for Xi. Observe that (12) requires initial data on 
[-2rm a x ,0] . 

Notice that any solution of (1) with Ui(t) = 0 , i = 1 , . . . , IV, is also a solution of 
(12)-(13); see, e.g. [6]. Therefore, the global asymptotic stability of (12)-(13) will 
ensure the global asymptotic stability of (1). In the sequel, we will study the stability 
of the system of (12)-(13) in order to ascertain the global asymptotic stability of 
the system of (1). 

Let the following Lyapunov functional candidate for the system of (12)-(13) 

•IV 

v(0 = Y,{tT(t)PiШ + Wi(0} (14) 
i = l 

where Pi, i = 1,...,IV, are symmetric positive definite matrices, f denotes the 
vector [£f, . . . , ($]T and 

Wi(0 = jг[ Ґ ţJ^AjRjAjШteM 
j=i J~тn Jt+в 
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N -V ,.0 rt 

+ £ £ / / tI(s)AjkS-k\AjkCk(s)dsde (15) 
j = l k = lJ-TiJ Jt-Tij+0 

where Rij and Sijk, i, j , k = 1 , . . . , IV, are symmetric positive definite matrices to 
be chosen. 

The time-derivative of V ( 0 along the solution of (12)-(13) is given by 

Iv Iv 

ño = £ þт(0 (piAi+AJPІ) ш)+2&m £ AІJШ] 
i=l j=l 

N 

i=i 

where 

f^Cí,*) = -2í? '( í)P ť £ .4 i i / Л ^ ( í + Ö)dö 
j=l J~т'i 

N o JV 

% л ) = -гďíO-^E^i / £-4i*Єit(.-rjfc + )d . 
j=l J-Tn k=l 

Recalling that for any vectors u, v and any matrix Q > 0 of appropriate dimen­
sions: 

-2uTv < uTQu + vTQ~lv 

we have that for any matrices R^ > 0 and Sijk > 0, i, j , k = 1, . . . , IV, 
-V IV ..o 

V? < E TijgimAijRijAjjPMt) + E / ff (' + ^ ^ M ' ( * + 0) d9 (17) 
j=l j=lJ-TiJ 

IV IV 

^ < E E7*i^(')P*il«Siibii45Pi6(t) 
j = l fc=l 

IV IV ^ o 

+ E E / #(* -r^+«MSsS^i*&(« - ***+°)M- (is) 
j = l k=lJ-Ti* 

Next, in view of (15), we have that the time-derivative of Wi(0 satisfies 

•iiZjMAjKrfA&it) - f £J(t + e)AjRrj
lMJ(t + 6) dO 

IV IV 

i = i k=i 

- £ £ f tf(* -T*+')4.5i«4*&(* - Ti*+o) <w. (i9) 
, = i k=iJ-Ti* 

WІ(0 = £ 
i = l L 
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Hence, using (17)-(19) in (16) we obtain: 

IV 

v(o < E íтw 
І = I 

IV 

JLiÆi ~Г -ÍЛ-І Ii ~Г -t i У Tij/ì.ijІLij/ì.ij±i 
j=i 

m 

N IV 

+ 2ZT(t)Pi Y^AiMt) + Y,Ti3Zj(t)AjR->A}Z}(t) 
3=1 3=1 

+ E Jl^l^Aj.S-^Mt) 
3=1 k=l 

where Ri is as in (5). 
Now, considering that 

E f^ntfWAjRjA^t) = E i^Tji&WATRjtMiit) 
i=l 3=1 i=l j=l 

E E JlTi3fAt)Ajks-k\Aikut) = E E TniSTmjs-iA^t) 
i = l j = l k=l i=l j=l k=l 

(20) 

we have that 

ño <Yl\([(mi(т)m)+чï(t)PiJZA^ш\ 
t=i i ,=i J 

(21) 

where r denotes {ri i, . . . , TiN, t == 1, . . . , iV} and 

J = I 
І#i 

Iv 
*i(r) = PÍ(AÍ + Au) + (Ai + AufPi + Ti E TÍJAÍJŘÍJÁJJPÍ 

І = I 

+ E TaATRjtM + E E ^ 4 ^ -
3=1 i = l k=l 

(22) 

Next, introducing 

i" * i ( r ) PxA^ + A^Pi 

T2A2i+AT

2A *2(r ) 

e(r) = . 

