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KYBERNETIKA — VOLUME 37 (2001), NUMBER 5, PAGES 521-546

ON NONLINEAR EQUIVALENCE
AND BACKSTEPPING OBSERVER*

'J. pELEON!, I. SOULEIMAN, A. GLUMINEAU AND G. SCHREIER

An observer design based on backstepping approach for a class of state affine systems
is proposed. This class of nonlinear systems is determined via a constructive algorithm
applied to a general nonlinear Multi Input-Multi Output systems. Some examples are
given in order to illustrate the proposed methodology.

1. INTRODUCTION

It is well-known that when a state control law is designed its application is limited
if the components of the state vector are not all measurable. This problem can be
overcome by using observers. For linear systems, it is traditionally solved by using
either a Luenberger observer or Kalman-filter. Moreover, the observability property
for linear systems does not depend on the input. However, the observability property
of nonlinear systems does depend on the input. There are some inputs for which
the system could become unobservable (for more details see [1, 8, 10]). Hence, the
inputs which render the system unobservable should be considered when observer
is constructed. For these reasons, the observer problem for nonlinear systems re-
mains an interesting field of research. Although the problem of observer synthesis
for linear systems is solved, no general methodology exists for the observer design
for nonlinear systems. However, some results have been obtained in this direction
([8, 10, 12, 13, 16, 18, 20]), where the observer design has been investigated for a
class of nonlinear system which can be transformed into another observable form.

Several authors (see for instances [13, 14]) have considered the case when a non-
linear system can be transformed into a linear system up to input-output injection.
On the other hand, a straightforward approach verifying and computing the lin-
earization condition for those systems have been given in ([15, 17]).

The design of an observer for a class of nonlinear systems can be solved via a
change of coordinates which transforms the system into another nonlinear system
for which an observer can be constructed (see [10, 14, 20]). Some results related to

*This work was supported by CONACYT-MEXICO 26498-A.
tCorresponding author.
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the coordinate transformation of a nonlinear system into a state affine systems have
been obtained (see for instances [1, 8, 10, 14, 18]). The design of an observer for
these state affine systems has been studied in {3].

Furthermore, necessary and sufficient conditions transforming a nonlinear system
into a state affine system has been proposed in [2, 10]. However, no construction
procedure characterizing such systems exits so far for multi-input-multi-output case.
On the other hand, a constructive methodology for the single output case, comput-
ing the change of coordinates, is presented in [14].

This paper deals with the observer synthesis of nonlinear systems via their equiv-
alence to state affine systems. Necessary and sufficient conditions are given to char-
acterize a class of nonlinear systems, which can be transformed into a class of mul-
tivariable state affine systems up to input-output injection. Furthermore, for the
class of state affine systems an observer is designed using a backstepping observer
approach.

The paper is organized as follows. In Section 3, a computation algorithm is
described which allows the transformation of a nonlinear system into a multi-output
affine system. In Section 4, the unmeasurable components of the vector state are
estimated using a backstepping observer. For this observer, conditions are given
to characterize the inputs which render the system observable. In Section 5, some
examples illustrating the proposed methodology are given. Finaily, some conclusions
are given.

2. PRELIMINARIES

Now, consider the following nonlinear system

2:{ & = f(z,u)

(1)
y = h(z)

where z € IR" is the state, u € IR™ is the input, y € IR? is the controlled output,

f and h are meromorphic functions of their arguments. Assume that there exists a

change of coordinates transforming ¥ into the state affine system of the form

z = Ai u,yY)z; + ¢i(u,
5o (v, 9)zi + ¢i(u,y) @
yp = Ciz;, i1=1,...,p,
where z; = col (2,1, .. ,Zik:), Ai € IR***: are matrices of the form
0 a,-,l(u) 0 e 0
0 0 aiz2(u,y) ... 0
A= 0 : ' (3)
0 0 Qi,ki—y (u’ y)
0 0 0
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Pi1
¢ = : ;andCi=(1 0 ... O)lxki;izl,...,p,

Vi ki

where the k; denote observability index related with the output y;,which are ordered
as k; > ko >...2 kp and Zf:lki =n.

Remark 1. In order to simplify the notation and without loss of generality, the
outputs are reordered in function of the observability indices; i.e. the output y; is
associated to the index observability k;, for i = 1,... ,p.

All definitions and results given in the paper can be written locally around a
regular point zo of M, an open subset of IR™. If this property is generically satisfied,
it means that this property is satisfied locally around a regular point xo of M. Let
O denote the generic observability space defined by (see [16]).

O=xnQY+U) (4)

where X = Spang{dz}, ¥ = Span,{dy(*),w > 0}, & = Spany{du®),w > 0},
(Spany is a space spanned over the field X' of meromorphic functions of z and a
finite number of time derivatives of u).

Definition 1. The system ¥ is generically observable if

dim O = n.

