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PROGNOSIS AND OPTIMIZATION OF HOMOGENEOUS 
MARKOV MESSAGE HANDLING NETWORKS1 

PAVEL B O Č E K , T O M Á Š FEGLAR, MARTIN JANŽURA AND IGOR VAJDA 

Message handling systems with finitely many servers are mathematically described as 
homogeneous Markov networks. For hierarchic networks is found a recursive algorithm 
evaluating after finitely many steps all steady state parameters. Applications to optimiza­
tion of the system design and management are discussed, as well as a program product 5P 
(Program for Prognosis of Performance Parameters and Problems) based on the presented 
theoretical conclusions. The theoretic achievements as well as the practical applicability of 
the program are illustrated on a hypermarket network with 34 servers at different locations 
of the Czech Republic. 

1. INTRODUCTION AND PROBLEM STATEMENT 

By message handling we understand transmission of digital messages between objects 
called servers. Typical messages are data files, computer programs or electronic 
mail. Typical servers are computers. A message handling network (briefly, MHN) 
is a system defined by a set of servers S = {Si,.. ., S m } where m > 1, and by two 
sets of rules TZG and IZT- The rules IZG specify how the messages are generated and 
how they enter and exit the servers from S. The rules TZT specify how the messages 
are transmitted between the servers of S. 

The rules TZG can be reduced to the convention that S is extended by a virtual 
server So representing the collection of all the network users who produce and/or 
consume the transmitted messages, and to the assumption that all the users alto­
gether produce X messages per time unit (in symbols, TU), of an average size ft [bit]. 
The number X may be random, with the expectation 

EX = A [1/TU]. 

The parameters (3 and A are related to the average rate R [bit/TU] of information 
generated by the collection of all users by the formula 

(3\ = R. 

Supported by the Grant Agency of the Czech Republic under Grant 102/99/1137. 
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If S = {So, S i , . . . , Sm} then the rules of transmission of messages from So to the 
remaining servers S i , . . . , S m , and vice versa, are contained in the set 1ZT> 

Thus the rules TZT must be able to specify for all 1 < j < m the numbers 

nj(t)eZ+, Z+ = {0,1,...}, 

of messages in the servers Sj at a time t > 0. In addition, we may set no(t) = +oo, 
which means that there is an infinite number of messages in the virtual (external) 
server So- State of the MHN at a time t > 0 is thus described by a vector 

n(t) = ( m ( t ) , . . . , n m ( t ) ) 

from the state space Z™, and the rules TZT must be able to specify evolution n(t), 
t > 0, of the state of MHN. We assume that n(0) = (0, . . . ,0) G Z% and that the 
states n(t) for t > 0 are random vectors with values in Z™. More precisely, we assume 
that n(t), t > 0, is a homogeneous Markov process. A Z™-valued homogeneous 
Markov process is specified by a semigroup of stochastic matrices 

P(s) = (Pn,n(s))n,neZ™, s>0 

where 
Pn n(s) = Pr (n(t + s) = h \ n(t) = n ) , t > 0, 

and for all s, s > 0 
P(s)P(s) = P(s + ~s), P(0) = 7, 

with I being the identity matrix. 
Our rules TZT are thus reduced to the parameters /3, A and to the semigroup P(s), 

s > 0. Under standard technical assumptions (see, e.g., Norris [10] for a detailed 
treatment), the semigroup is uniquely determined by a matrix 

Q = (Qn,n)n,n£Z™ 

of intensities of transitions from the states n to n satisfying for every s > 0 the 
equations 

^P(s) = P(s)Q and ^P(s) = QP(s). 

These equations together with the above considered relations imply in particular 
that 

l i m P ( S ) - P ( 0 ) 
s->0 S tëЧ.г 

l . Є . 