L RNANi + AjNPi PNAN2 + AJNP2 

the inequality of (21) can be rewritten as 

v(0 < f(t)e(T)m-

P!A1N + AN1PN 

P2A2N + AN2PN 

* J V ( T ) 

(23) 

(24) 



Decentralized Control of Interconnected Linear Systems with Delayed States 315 

Since 0 ( r ) is monotonic increasing (in the sense of positive definiteness) with 
respect to r^ , i, j = l , . . . , iV , i.e. 0( f ) - 0 ( r ) > 0, for r = { r ^ , . . . ,Tusr, i = 
l , . . . , iV} and f = {Tii,... ,ff/v, i = l , . . . , iV} with fij > Tij, we have that if 
for some scalars fij > 0, i, j = l , . . . , iV, there exist symmetric positive definite 
matrices Pi, Rij and Sijk, i, j , k = 1 , . . . N, such that 

0 ( f ) < 0 (25) 

where f denotes { f i i , . . . ,fiIv, i = l , - . . , i V } , then the system of (12)-(13) is 
globally asymptotically stable for any constant time-delays T%J satisfying 0 < T\$ < 
Tij, i, j = l , . . . , iV . This in turns implies the global asymptotic stability of the 
system of (1) for any constant time-delays r^ satisfying 0 < r^ < fij, i, j = 
1,...,N. 

Now, introduce the new variables, Xi := P{
 x, i = 1 , . . . , IV, and denote X = 

diag{Xi, • • •, Xjsf}. Pre-multiplying and post-multiplying 0( f ) by X and using 
Schur complements, it can be readily verified that the condition of (25) is equivalent 
to the LMI of (2), which concludes the proof. • 

Remark 1. Theorem 1 provides a delay-dependent criterion of global asymptotic 
stability for the class of interconnected time-delay systems of (1) in terms of the 
solvability of linear matrix inequalities. This stability criterion can be tested nu­
merically very efficiently using interior point algorithms, which have been recently 
developed for solving linear matrix inequalities; see, e.g. [1]. 

Remark 2. Note that the matrices Rij and Sijk, i, j , k = 1 , . . . , iV, in Theorem 1 
are scaling matrices to be found, which are used to minimize the upper-bounds for 
rji and 772 , 2 = l > - - - > ^ > m (1?) and (18), respectively. In the case where N is 
large, the computational effort required to solve the feasibility problem for the LMI 
of (2) can become very high and maybe prohibitive. In such situations, a strategy 
to reduce the computational effort is to reduce the number of scaling matrices; for 
instance, we could set Rij = Ri and/or Sijk = Sij, for i, j , k = 1 , . . . ,iV. However, 
it is likely that reducing the number of scaling matrices, the result obtained may be 
more conservative. This tradeoff between the number of different scaling matrices, 
Rij and Sijk, to be found and the conservatism of the result is an important issue 
that the author is currently investigating. 

In the light of the result of Theorem 1, we are now able to present our main 
result on decentralized stabilization via linear memoryless state feedback for the 
interconnected system of (1). 

Theorem 2. Consider the interconnected system of (1) and let fij > 0, i, j = 
l , . . . , iV , be given scalars. Then this system is decentralized stabilizable for any 
constant time-delays r^ satisfying 0 < Tij < fij, i, j = l , . . . , iV, if there exist 
rii x rti symmetric positive definite matrices Xi, R^ and Sijk, i, j,k = l , . . . , iV , 
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and mi x n* matrices V-., i = 1,..., IV, satisfying the following LMI: 

Фc Лï П T 

Лc -K 0 
ӣ 0 -J 

< 0 (26) 

where 

Ф C = 

Фcl 

A21xl+X2AT

2 

AnXг + XгÄţ, 21 

12 Ф c2 

AINXN + Xi.A^1 

A2NXN + -^2-4^2 

$cIV 

(27) 

ANIXI + XNAJN AN2X2 + XNAjN 

Ac = diag {Aci, . . ., Ac/V} (28) 

Iv 

$ c i = (Ai + Au)Xi + XÍ(AÍ + Au)T + BÍYÍ + Y?Bj + ] T ^-Ay J^i4g (29) 
i= i 

A£ = [ fuiXiAf + YTBf) f2i(XiAj + Y^Bj) . . . ŤNi(XiÁ[ + F/B f ) ] (30) 

and Rij, ft, H and J are as in (5)-(7). 
Moreover, a suitable decentralized control law is given by Ui(t) = YiX^lXi(t). 