The first goal of this paper is to find a state coordinate transformation z = ®(z),
such that system X is locally equivalent to system X.mpe in order to design an
observer. The approach consists in checking that the Input-Output (I/O) differential
equation associated to the observable system X, which is given by

(k:) (k1-1)

Yi = Pg(ylayla"-yl yero s Ypye-- ’yg(zkp_l)vuaaiﬁ'a"' 7u(kl—l))’ (5)

has the same I/O differential equation as Zafine, Which verifies

ki ) :
yf ) = PJO = F,:‘, (ai,la e ,ai,n_l) (6)
ki—1 . .
+ ) Kf o Fi@ikiors .- Giki—1, Pikimr) + Kk 1 Fo (k)
r=1
= F;:.- @ity 3 @in—1) + Lo @ity Giki=1,Pil, - -, Piki)

where K! = a;0...a;, = H]’.=0 a; j, and a;0 = 1. The functions F?, r = 0,... ,k;;

are given as a sum of monomials depending on

(y,(""))q‘ and (ugm‘))s' ,fori=1,...,p;



524 J. DELEON, 1. SOULEIMAN, A. GLUMINEAU AND G. SCHREIER

where n;, m; = 0,... ., k;; represent the order of derivation of the outputs and the
inputs respectively; and ¢;,s; = 0,1,... ; are the exponents of the outputs and the
inputs and their derivatives, respectively. These parameters satisfy the following

relation
ZniQi +Zmi3i =r; fori=1,...,p.
i i

) 3 %
Remark 2. The functions F} involves monomials depending on functions (ygn‘))
Si
and (ugm‘)) of degree Y, niqi + Y, mis; = (ki — ).

On the other hand, the proposed results are obtained from the analysis of I/O
differential equations. The observable nonlinear system X in the state space represen-
tation will be transformed into a set of higher-order differential equations depending
on the inputs and outputs. These equations are obtained by using state elimination
techniques (see [5]). Moreover, considering the assumption of generic observability
of the system, the elimination problem has a solution (see [15, 19]). Hence, the state
affine transformation problem is solved as a realization problem.

The classification problem of nonlinear systems which can be steered by a change
of coordinates to some observable form has received significant attention during the
last years. In [7] and [8], locally uniformly observable systems are studied. Necessary
and sufficient conditions have been stated to guarantee the transformation of non-
linear systems into state affine systems (see [1, 10, 11]). These conditions guarantee
the existence of a vector field transforming the system into another observable one.
However, this vector field cannot be computed directly and hence, the application
of this methodology is limited (see [1]). On the other hand, a constructive method-
ology for the single output case, computing the change of coordinates, is presented
in [14]. In this paper, using the results given in [14], an extension for the class of
multivariable systems will be considered.

3. STATE AFFINE TRANSFORMATION ALGORITHM

The problem of verifying the equivalence between a nonlinear system and state affine
system is considered in this section. Necessary and sufficient conditions allowing to
characterize a class of nonlinear systems, which are diffeomorphic to state affine
systems, are given. These conditions are obtained using the exterior differential
system theory ( for more details see [4, 9, 14, 16]).

Now, the algorithm allowing us to know if a diffeomorphism exists between (1)
and (2) is given. Let S; = {k1,k2,... ,k;} be the set of observability indices such
that k; satisfies the following inequality

kj >k —k
for a given k. Denote d¥ the number of outputs whose observability index is greater
than k; — k, as
d¥ = Card {ki, k2, ... , k;} . (7)
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Algorithm.

Step 1. Computation of the functions a; ;.

Let Pi = y(k) , 1= 1,.... ,p; be the I/0O differential equation obtained from the
nonlinear system X. Let w; be the one-form defined by

— 0%Fs = 0’P¢
Ckza () gy{ki=h) y]+JZIIZ; u{®) gy (k=) 5 g (ki U (8)

fork =1,...,k—1;withci =...= ¢,_, =1and ¢},_, =0. Now, in order to
verify if it is possible to find an equivalence between ¥ and X,gne, it is necessary to
check the following conditions:

— Case df < p.

If dwi Adu#0or dwi A dygeq1 A -+ Adyp # 0; then, there is no solution.
— Case df =p:

If dwi # 0, then the problem has no solution.

Otherwise, let the a; x functions be any solution of

Ui &
wk_ckz k)a (k Y + ZZ (k)a (k PPN R (9)

]111

where the right-hand side of this equation is deduced from the I/O differential equa-
tion P}, which is computed from system Xamine-

This ends the Step 1.

On the other hand, the previous one-forms do not allow to know the functions
¥i k. Then, in order to identify the functions ¢; j, all a; ; obtained from Step 1 will
be used to determine the y; j, as it is presented in the next step.

Step 2. Determination of p; k,.
Consider P¢ as in Step 1, and let
Pri =Pri—1 —FI:.-—r+1’ (10)

forr:=1,...,k; —1; where the F,::',_r +1 are functions as in (6). Let @t the one-form
given by

d; m ,
;1 ‘\ OF! 0P}

W =7 — g dyi + — =y dw (11)
TR\ aF Y L .
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where
.
K:L =ag1 .- .ai‘r = H a,-,j,

and a; o = 1. Now, in order to compute the functions ¢;, we check the following
conditions:

— Case df < p.