P(s) = I + S Q + o(s) as 5 -> 0. (1) 

Therefore if a state n G Z™ differs from n G Z™ then for every t > 0 

Pr (n(t + s) = ft | n(t) =n) = s - Qn,n + o(s) as s -> 0, 

and for every n G Z™ and t > 0 

Pr (n(t + s) = n \ n(t) = n) = 1 + s • Q n , n + o(s) as s -+ 0. 
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It follows from here that Qn,n > 0 for n 7-= n and 

Qn9n = - J2 Q»* for every n e Z™. (2) 
heZ^,h^n 

Assuming that Q is irreducible and non-explosive (see again Norris [10], section 
3.5), our problem is to find, whenever it exists, a stationary (steady-state) probability 
distribution 

7T = (7rn : n G Z™) (3) 

on the state space Z™ for a given MHN under consideration. In other words, the 
problem is to prove that 

lim P(t) = n , 
n—>oo 

where all rows of the matrix n are identical, equal 7r. Indeed, then 

nP(t) = n for a l W > 0 , 

i. e. then n satisfies the standard Markov stationarity condition. 
We shall see that a stationary distribution -K enables to evaluate very easily the 

steady-state expectation of the corresponding Markov process 

v = (vu...,vm) = En= ^2 n-Kn, (4) 
nez™ 

which is sufficient for prognosis of performance of the corresponding MHN and for 
prognosis of eventual problems under extremal payloads. In this sense a reasonably 
fast evaluation of the distribution ir can be used to evaluate various designs of MHN's 
and to choose among them the optimal one. 

It follows from (1) that if there exists a row vector 7T = (irn : n G Z™) G (0, l) z+ 
solving for a matrix of transition intensities Q the system of equations 

TTQ = 0 and ^ 7rn = l (5) 
nez™ 

then 7r is a stationary distribution of the corresponding Markov process. Thus for 
all MHN's observing the transmission rules IZT under consideration we reduced the 
problem of estimation of performance parameters and prognosis to the statistical 
estimation of 6, A and Q and to the solution of equations (5). 

Z/^-valued time-homogeneous Markov processes n(t) = (ni(£), . . . ,nm(£)), t > 0, 
considered above are traditional mathematical models of queuing networks with m 
servers Si,...,Sm where nj(t) is a random size of queue of customers in (or in 
front of) the server Sj at time t > 0. A systematic theory of such networks has 
been presented, e.g., by Walrand [14]. A more recent treatment can be found in 
van Dijk [13]; see also corresponding chapters in Walrand [14], Pattavina [12] and 
Higginbottom [3]. In this paper we extend the theory presented in Walrand [14] 
and van Dijk [13] to the situation where the network customers are messages and 
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the servicing of messages follows rules prescribed by message handling protocols. 
We also propose special statistical procedures for estimation of parameters /?, A and 
Q, and for testing hypotheses about these parameters. Further, for an important 
class of hierarchic networks we derive a recursive algorithm solving analytically the 
equations (5). It is able to find in a reasonable time exact solutions -IT for quite large 
MHN's (large m). Finally, we report about our program 5P (Program for Prognosis 
of Performance Parameters and Problems) evaluating on the basis of this algorithm 
the solutions ir and related parameters serving for prognosis of performances of 
MHN's in the steady-state, and for prognosis of eventual problems in these networks. 

2. SIMPLIFICATION OF MATRIX Q 

Let us consider an arbitrary MHN specified in Section 1, defined by a set of servers 
S = {So, S\,..., Sm}, positive parameters /?, A, and a matrix of intensities of tran­
sitions Q with zero sums of rows and nonnegative non-diagonal elements. 

By definition, the matrix Q is infinitely dimensional and thus at the first sight 
practically intractable. In this section we discuss conditions which essentially sim­
plify its structure. 

Consider special values of the state vector n, namely 

e{ = (0,0, . . . ,0,1,0, . . . ,0) G Z™ for 1 <i <m 

where 1 is at the place i, and 

e o = (0 ,0 , . . . ,0 )eZ™. 

We have seen in Section 1 that the elements Qn>n of the matrix Q characterize 
probabilities of transitions n i-> n of the network states n(t) = n in time intervals 
(t, t + s) of a very short duration s. Consider the following three events in an interval 
of a very short duration s. 

E\\ No message is transmitted between the servers of S (this implies fi = n); 

E2'. One message is transmitted between the servers of S (this implies n = n—ej+ek 
for some 0 < j , k < m, j + k / 0); 

Es\ More than one message is transmitted between the servers of S. 