Proof. With the decentralized control law Ui(t) = KiXi(t), i = 1,..., IV, where 
the state feedback gain matrices Ki £ 5Rm,'xn*, i = 1,...,IV, are to be found, the 
system of (1) becomes 

IV 

Si : ±i(t) = AciXi(t) + ^2 AijXj(t - nj) 
3=1 

(31) 

where Aci = Ai + B^K^ Hence, the result follows immediately by applying Theo­
rem 1 to the closed-loop system of (31) and setting Yi = KiXi. • 

Remark 3. Theorem 2 provides an LMI method for the design of a delay-dependent 
decentralized state feedback control law that stabilize the class of interconnected 
time-delay systems of (1). Since the proposed decentralized control design is de­
pendent on the length, or an upper-bound, of the time-delays in the system, it is 
expected that this design finds a larger spectrum of applications than the delay-
independent control designs, especially in situations where the existing time-delays 
are not allowed to be arbitrarily large, which is often the case in many applications. 
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4. EXTENSIONS 

As the proposed decentralized stabilization method is given in terms of LMIs, it 
can be easily extended, by using standard LMIs techniques [1], to more complex 
control problems, such as decentralized stabilization via static output feedback, de­
centralized 7̂ oo control and decentralized robust stabilization. In the sequel we shall 
consider several extensions of the decentralized stabilization result developed in the 
previous section. 

4.1. Decentralized stabilization via static output feedback 

For the problem of decentralized stabilization via static output feedback, we shall 
consider the interconnected system of (1) together with the local output measure­
ments: 

yi(t) = CiXi(t), i = l , . . . ,7V (32) 

where yi(t) G 9ftri is the output of the ith subsystem (Si) and Ci, i = 1 , . . . , iV, are 
known real constant matrices of appropriate dimensions. Without loss of generality, 
the following assumption is adopted: 

Assumption 1. The matrices Cj, i = 1 , . . . , iV, are of full row-rank. 

Note that Assumption 1, which accounts for the linear independence of the com­
ponents of the local measurement vectors yiy can always be achieved by discarding 
redundant measurement components. 

In the case of decentralized static output feedback stabilization, the desired con­
trol law has the following structure 

Ui(t) = Giyi(t), i = l , . . . , /V 

or equivalently 
Ui(t) = KiXi(t), i = l , . . . , i V 

with the constraints 
Ki = GiCu i = l , . . . ,7V. 

In the light of Theorem 1, given scalars fij > 0, i, j = l , . . . , iV, the system 
(S) is stabilizable via decentralized output feedback for any constant time-delays r^ 
satisfying 0 < ry < nj , i, j = 1 , . . . , iV, if there exist symmetric positive definite 
matrices X^ Gi, Rij and Sijk, i, j , A; = 1 , . . . ,iV, satisfying the inequality of (2), 
where the matrices $i and A* of (4) and (8), respectively, are now given by: 

Iv 
$i = (Ai + Au)Xi + Xi(A{ + Au)T+ BiddXi + X{CJGJBJ + Y,fiiAiiRiiAji 

Af = [ fuXi(Ai + BiGiCi)T f2iXi(Ai + BiGiCif . . . fmXi(Ai + BiGid)7 ]. 
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Now, the problem of numerically solving the inequality of (2) for Xi and Gi, 
becomes a very difficult one because it is non-convex in general. Motivated by this 
fact and inspired by the work of [3], in the sequel we present a sufficient condition 
for decentralized static output feedback stabilization which has the advantage to be 
convex. 

Theorem 3. Consider the system (1) with the measurements of (32) and let 
fij > 0, i, j = 1,...,IV, be given scalars. Then this system is stabilizable via 
decentralized static output feedback for any constant time-delays r^ satisfying 0 < 
Tij < Tij > i, 3 — I? • • •) Nj if there exist symmetric positive definite matrices X{, Rij 
and Sijk, i, 3, k = 1, . . . , IV, and matrices Di and E{, i = 1 , . . . , IV, such that: 

ф c лľ ӣт 

Лc -n 0 
íì 0 -J 

< 0 

DÍCÍ = CÍXÍ, i = l,...,N 

(33) 

(34) 

where 

Фc = 

Фcl 

A21X, + X2A
T 

Al2X2 + XгAт 

21 

Ф c2 

A\NXN + X\A^íl 

A2NXM + X2Ajj2 

L AN\X\ + X]\fAjN AJV2X2 + XMAJX 

Ác = d iag |Á c i , . . . , ÁciV} 

Ф cN 

(35) 

(36) 
IV 

$ c i = (Ai + Au)Xi + XÍ(AÍ + Au)7 + BiEid + CJEJBJ + J^ fijAijŘijA
T

j (37) 

i = i 

AS = [fu(XiAj + CJEJBJ) ?2i(XiAj + CJEJBJ) ... fNi(XiAj + CjEjBj) ] 

(38) 
and ŘÍJ, íí, 1Z and J are as in (5)-(7). 