If d@? Adu # 0 or dwt. Adyar+1A---Ady, # 0, then, the problem has no solution.

— Case d} =p.

If dw}. # 0, then the problem has no solution.
Otherwise, if dwt. = 0, for Vr =1,... ,k; — 1; then ¢; , is a solution of

dr m
1 ~ 0pir Opir . Qi Ba” 8(1”
wr—ai,r Z By, dy]+j;—6uj du; Z d +Z

j=1 Tir \j=1 (12)

And for r = k;

Py, =0y ... 0k 10ik; = Ki, @ik (13)
End of the Algorithm.

This Algorithm allows to establish the following theorem.

Theorem 1. The system X is locally equivalent by state coordinates transforma-
tion to the system X,mne if and only if the following conditions are verified:

1. For df < p,

dwi Adu =0, and dw} Adygeq A+ Ady, =0, (14)
dwi Adu =0, and d@}, Adygesq A Ady, = 0.

2. For d* = p,
dwfc =0, and dw,; =0;
where wi and wiare one-forms defined in (8) and (11).

If the conditions of Theorem 1 are satisfied, system X is locally equivalent to
system Yafine, and the state coordinates transformation z = ®(z) is given by

21 = Y
Zia = al—l {9i(z) — i (u,9)} (15)
y(j_l)_P?—l
Zij L I ==, for j =3, ki
i
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where z; = col(z;1 ...2ix,;) and

dP}_, dKi_,
i 16
dt + 2ik dt ( )

P =Ki_1pik +
fork=1,...,ki, air, =0and P{ = ¢, ;.
Proof of Theorem 1 (see Appendix B).

This result gives the conditions to transform system X into system Xamine (2).
The next section introduces a procedure to design a backstepping observer for this

class of systems.

4. BACKSTEPPING OBSERVER

The propose of this section is to design an observer for the class of state affine
systems (2) based on the backstepping approach. From the structure of the state
affine system, which is represented by state affine subsystems, an observer will be
designed for each subsystem independently. For this reason, consider the following
class of single output state affine systems which are in the observable form

T = a1(u,y)z2 + 91(u, 1)

=ai(u,y) Tit+1 + 9i(w, T1,... ,zi), 1=2,...,n—1; (17)
Ty = fn( )+gn(u’ :1,‘),
y=Czx = .

It is clear that system (17) is uniformly observable if the applied inputs are per-
sistently exciting. For instance, there are some inputs which render the unmeasured
states unobservable. Then, in order to design an observer for the unmeasured states
the inputs must be satisfy some observability conditions (see [11]).

The observer for the class of systems considered is described by

21 = a1(u,y) 22 + g1(u, 21) +¥1(2)(z1 — 21)
% = ai(u,Y) zit1 + gi(u, 21, 22, - . . ,2:) + Yi(2) (21 — 21),

fori=2,...,n—1 (18)
2n = fn(2) + gn (4, 2) + ¥u(2)(z1 — 21)
where z = col(zy, 22, ... ,2,) is the estimated state and 9;(z), ¢ = 2,... ,n — 1; are

the observer gains which must be determined in order to guarantee the convergence
of the observer. Defining the estimation error e; = z; — 2;, for i = 1,... ,n; whose
dynamics is given by

é1 = a1(u,y)ez —1(2) e
é = a;i(u,y) eir1 + gi(u, 1, . .., x;) — gi(u, 21, 22, - - . , 2i) — Yi(2) e,
fori=2,...,n—1 (19)

n = fn(z) - fn(z) + gn(u;z) — gn(u,2) - "/’n(z) €1.
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Using similar arguments given in [12], we will find the observer gains 1;(2),i =
1,...,n, such that the estimation error tends to zero as t — co. Now, in order to
design the observer the following assumptions are introduced.

A1) There exist positive constants ¢; and cz, where 0 < ¢; < ¢z < 00, such that
for all z € R™;

0< e <lai(u,y)] < e < 0, i=1,...,n—1

A2) The functions gi(u,y,... ,z;), i = 2,...,n, are globally Lipschitz with respect
to (z1,- .. ,%;), and uniformly with respect to u and y.

Remark 3. The condition (20) corresponds to a characterization of “good” inputs,
which are required to recover state observability.

Let be O(e)* a function of z and e for £ > 0 such that for z € £ C R", there
exist constants N > 0, € > 0 such that

0@ < Nlell®, Vel <e Vze=.

Now, consider the following variables s; fori = 1,... ,n + 1;
s1=¢€
s =c181+ 81+ 0(6)2 (20)

8; = Sij—2 +Ci_18i—1 + Si—1 + 0(6)2, fori=3,...,n+1,

where the parameters c; are positive constants and the error terms are chosen so
that s is a linear function of the error e. Next, writing the above equations in terms
of the error e, we obtain

! .
Si41 = Z (bl+1,i — ~Kl-—iKi——l'4/)l—i+1) e; + KleH—l’ for l=1, - ,n—l (21)

i=1
and for [ = n,
Snt1 = i (bn+1 i~ Kn—iKi1¥n—it1 + Kn1 (%)) €; (22)
i=1 , azi
where bjy1,; and K;_; fori =1,...,l;and [ = 1,... ,n; are given in Appendix C.