We assume that the transmission of messages from servers of S is autonomous (inde­
pendent) in the sense that the probability of E3 is negligible (like o(s2)) with respect 
to the probability of E\ U E2. As easy to see, Ei U E2 implies n = n — ej + e^ for 
some 0 < j , k < m. Therefore 

QnyU = 0 unless n = n — ej + e* for some 0 < j , k <m. 

This means that the matrix Q is sparse in the sense that majority of its elements is 
zero. The potentially nonzero elements Qn^n are situated on or near the diagonal. 
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Moreover, the potentially nonzero elements of the matrix Q are assumed to be of 
the form 

Qn,n-es+ek = ><j,k n~€j for all 0<j,k<m,j^ k, (6) 
071 

where (j)n > 0 for n G Z™ characterizes a potential of the network in the state n to 
transmit messages (we can put formally (j)n = 0 for n £ Z™). The matrix 

A = (Ai.*)^fc=0 with A^ = 0 f o r O < j < m (7) 

and the sequence (f>n,
 n G .Z™, characterize uniquely the whole matrix Q. Indeed, 

by (2), the diagonal elements of Q are given by the formula 

771 i 

Qn,n = - }2 *-*'* \ 6j (8) 
j,k=0 ™n 

and the elements Qn,n appearing neither in (6) nor in (8) are zero. 
In the most common case, where the potential of the network to transmit messages 

is not influenced by the state n, we put $ n = 1 for all n G Z™. In this case the 
matrix Q is determined by m(m + 1) nonnegative parameters - the nondiagonal 
elements of A. 

Let us point out that the number m(m +1) of unknown parameters of the matrix 
A can be reduced by 1. Indeed, the overall intensity A of transmission of messages 
from the server So to the set of servers { S i , . . . , Sm} must satisfy for every n G Z™ 
the relation 

;П+Єk-

k=l 

Therefore, by (6), 
771 

A = X>>* (9) 
k=i 

where A is assumed to be given. 
Note that the intensities Qn,n as well as A ^ are assumed to be measured in the 

same units as the intensity A, i.e. in [1/TU]. 

3. SOLUTION FOR GENERAL MHN'S 

In this section we consider an arbitrary MHN specified in Sections 1 and 2, defined by 
a set of servers S = {So, S\,..., Sm}, positive parameters /?, A, an (m +1) x (m +1) 
matrix A considered in (7), and a sequence of potentials <f)n considered in (6). The 
problem is to solve the system of equations (5) for the matrix Q with the nonzero 
elements given by (6) and (8). 

It is easy to see that, under our assumptions, (5) is equivalent to 

771 

J2 (nn-ej+ek Qn-ej+ek,n - 7Tn Qn,n-ej+ek) = 0 for all U 6 Z^ (10) 

j,k=0 
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and 
£ *n = I- (11) 

nez™ 

The infinite system of equations (10) can be considerably simplified by seeking for 
a solution IT = (7rn : n G Z™) in the form 

m 

nn = c<f)nY[w"£ forn = ( n i , . . . , n m ) G Z™, (12) 
£ = 1 

where w = (w\,... ,wm) is a vector of positive constants not depending on n and 
c > 0 is a normalization constant which is to be specified from equation (11). After 
substituting (12) in (10) and defining w0 = 1, we obtain 

^.XkJ-^i--c^f[^^-^=^ 
j,k=0 \ £=1 Wj Vn-ei+ek / = J_ 

and, after an obvious simplification, 

£ Фn-ej+eh П < ^ A*j / - - - - - cфn П - ľ AJlfc -^-5- = 0 
Шj (D n _ Є j ._ |_ Є f c <Dn / 

m m 

E[ *"?' £ ^" e i ™i ( E^ A f c - i - XJ,kWj) = 0. 
*=1 j=0 \k=0 J 

Prom here we obtain the following result. 