Moreover, a suitable stabilizing output gain is given by 

Gi = EiDr\ i = l,...,IV. (39) 

P r o o f . In view of (34) and considering that C ,̂ i = 1,. . . ,IV, are of full row-
rank, it follows that the matrices Di, i = 1 , . . . , IV, are also of full row-rank and thus 
non-singular. Using this fact together with (34) and the feedback gain expression of 
(39), we obtain that 

EiCi = GiCiXi, I = 1, . . . , IV. 

Hence, it follows that the inequality (33) is equivalent to the inequality (2) of 
Theorem 1 for the closed-loop of system (1) with the output feedback gain Gi of 
(39), which concludes the proof. • 
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Remark 4. Theorem 3 provides a method of designing a stabilizing control law 
for interconnected linear state-delayed systems via decentralized memoryless output 
feedback. This method has the advantage to be convex and in terms of LMIs, and 
as such can be tested with efficient and reliable algorithms for solving LMIs. 

In the case where state feedback is concerned, i.e. Ci = / , i = 1 , . . . ,iV, the 
equality constraints of (34) become redundant and Theorem 3 reduces to the result 
of Theorem 2 for decentralized stabilization via state feedback. 

Observe that the feasibility of (33) and (34) in Theorem 3 is dependent on the 
state-space realization of the system. 

4.2. Decentralized state feedback H^ control 

Consider the large scale system composed of the interconnection of the subsystems 
(Si), i = 1 , . . . , iV, described by 

N 

(Si) : ii(t) = A{Xi(t) + ^2 AijxA1 ~ Tij) + BWiWi(t) + BiUi(t) 
3=1 

(40) 
Zi(t) = CZiXi(t) + DzMt) 

%i(t) =<t>i(t)> Vt G [-rm a x ,0] ; rmax = max {T{J, i,j = 1 , . . . ,IV} 

where for the ith subsystem (Si), Xi(t) G 3tni is the state, Ui(t) G 3?m* is the control 
input, Wi(t) G $lPi is the disturbance input, Zi(t) G 5ft9i is the controlled output, 
Tn > 0 is the time-delay in the subsystem, r^ > 0, j = 1 , . . . , iV, j ^ i are the time-
delays in the interconnections, &(-) is the initial condition, Ai, Aij, j = l , . . . , iV, 
Bi, BWi, CZi and DZi are known real constant matrices of appropriate dimensions. 

The decentralized T̂ oo control problem under consideration consists on: Given 
scalars fij > 0 and 7* > 0, i, j = 1 , . . . ,iV, determine a decentralized memoryless 
control law Ui(t) = KiXi(t), i = l , . . . , iV , for the interconnected system of (40) 
such that the following conditions hold for any constant time-delays r»j satisfying 
0 < Tij < fij, i,j = l,...,N: 

- The closed-loop system is globally asymptotically stable; 

- The ith subsystem has a level ji of disturbance attenuation, namely, under zero 
initial conditions, ||zi||2 < 7i||wi||2 for any non-zero Wi(t) G £2, i = 1 , . . . , iV. 

In view of Theorem 2 and using the LMI approach of delay-dependent T-LQQ control 
for "isolated" state-delayed systems as proposed in [4], we have the following result. 

Theorem 4. Given scalars fij > 0 and 7̂  > 0, i, j = 1 , . . . ,N, the decentralized 
7̂ oo control problem for the system (40) is solvable if there exist Ui x n* symmetric 
positive definite matrices Xi, Rij, Qij and Sijk, i, j , k = l , . . . , iV , and mi x rii 
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matrices Y,-, i = 1 , . . . , N, satisfying the following LMI: 

$ c A T nT r 
Л c -K 0 0 

ÍÌ 0 -J 0 

T т 0 0 - z 

< 0 

where 
T = diag{Tj, . . . , rN}, Z = diag{Z x, . . . , ZN} 

ri=[filAil ... fiNAiN (CZiXi + DZiYi)TXi B^] 

Zi = diag {fiiQii, ..., fiNQiN, I, if I - Bl.QiB^. J 

IV 

Qi — / v TjjQjj 

(41) 

(42) 

(43) 

(44) 

(45) 

and fi, 7£, J are as in (6)-(11), whereas $ c and Ac are given in (27)-(30). 
Moreover, a suitable decentralized control law is given by Ui(t) ^YiX~lXi(t). 