Furthermore, let U, be the p-neighborhood of C an open subset of IR", there exists
constants A; > 0 and Ay > 0 such that for all z € U,, a compact subset,with e and
s € C , the following inequality is satisfied

Avllell < llsll < Az [lell, (23)

where s = col (s1, s2,.-. ,5n) and e = col (e1, ez, ... ,€,). Then we can establish the
following result.
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Theorem 2. Consider the system (17), and assume that assumptions A1 and A2
are satisfied. For any subset C C IR™ of the dynamical system (17) there exist
constants A;, A2 > 0; € > 0; v > 0 such that if z(0) € C and ||e(0)|| < € then the
system (18) is a locally exponential observer for system (17). Thus, the estimation
error
Az —2vt
lle®l < 3~ lle(O)] exp™

converges exponentially to zero as t tends to oo.

Proof. Defining the following Lyapunov function

n 1 n
V=) Vi=5) st
i=1 =1
Taking the time derivative of V along (20), we obtain

n
V=- Z cis2 + spsny1 + O(e)’.

i=1
Next, the observer gains v;, ¢ = 1,... ,n; are chosen as follows
bn+1 n—i+1 Kn——l ( afn ) .
i = * + fori=1,...,n
Vi Kn_iKi1  Ki1Kn i \Ozn—iy1)’ Y

where bn4+1,; and K,_; are given in Appendix C. Then, from (38) the term s, is
equal to 0 (see Appendix C). Hence, we obtain

V=- Z cis? + O(e). (24)
i=1 ‘

_ Now, let U, be the p-neighborhood of C an open subset of IR", then its closure
U, is a compact subset. Hence there exist constants N > 0, € > 0 such that the
error term (24) satisfies

[0(e)*] < N [lelf?

for all z € U,, and |le|| < e. Next, let be € = min (p, ).

From s = M(b; j,;) e where s is a linear function of e (see equation (20) and
Appendix C), we know that there exists constants A\; > 0,2 > 0 such that for all
z € Uy, and e, s € C , the following inequality is satisfied

A lell < llsll < Az [lell - (25)

Since ¢; > 0, there exists a constant v > 0 such that

n
2
yllsl® <) es?.
=1
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Hence, there exist an € > 0 sufficiently small such that the error term in (24) satisfies

n

0(e)?| < 1 cis?
2 1

i=1
for all z € U,, and ||e|| < & For these z and e, we have

. 1 )
V= —3 Zcisi < =2vV. (26)

i=1

And using Gronwall’s inequality
V(t) < V(0)exp™ 2.

Using the inequality (25), we have

A2 _

lle(®)Il < 5~ lle(O)ll exp o

Then, the estimation error converges exponentially to zero as t — co. This ends the
proof. m]

5. EXAMPLES

Example 1. Single Output Case.
Consider the dynamics of a rigid body

Z Y1T2T3

T2 = Y2T1Z3

z3 Y3T1Z2
y=o

in which z;, x2 and z3 are the components of the angular velocity with respect to
the principal axes of inertia, J;, J2 and Js the moments of inertia with respect to
the principal axes of inertia v; = l"’ﬁﬁ, Y2 = i‘j_;l& and y3 = izL—JL Assume that
the angular velocity z; is measured. The observation problem is the estimation of
the angular velocities x5 and z3.

Now, we apply the Algorithm presented in Section 3, to check if there exists a

transformation for the above system.

Step 1. Determination of a;.

Applying the proposed algorithm, the I/O differential equation (5), for ¢ = 1 and
k1 = 3 is given by

. (2)y
y® = Pi(y,9,9?) = g?g + 42139y
=F+Fh+KF+KF
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where Fy = Fy = 0. On the other hand, the I/O differential equation of the affine
system is given by

y,(f) = y‘(ll) (ln"al —1In dlaz ln.al) + y‘(,z) (ln‘al +In a‘lag) - (ln"al —1In a.lag ln.al)cpl
- m_l_sbl + @, — (W) $1—ay (m + m)wz + @193 + a1a2¢3
= F3q + F2o + K1F10 + K2Fo,

where

FOa = 3, . . .
Fi, = —(Inaias +Ina1)ps + @2 + Inagps,

Fy, = —(Ina; —Inajaz Ina)p; —Inaipr + @, — (lnalaz) b1,

F, = y‘(ll) (ln.;zl —In a'laz ln.al) + yc(,z) (ln'al +1n dlag) .