T h e o r e m 1. If the system of equations 
m 

^ (wk^kj - ><j,kWj) = 0 , 1 < j < m with w0 = 1 (13) 
k=o 

has a positive solution _»i,.. . ,*uvm then (12) with c satisfying (11) is a stationary 
distribution of the MHN under consideration. If cj)n = 1 for all n G Z™ then c 
satisfying (11) exists if and only if wt < 1 for all 1 < £ < m. In this case the 
stationary distribution is 

m 

*n = l[(l-v>i)w?t forn = ( m , . . . , n m ) G Z ^ . (14) 
i=i 

P r o o f . The only assertion which remains to be proved is that the reduced system 
of equations for 1 < j < m figuring in (13) is equivalent to the full system for 
0 < j <m which is required in the last equality preceding Theorem 1. This follows 
from the fact that the rank of the full system of m+1 equations is at most m because 
the sum of these equations is zero, 

m m 

_C _C (WhXk>i " XJ^Wj) = 0. 
j=0 k=0 

Therefore any one of these equations can be deleted. • 
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R e m a r k 1. In fact, we have proved that the distribution -K satisfies the stronger 
partial balance equations 

m 

/ v \J^n—ej+efc tyn—ej+ejt,n "~ ^n Vn,n—ej+ek) = U 
k=0 

for every j = 0 , . . . , m and all n G Z™. 

R e m a r k 2. The solution (u t i , . . . , wm) of (13) is unique providing the matrix Q 
given by (6) is irreducible (cf. Theorem 3.2 in Whittle [15]). 

Theorem 1 is not an entirely new result. As already mentioned in Section 1, it 
can be obtained by adapting similar results of Walrand [14] or van Dijk [13] to the 
networks specified in Sections 1 and 2. 

4. SOLUTION FOR HIERARCHIC MHN'S 

Let us consider the same MHN as in the previous section with (j)n = 1 for all n G Z™. 
Such an MHN is defined by a set of servers S = {S0, S i , . .» , S m } , positive parameters 
/?, A, and an (m + 1) x (m + 1) matrix A = (Xjjk) with Xjik > 0 and zeros on the 
diagonal. Obviously, 

Xj,k + Xkyj = 0 

is equivalent to the assumption that there is no message transmission link between 
the servers Sj and Sk. The matrix A thus defines a symmetric binary relation of 
"being connected by a link" on S: Two servers Sj and Sk are connected by a link if 
at least one of the intensities Xjyk and Xkj is positive. This relation is not reflexive 
(Xjj = 0 for all 0 < j < m) and it needs not to be transitive. It defines a graph 
G(S) on every nonvoid subset of servers S C S. 

We shall suppose that the graph G(So, Si,..., Sm) is connected (which implies the 
irreducibility of the matrix Q) and its subgraph G(S\,..., Sm) is a tree. This means 
that the virtual server representing the collection of network users, is connected to 
the servers S i , . . . , Sm and that there is a hierarchy between the servers S i , . . . , Sm. 
To describe this hierarchy, define subsets of servers 

SK = {Sk:keK} for K C {l,...,m} = K0. 

For every k G Ko let us denote by C(k) C Ko\ {k} the set of servers connected to 
k. 

(1) We fix a unique root server Sr G {S i , . . . , S m } . This is a first order server, 
super or dinated to all those from SK0\KI ¥" 0 where K\ = {r}. 

(2) For every i = 2 , 3 , . . . we set 

Ki= u m 
jeKi-i 
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where P(j) = C(j) \ Ki-2 for every j G -Ki-i- Thus Spy) C SK{ is the set 
of servers subordinated to the server Sj G S/^-i- and 5ny) G SKI-2^ where 
{n(j)} = C(j) fl I-Ti-2, is the unique server superordinated to Sj G SK{-I-

The set of the ith order servers disjointly decomposes as follows 

SK{ = SB{ + SL{ 

where SL{ with Li = {j G Ki]P(j) = 0} is the (possibly empty) set of ieaf 
servers of the second order and its relative complement SB2 1s the set of branch 
servers of the ith order. 

(3) After finitely many steps, say £, we obtain SKt = Sst + SL£ where 

SBl = 0 and Lt ^ 0, 

i. e. I is the maximal order of the tree. Then 

i 

SL = \JSLÍ ( i .e .L=(jL i#0) 
i=2 i=2 

is the set of leaf servers of the network and 

i-l £-1 

SB = J SBi (i. e. B = \J Bi where B{ ^ 0) 
t = 2 2=2 

is the set of branch servers of the network. Obviously, 

SKo = S{r} +SB + SL (i.e. { 1 , . . . ,m} = {r} + B + L), (15) 

where SB contains branch servers of all orders 1 < i < £ while SL may contain 
leaf servers of only some of the orders 1 < i < t (e. g. all servers in SL may be 
of order t). 