4.3. Decentralized robust stabilization and 'Hco Control 

In relation to the problems of decentralized robust stabilization and decentralized 
robust T-Loo control, using the 5-procedure (see, e.g. [1]) the results of Theorems 2 -
4 can be easily extended to the case of systems subject to either norm-bounded or 
IQC-type parameter uncertainty in the matrices of the system state-space model. 
On the other hand, using standard LMI techniques [1], Theorems 2 - 4 can also be 
readily extended to interconnected systems of the form of (1) and (40), where Ait 

Aij and Bit i, j = 1 , . . . ,1V, are uncertain matrices belonging to a given polytope 
V, which is described by the vertices: 

W Ak 
N 

дk 
Л l l 

дk 
. . . л1N 

дk 
ЛN1 ANN Bţ . . . Bk

N], fc = l , . . . , n v . (46) 

The corresponding decentralized robust stabilization and decentralized robust HQQ 
control methods are similar to those of Theorems 2, 3 and 4, except that now we 
have nv LMIs of the form of (26), (33) and (41), respectively, one for each of the 
vertices in (46). 

5. EXAMPLES 

Example 1. Consider the decentralized stabilization problem for an intercon­
nected system of the form of (1) with: 

Ai = 
- 2 
1 

0 ' 
- 3 , Aп = 

- 1 
-0.8 

0 ' 
- 1 , A12 = 

" 0.1 
0 

0.1 
0.1 
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A2 = 
- 2 2 " 
2 1 , A21 = 

' 0.1 0.1 ' 
0 0.1 

, A 22 = 
' 0.1 

0 

0.3 ' 
0.3 

в1 = 
' 0 

1 , в2 = 
' - 2 " 

1 

(47) 

Note that the above system is not stable as the subsystem 2 is unstable for r22 = 0 . 
Further, delay-independent methods of decentralized stabilizable cannot be applied 
to this system as (A2,B2) is not stabilizable. 

Assuming the time-delays T^, i,j = 1,2, to be identical, say r^ = r, it was found 
by Theorem 2 that the above system is decentralized stabilizable for values of r up 
to 0.295. For instance, when r = 0.25, the following stabilizing gains are obtained: 

Kx = [ -6.2215 -16.8060 ] , K2=[ 446.3563 797.3686 ] . 

Note that the gain K2 of a "centralized" stabilizing control law for the above 
system with zero time-delays is of the order of 100. 

In order to illustrate the fact that the scaling matrices Rij and Sijk, i, j , k = 
1,...,1V, are crucial in terms of conservatism of the result of Theorem 1, this 
Theorem was applied to the system of (47) with the constraints Sijk = Sy, for 
z, j , k = 1 , . . . , N. In this case the maximum value of r for decentralized stabiliza­
tion is 0.265. On the other hand, when Theorem 1 is applied to the above system 
with the constraints Rij = R{ and Sijk = Sij, for i, j , k = 1, . . . , AT, the maximum 
value of r for decentralized stabilization is 0.214. 

E x a m p l e 2. Consider the decentralized HQQ control problem for the intercon­
nected system of (40) with the same matrices as in (47) and 

вm = 
0.5 
0.5 •t^W2 — 

0.5 
0 

Oгi = 
1 0 
0 0 cZ2 = 

0 1 
0 0 

DZ1 = DZ2 

0 
0.1 

(48) 

Applying Theorem 4 to the above system with fij = 0.2, i,j = 1,2, and mini­
mizing /i = 71 + 7I, it was found that the minimum achievable /i is \x = 382.58 and 
the corresponding optimal values of 71 and 72 are 71 = 9.154 and 72 = 17.286. 

6. CONCLUSIONS 

This paper focused on the problems of decentralized control of interconnected linear 
state-delayed systems. Systems with constant time-delays in the state of each subsys­
tems as well as in the interconnections have been considered. First, delay-dependent 
LMI conditions for stability and decentralized stabilization via memoryless state 
feedback have been developed. Then, several extensions of the decentralized sta­
bilization result to more complex control problems have been analysed, including 
decentralized stabilization via static output feedback, decentralized 7̂ oo control, de­
centralized robust stabilization, and decentralized robust 'HQO control. -
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