From equation (8), the one-form w; is given by

1
W = —dy.
y

Now, for k = 2, the one-form ws, is given by
1

wy = —dy.
Y

It is easy to see that the one-form w; verify the conditions (14).
Now, computing one-form w,,, we have

52y%Y a1 a1
@ = (15% @ = {2 . ogalaz}dy_
aya aya aya aya

In the same way, w2, = wi14. Then, in order to determine the a;’s, it is necessary
to solve the following equation

{2810ga1 + Odlogajasy } _ l
dy 9y y
Notice that the function a; depends on y, then the proposed algorithm can be ex-
tended to a large class of nonlinear systems where a;; depends on u and y. However,

for this class of systems the algorithm gives several solutions for a given system. For
example, setting the arbitrary choice

w1

1
a = a—%
It follows that a solution is of the form
1
a =y, a2 = —

y?
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Step 2. Determination of ;.
Consider I/0 differential equation Py and F3, then

@)y
P1=P0—F3:Po—yyy

= 4’72’)’33!21)-

Computing the one-form @; from equation (12), we obtain @w; = 0.
1 (0 0
a; | Oy a; \ Oy

=d<ﬂ) = 0.
a

Since, a; # 0, then, this implies that ¢; = 0.
Next, to determine W, using equation for r = 2, we have

P=P-F=P
since Fy = 0, then

1 0P
Wy = ———dy =4 2d
)] a0z Oy y Y27Y3y Ay

_ 1 [Op2 2 (Oay
7= o {22 () o)

=d (22-) = 4yyy3y°dy.
as

then, we have

Solving the above equation, we obtain

p2 =Y.
Now, for r = 3, and from (13)

P; = ayaz¢3.
Since P; = 0, it follows that ¢35 = 0.

After computation, the change of coordinates obtained is

_ NT2T3

21 =T, 22 1

2 3 2,22 4
23 = M7223T% + NYVTIT2 + Y T5TS + V23T

Then, the transformed system Xamne in the new coordinates is given by

2 0y O 21 0
Z | =00 5 z |+ nry® |- (27)
Z3 00 O 23 0
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An observer backstepping for the above system can be design as follows.

%1 0 0 2 0 1 (2)
2y =(0 517)(22)+<72’73y2>+<¢2(5))(z1_21)
- 0 33 0 P3(2) (28)

where the observer gains are given by
Y1(2) = ybas
P2(2) = i =2
Y3(2) = yba,1

o ow
=]

where Ky =y, K> =, 91 =0,92 =0, g3 =0, and
b2,1 =

b3 =1+ co(cr — 1) = (c1 — Y1) — dit(wl)

d
bz =y(ca+c1)+ dlt/

by,1 = c1 — Y1 +c3(bs,1 — y¥2) — (b3,1 — y¥2)¢n + d (bs 1 — YP2)

—(b3,2 — Y1) + a(bs,z —y1)

bs2 =y +c3(bz2 — Y1) + ybs,1

b —cl+1b +d 1
4,3——3y y232 P

Example 2. Multi-Input Multi-Output.

Consider the following multivariable system:

I ue®?

o T1T3€” %2 — y2e~%2
.’iJg = uzry

T4 u2:1:5 + ur;

I z2z4

Y1 =71, Y2=2T4.

It is easy to verify that the system is observable with indices of observability given
by k1 = 3 and ks = 2. Moreover, the I/O differential equations (5) of this system
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are

'd . R : U = —
y{¥ = —y{* +Iluyn)yf” +Iugs ~ In(uy)nugs — In(uy)e’ + o’ +u’y}
W, . :
yéz) = 2;(.1/2 — uy1) + v?yiys + uy; + ugs.

Next, the I/O differential equations associated to the equivalent state affine system

are
yﬁi = yf‘Z (111 &1,1 —In al,'lal,2 In él,l) + y{z,i (lnél,l +1In al:lal’g)
— (In (;1,1 - lnal.la12 1116'111)(.01,1 - 111(.111(/’1,1 + ¢, - (m) P11
—ay,1(In al:lal,2 +In (;1,1)%,2 + @ 1P12 + 1,101,213
and

y;‘f,l =Indz1(Y2 — p2,1) +a2,1902,2 + P2,1.
Now, we apply the algorithm

Step 1. Computation of a; ;.
For i = 1, the I/O differential equation P, is given by

Py =y,
%y?) + ln(uyl)yfz) + Inuy; — In(uy;) Inug; — In(uy)ud + ud + u?y?.

For k = 1, it follows that the number of output that verify condition (7) is given

d} =1.
Now, computing the one-form w}, which is derived from (8), we obtain

1 2
wi = —dy; + — du.
L)1 u

It is clear that dw! = 0. Then, this implies that dw} A du = 0 and dw} A dys = 0.
Next, for £ = 2, and following the same procedure as above, we compute the

one-form w}, which is given by
1 1
w% = —dy; + —du.
)1 u
Then, checking the condition of the theorem, it follows that
dwi Adu=0, dwAdy, =0and dw} =0.

Given that the conditions of the theorem are verified, now we identify the unknown
functions a; j from the I/O differential equation P}, := y§33
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Now, computing the one-form from the I/O differential equation P}, we obtain

W) = 4= 1T o~
o al,z(U,y) ou a1 a2

The above equation allows to compute the functions a;,; and a; 2.
Finally, after straightforward computation, we obtain

a1 =u and a2 =Y.