Note that hierarchic networks of the described type (with So connected by a link to 
all the leaf servers) are quite common in the practice. 

Next follows a recursive algorithm which solves equations (13) for these networks. 
In this algorithm, Sn(j) again denotes the (unique) superordinated server connected 
by a link with Sj G 5^ 0_{ r}, and Sp^ denoted the (nonvoid) set of subordinated 
servers connected by a link with Sj G SK0-L-

Step 1: Put Cj = bj = 0 for all j Є L. 

Step 2: Put 

y ЬkЛck + Xok) a n d 

kíҐU)Xк'j + bк + X к ' ° 

_ —-^ Лj,k(bк + Afc,o) 

~ kMi)Xк'j+bк+Xк'° 
for j e Bi 

k£Fu)"k'j^Vk~r/yk'° 

andi = e-l,£-2,...,l where Bi = {r}. 
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Step 3: Put 

Step 4: Put 

Cr + XQ r 
W r = h -i. \ 

0r + Ar.o 

гv^XnЩ+cj + Xoj { Q r j e B i 

xзrì ) + bз + лi,o 

Theorem 2. For hierarchic networks under consideration, the above defined al­
gorithm solves after finitely many operations the system of equations (13). The 
complexity of this algorithm is proportional to the network size m. 

P r o o f . For j G L we get from Steps 1 and 4 

w . =

 Wn(j) Xn(j)J + X0J 
Xj,n(J) + X3,0 

which verifies the j t h equation of (13). Let us now consider £ — 1 < i < 1 and 
suppose that for all j G -Bi+1 + Li+i the equations of (13) with Wj given in Step 4 
have already been verified. We are interested in the equation of (13) for j G B{. 
Since P(j) C JE?i+i + Lt+i and n(k) = j for k G P{j), we obtain 

\ \ . V ^ (W3X3,k +ck- A0,* . \ x x 
^n(j) Xn(j)J-Wj Xj,n(3)+ 1^, [ \ , , L . A A*J ~ w3 Aj,k ) + A 0 , j -™j A 0 j = 0. 

kep(j) ^ *,J" fc *'° ' 

After standard calculations we obtain from here the solution 

Wn(j)Xn(j)J + EkeP(j) tj+C+\k
kl + Ai>° 

An(j),j + Z^keP(j) Afc>i-r6fe+Afc,o + A1>° 

_ Wn(j)Xn(j)J +Cj +X0,j 
X3,n(3) + b3 + Aj,0 

i. e. the solution prescribed by Step 4. If j = r then the equation (13) differs from 
the previous one only by putting 

Xn(j)J = XJMJ) = °' 

Therefore we obtain from the previous calculations the solution 

cT + Ao,r 
Wr= h a, \ 

which coincides with that given in Step 3. By taking into account the disjoint 
decomposition (15), we see that the values W\,W2,... ,w m defined by the algorithm 
solve the equations (13) for all 1 < j < m. The proportionality of the complexity 
to m is easily seen from Steps 1-4 if one takes into account that the number of 
elements in L (and thus the number of substitutions in Step 1) is bounded by m, 
and also that the maximal hierarchic order £ (and thus the number of computations 
in Steps 2 or 4) is also bounded by m. ---
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5. SPECIFICATION OF PARAMETERS /?, A AND A 

In this section we consider the MHN's introduced in Sections 1,2 and studied in Sec­
tion 3 and 4. It was assumed there that the parameters of the networks are given, 
namely that there are given the average message size ft [bit], average intensity of ar­
rivals of messages into the network A [1/TU], the nondiagonal elements of the matrix 
A, i.e. the intensities Xjk [1/TU] for 0 < j , k < ra, and the sequence of potentials 
(j)t, n £ Z™. It was mentioned that if these parameters are at the disposal then it 
is possible to compute variables w\,..., wm enabling an easy prognosis of perfor­
mances of MHN's and prognosis of problems such as buffer overflows, congestions, 
unacceptable message delays (for more about this see the next section). 