Now, for i = 2, the corresponding one-form obtained from P} = y{,z) is given by
2
2 2
wi =w = —du.
1 k-1 =

Similarly, the one-form obtained from the I/O differential equation P2, := ygzi , is

given by
0 [a
2 2,1
= —|—=)du.
“1 ou (az,l) “

Comparing both one-forms, we can deduce that a solution is
a1 = u2.

Step 2. Computation of ¢; ;.

Now, the components of the vector ¢; = col( ;1 @ik; ) for each subsystem

are determined.
For i =1 and r = 1, we have that
Pl =P} -F}
= - (ln(uyl)) (myl) - (ln(uyl)) u® 4 ud + u?yl.

Computing the one-form @}, it is easy to verify that @] = 0, and this implies
the function ¢;,; = 0.
Now, for ¢ = 1 and r = 2,it follows that
Py=P -F,=P

since F} = 0. Hence, the one-form @} is given by

3
77} ! (u_) dy; + v?du.

=
a;101,2 \%1

Comparing with following the I/O differential equation

d? d?
1 ~ 01,2 0p1,2 1,2 ~ fay 2 Oay 2
—1 3 3 i i i
- dy; du — P12 dy; d
wsy Z By, yj + ou u a2 = dy; yj + ou u

a
12 | i3
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This implies that ¢; 2 = u?.
The last iteration for this output leads to
wyipr3 = Py = Py~ Fi = uyi.
Repeating the same procedure for 7 = 2, it follows that
P!:=P}-F} = 2;(—uy1) + u?ylys + ayy + ul
and the one-form @? is given by
1 1
w% = —dy; + —du.
u Y
By comparison with the I/O differential equation, we obtain that
¥2,1 = UuYi-
Second iteration yields
a2,192,2 = P22 = uzy;"yz.

Finally, we obtain 32 = yZys.
Then the transformed system is of the form

21,1 0 u 0 211 0
212 |=10 0 wu z12 |+ | u?
21’3 0 0 0 21,3 uYy1
2':2'1 0 u? 22,1 uyY1
; = +{ 73
22,2 0 0 22,2 Yiy2
Y =2,1, Y2=22;1.
The state coordinate transformation is
210=11, z12=€"2, z3=2z3
22,1 = T4, 222 =Ts.
The observer for the system (29) is given by
211 0 u 0 211 0 Y1,1(21)
212 = 0 0 u» 212 + | u? + 1/)1,2(21)
000 %13 uy, ¥1,3(21)
21,3
221

J. DELEON, I. SOULEIMAN, A. GLUMINEAU AND G. SCHREIER

(29)

(211 =211 )

(0w (= uy: Y2,1(2) .
_(0 0 )(2:,;)+(y¥y2)+(¢:,;(22))(Z2,1—22’1)
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where the observer gains are given by

» (A ) bi,s ( ) bi,z " (A ) b}u

21) = —— P12(2) = —== )

1,1(21 uyl’ 1,2(21 u?’ 1,3(21 w
b2 (22) bg,l(EZ)

N 3,2 N
Y2,1(22) = T’ P2,2(%2) = )

and for the first subsystem, we obtain

1 _ 1 _ _ — 2 _ .
Ki =u, K3 =uy1, 911 =0, g1,2 = v, 91,3 = uys;

b3y =cia
d
b3 =1+craler,n —¥11) — (e —¥1,)¥11 — 3 Y1)
du
1 _ ) du
b3’2 =u (61,‘ + 61,1) + 1

d
bz11,1 =c1,1— %11+ 01,3(5;1 - Ulbl,z) - (b3,1 - U¢1,2)'/)1,1 + d—t'(bs,1 - U¢1,2)

893 d
- (bé,z —upr1)Pr,2 + uylé)_zl + a(bs,z —uth1,1)
bi,z =u+ cl,g(bé‘z —ur1) + ubzﬁ,1
d
bzl§’3 =c13uy; + y1b§,2 + a (uyl) .

And for the second subsystem, we have
K} =4’ ga1=uy1, g22=1ylys

2 _
b2,1 =C21

1+ ca2(c2,1 — P2,1) — (c2,1 — Y2,1)21 — %(1/)2,1)

du?
bg’z =u? (62,2 + 62,1) + —dT

2
b3,1

6. CONCLUSIONS

The observer synthesis for nonlinear systems has been considered in this paper.
Based on their equivalence to state affine systems, necessary and sufficient conditions
have been given to characterize a class of nonlinear systems which can be transformed
into a multivariable state affine form up to input-output injection. For this class of
systems a backstepping observer approach has been presented in order to design
an observer. Several examples have been given in order to illustrate the proposed
methodology.
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APPENDIX A
Let K the field of meromorphic functions of a € R* and b € R’.

w € Spany, py{dai,... ,day,dby,... ,db,}.
Definition A1l. A one-form w is closed if dw = 0.

Definition A2. A one-form w is exact if there exists a function 1 (a, b) such that
w = dy.

Proposition A3. Any exact one-form is closed.

Lemma de Poincaré A4. Let w be a closed one-form of the form
w € Spany(, ) {dai,... ,day,dby,... ,db,} .

Then w is locally exact if and only if dw = 0.

Theorem A5. Given w one-form, there exist a function v such that Spany{w} =
Spang {dy} if and only if

dwAw=0.

Theorem A6 (Frobenius Theorem). LetV
V = Spang{ws,... ,wn}
be a subspace of £. V is closed if and only if

dwAwi A...Awy, foranyi=1,...,n.

APPENDIX B

Proof of Theorem 1.

Necessity.

Assume that there exists a state transformation z = T'(z) transforming system ¥
into system Tamne- Thus, the I/O differential equation of the system ¥, Pi = ygk")
is equal to Py := y&;

i i ki—1
Pl =F(ain, .- ,ain-1) + T 7 (@i1, -+ Qiki—1, P01, -+ 5 Piks)-
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Notice that the first term of the right hand does not depends on ¥i,15--- ,; ., and

can be written as
) _pndfi dei-1pi,
ki—1)9J1,1 1 ,

FI:,- (ai,la cee ;ai,n—l) = y; )—dt + y; ) {—dtk‘_{ + 6;',1

(ki—
+ Z ”{ Qi +5],1} (30)

where the 5;,1(-) are functions which depend only on functions ¥ and u®), with
! < j. The functions Fy, _j»J=1,... ki — 1, have the following form

. kl._‘ —_ —_
Fi_; = ¢ a)+(‘p§k R A <pj)
dfi;
—2
4 fiy
a +62 (31)
dbmig ,'

a0k
for j =1,...,k; —1; and the function Fg' = ;. Then, the I/O differential equation
can be written as

o ey s dhi-t
Pa()— (k 1) d;l +3/,(1) dtT_l,l +A()

where A(-) = T§ @i, - @ikim1,Pits - »Pik:) + ( )6]’ 1> and A represents to

all monomials with a degree less than k; — 2. :
Notice that

dff,  Ofi.. + = Off, 1

3

dt ay 7 duy

k=15 _ 6loga,,] (ki) +Z Bloga,,] L (k=1)
dgki—1 dy U .

Now, let us apply the first step of the algorithm.
For k = 1, the one-form is given by

d! . m .
o 8P 9*Pi,
“1= Zay(”a (e s +lZ 7 (1>3y(k‘—1>d l

_ 1 afll j:‘ f11

fia j=1 =1

1 .
= Edfll,l (U, y)
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Thus, the one-form w! is given by

P d} X
P L1 af11 1 ofi,
dwf= ) {Z E (f“ dqudy’+Zayq 7 o dyg A dy;

g=d}+1

Then, the conditions of Theorem 1, for d¥ < p,
dwi Adu =0 and dwj Adyg 4y A+~ Ady, =0
are verified directly.
The proof for 2 < k < k; — 1 follows the same lines as for &k = 1.

Substituting the a;; functions in Fy, in (30), and from equation (31), F}, -
verifies
i 5‘/’1 ('C -9 4 ov; (k -3)
ki=j = Z auz

Ologa; _ dloga;, -
—<,0]{ 5y ¥ (k J)+Z 3?“” l(k ])}+ek.~—j(')

where the functions ©,_;(-) involves monomials depending on functions y*) and
u® | with I < k; — j.
Applying Step 2 for r = 1, P} is computed as follows

P = B~ F= ) -

_ 991 (ki-1) |\ Op1 ufbiD
T Oy Yi + 8u

Ologa;, _ loga;, -
{Z 0ga; 1 (k 1)+ZB 0gai,1 (k 1)}4_@&_1(_)
j=1

and set Kf =a;;.
Computing the one-form @} as follows

d!
1 OP§ - OP}
w; = R_} {26 " _l)dyJ +§——6 @ _l)dul}
01 Oy Y1 Blog @i 6log ait g
—dy;j+ ) —duy—— .
azl{ Oy; ;3111 “ aix | = 0y; Zl

Thus, @} =d ( ), and it is easy to see that the conditions

a1

dwi Adu =0 and d} Adygsyy A---Adyp, =0
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are satisfied. The necessary condition of Theorem 1 is proved for the first iteration.
For proving the iterations r = 2,... , k;, a similar procedure can be followed.

Sufficiency:
Step 1. Determination of a; ;.
Consider the nonlinear system ¥ and suppose that the conditions

dwi A du =0, and dw};Adydq,_Fl/\-'-/\dyp:O

are satisfied. The one-form w} given by

k_ckza (k)(9 (k. wy Vi + Zza (k)(9 (k —ydw

j=1ll=1

satisfies the above conditions. Then,
/

wj € Span{dyj,... ydygr }.

On the other hand, the one-form obtained from the I/O differential equation Py,
satisfies the following relation

9 Pi, .
wka‘_ckZa (k)(9 (k —k) y1+zza (k)a (k —k)d

j=11=1

Solving the set of (d¥ — 1) partial differential equations, it is possible to obtain
the a; ; functions. This ends the proof of Step 1.

Step 2. Determination of ¢; ;.