In this section we study methods for specification and verification of these param­
eters. For simplicity we restrict ourselves to the case (j)n = 1 for n G Z™ considered 
in Sections 3 and 4, so that the attention is focused on the parameters /?, A and A. 
We propose methods for statistical estimation of these parameters, and for testing 
hypotheses about them. 

Performance of any MHN is sensitive to the flow of information from the network 
users to the network, i. e. it depends on intensities and sizes of messages produced 
by the collection of users (virtual server So). The intensities, and possibly also the 
sizes, depend on hours of a day, days of a week and weeks of a year. We are usually 
interested in performances of MHN's during the periods of peak activities of users, 
when the flow of information from them (in average) culminates and the network is 
under maximal pressure. Therefore the statistical inference discussed below should 
be done under the extremal circumstances when the activity of users achieves a 
global maximum. However, one might be interested in the network performances 
under different circumstances, e.g. under various locally maximal activities of users. 
However, in every case assumptions about the users should be clarified as precisely as 
possible, and it should not be forgotten that conclusions drawn from the mathemat­
ical MHN model can be taken seriously only in situations where these assumptions 
are fulfilled. When we discuss in the sequel the inference about parameters /?, A and 
A, we have in mind the situation of globally maximal activity of users, or another 
well defined situation, and we assume that this situation remains unchanged during 
collecting empirical data. 

5.1. Inference about (3 a n d A 

Suppose that users (or potential users) of an MHN produced empirical data (/3\,t\), 
. . . , (/?/v,̂ /v), where /% denotes the size of the ith message (in [bit]), and U the 
daytime (in [TU]) when this message was sent to the MHN (in the case of potential 
users of a planned MHN, U is the time when the message was ready for sending). 
We suppose that ti < <2 < • • • < *.rv« Then one can deduce from the empirical data 
that the total amount of information 

/V-l 

Eft 
І = l 
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was prepared for the network in the time interval (£i,£Iy) so that 

R = ^i=1 Pl [bit/TU] (16) 
£Iv —1\ 

is an estimate of the average rate of information R produced by the collection of 
users. 

If we assume that the arrivals of the sampled messages are realizations of a ho­
mogeneous Poisson process then the interarrival times £i+i —1{, 1 <i < N — 1, are 
independent realizations of a random variable Y with the exponential density 

f(y) = \e-
Xy fory>0 (17) 

where A is the intensity parameter which we are interested in. This parameter can 
be estimated from the available data £i, t<i,..., £Iv by several different methods. The 
maximum likelihood method leads to the estimate 

IV- 1 
[1/TU]. (18) £Iv - h 

An alternative class of minimum disparity methods can be found in Menendez et al [6]. 
We see that the maximum likelihood estimate (18) relies on the assumption that 

the differences ti — h, • • •, £Iv-i are distributed by the density (17) to the degree that 
it ignores the data ti,... ,£Iv-i- This means that this estimate is very sensitive to 
the deviations of the true distribution densities from (17) (and thus to violations of 
the assumption that the messages arrive to the network as a homogeneous Poisson 
process). Alternatives to (18), which are much more robust with respect to viola­
tions of the above mentioned assumptions, are the minimum disparity estimators 
systematically studied in Menendez et al [6]. 

An alternative to the statistical estimation of R and A, based on the empirical 
knowledge contained in data (/?i, £ i ) , . . . , (/3/v, £Iv), is an expert estimation based on 
a theoretical a priori collected knowledge. Expert estimates R and A can be tested 
with the help of empirical data by using the disparity or entropy tests studied in 
Menendez et al [7], Darbellay and Vajda [1] and Esteban et al [2], or by the special 
tests proposed by Menendez et al [5], Morales et al [8] or Pardo et al [11]. 

For any estimates A and J?, an estimate /3 of the average message size (3 follows 
from the formula /3A = R of Section 1, namely 

R 
/ J = | [bit]. 