In order to obtain the functions ¢; j, we assume the a;; are known from Step 1,
and for r = 1, replacing the function a; 1, the one-form @] is given by

d! m
1 8(p1d +Z 6<p1 P Ologa; dy; + Ologa; duy

ZUIO.:_
ai,1 @iy |5 9y = Ou

On the other hand, the one-form @& obtained from the I/O differential equation
of the nonlinear system X and the conditions

dwj Adu = 0 and dwj, Adygsiq A--- Adyp, =0
allows to conclude that
@t € Span{dy;,... ydygr}
Then, the @; ; can be determined as follows. Let z; = col(z;,1 ... zik;) € Rk", for

i=1,....,p; and z;; = yi; = hi(z), where h; is the ith component of the output
equation y = h(z).
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Now, for £k = 2,... ,k;, let be
_ Zik-1— Pik—1
aj k-1 )
which represent the k; — 1 first dynamics of .
To compute the last dynamic equation 2;x,, we note that
w =z Ki + P
where

; L dKj
Pi=oixKi+Pi_y + zik —(#,
and a;x;, = 0 by construction and P} = ¢; ;.
Thus the last dynamic equation obtained as follows
. ki—1 i
Zik—1 — Pik;—1 _ y,( ) P;ﬁ‘._l
@i k-1 Ki. 4

Zik; =

Taking the time derivative of the above equation, it follows that

(o - ) Kty - (P

Zik: =

(I{;;:.'—l)2
After substitution of the function P _,, one finally gets

Zik; = Pik;-

This ends the proof.

APPENDIX C
Let be
1
siyr = 3 (bini — KimiKaathi_iga) e + Kier
=1
where s = col (s1, $2,... ,51,51+41) , € = col (e1, €2, ... ,€1+1)-

Now, writing in terms of the estimation error, we obtain

s = M(bij,¥i)e

(32)

(33)
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M(b;j,%:) =
1 0 0
b2 — 1 K, 0
b31 — K192 b3 2 — K112/11 0
= bs,1 — K13 ba,2 — (K1)" 12 0 (34)
bny — Ki_2¥n_1  bio—Ki3Ki—o ... K,
b1 — K1Y by — Ko Kathir ... biyag — K1t }
where
K,. = H a;
i=0
and ag = 1; the b; ; = b; j(z) are given by,
fori =2
o
boy = ey + 9L
21 =¢C1 + 21 (35)
fori =3

0 d 0
b3 =1+ ca(ba,1 — 1) + (b2,1 — %1) (%‘¢1)+a‘i(b21 Y1) + Ky — J2

971 (36)
dK 0
b32 = Kic2 +aiby1 + d_tl + K, Bzz
fori=4
691 d
by,1 = by — Y1 + c3(bs,1 — K1) + (b1 — K1v2) 92, + a(bs,l — K1)
092 093
2 37
+ (b32 — K1) ( B2 2) +K26z1 (37)
. 092 d 093
ba,2 = a1 + c3(b3,2— K1y1) + K1b31 + (b.a,z—Kﬂ/Jl)a—z2 + Ei(ba 2—Kiy) + K2322
d 0
by3 = c3Ka + agbs s + X (K2) + Kza—‘zz

fora<i<n+1

big = bi—21 — Ki—athi—3 + ci—1 (bi11 — Ki—3ti—2) t3 (bz—l 1 — Ki_3vi—3)

i2 B0
+kz_:l(bi—1,k Ki_3¢i_r-1) (—— k) +Ki—2< gz11>
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0g;—
bij =bi—2,; — Ki—j 3K 1%i—j—2 + Ki ( gz,l) +aj_1bi_1,j-1
7

d
+ ci—1 (bi-1,j — Kij2Ki2%i—j1) + T (bic1,j — Ki—j—oKj 1%i—j—1)

i—2
0
+ Z (bicip — Kick—2Kr—19i—k—1) (gz—f)

k=j

d
bii—2 = Ki_3+ci—1 (bi—1,i—2 — Ki—3¢1) + T (biz1,i—2 — Ki—3%1)

0g;_ 0g;—
+ai—3bi—1,i—3 + (bi—1,i—2 — Ki—3%1) <BZ z> + K (BZ ;)
1— 1—

0gi—1 d
az,-_l) + 4k,

biji—1 = Kij_oci—1 +ai—obi_1,i2+ K;_» ( %

When [ = n , where n is the dimension of the system, it is easy to see that

n

Ofn
Sp41 = Z <bn+1,i — Kn_iKi1%n—it+1 + Kn_1 (aj; >) e;. (38)

i=1

In order to determine the gains of the observer we make the last above equation

equal to zero, i.e.

bnt1,i — KnoiKi 1Y¥n_iy1 + Kng (gfn) =0, fori=1,...,n.
2;

Then, it follows that

_ bn+1,i Kn—l afn . .
Yn—it1 = KK + KK <Bzi , fori=1,...,n;

or equivalently

bnt1,n—j+1 K, ( 0fn ) .
P = : + , forj=1,...,n. 39
Vs Kn-jKj-1  Kn—jKj1 \Ozn—j11 ’ (39)
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