For example, for the statistical estimates R and A given by (16) and (18) we get the 
intuitively appealing sample mean 

1 " _ 1 

^ J N T T i E A N * ( 1 9 > 
1 = 1 

If we use a robust estimator A which differs from (18) then we obtain in this manner 
a robust formula for ft, which will be different from the sample mean (19). 
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5.2. Inference about A 

In this subsection we assume that the parameters (3 and A are already specified 
and the problem which remains is specification of A = (Xj,k)™k=o with Xjj = 0 for 
0 < j < m. To simplify the notation, we drop from double subscripts the comma, 
e. g. we put 

Ajfc = Xjtk-

The intensities Xjk cannot be statistically estimated as easily as the overall input 
intensity A in 5.1. From this, and also from the interpretational point of view, it is 
convenient to decompose these intensities 0 < j , k < m by the formula 

*i* = VjPjk, (20) 

where fij is an average intensity of service in the server Sj and pjk is a probability 
of routing a message from Sj to Sk and where we put /x0 = A (cf. below). The 
separate estimation of the intensities /ij, 0 < j < m, and of the stochastic matrices 
of routing probabilities 

P = {pn^o (21) 

looks more hopefully than the direct estimation of the matrix A. 
It follows from (9) and (20) that 

m 

Ho = 2_^ Xok = A. 
k=l 

For the remaining fij, 1 < j < m, we get from the definition that 

m 

N = '%2wkPjk> (22) 
k=o 

where fijk > 0 is the intensity with which Sj serves the messages routed to Sk- We 
can put for every j ^ k 

w - ^ + j s ^ r , i / T u i ' <23) 

where /3 was introduced above and 

Tjk [TU] is an average time needed to prepare a message for transmission and 
to activate the transmission link from Sj to 5^, 

ajk € (0,1) is coefficient of effectivity of the link from Sj to Sk (ratio of the 
effective transmission rate and the transmission rate); depends on 
the data link protocol, 

Rjk [bit/TU] is the transmission rate of the link from Sj to Sk-

Bjk [bit/TU] is the number of links from Sj to Sk. 
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The data transmission rates Rjk are standard technical parameters of data links, 
and the coefficients of effectivity ctjk are standard technical parameters of data link 
protocols. The time delays Tjk can be estimated by using an expert knowledge, or 
by using randomly sampled empirical data and employing the statistical estimators 
cited in Subsection 5.1. 

The only open problem which remains is estimation of the routing probability 
matrices P considered in (21) which are needed in (20) as well as in (22). This 
problem is studied separately in the next subsection. 

5.3. Inference about P 

From (20) and the assumption that the diagonal elements of A are zero we see 
that the diagonal elements of P = (Pjk)™k=o a r e z e r o* ^n * ^ s subsection we study 
estimates 

P = (Pjk)j,k=0 

of the matrix P under assumption that there are at the disposal estimates ( / i , . . . , fm) 
and ( f 1 , . . . , fm) with the following interpretation: 

fj is the probability that a message enters the network through the server Sj 

fj is the probability that a message leaves the network from the server Sj 

for every j G Ko- One can use expert estimates or relative frequency estimates based 
on the empirical data. (If the MHN is not yet realized then only the first option is 
applicable.) In this subsection we skip the symbol * in all estimates, i.e. we denote 
all estimates simply by fj, / J and pjk. 

We propose three different heuristic methods for estimation of the matrix P based 
on the evidence ( / i , . . . , fm) and ( f1 , . . . , f m ) . The attention will be restricted to 
the hierarchic networks of Section 4. We shall need the notation n(j) and P(j) 
introduced there, and also the disjoint decomposition (with + denoting the disjoint 
union of sets) 

K0 = {l,...,m} = L + B + {r} (cf. (15)). 

Note that n(j) is undefined for j = r and P(j) = 0 for j 6 L. By II(j) we denote 
for every 1 < j < m the set of indices of the server Sj and of all servers directly or 
indirectly subordinated to Sj. Formally Tl(j) can be defined by induction as follows 

r {j} if jeL 

n(i) = | {J} + E*ep(i)n(*0 if i € £ 

( {l,...,m} if j = r. 

For the sake of brevity we define 

ie.4 

for Ac KQ, and analogously fA. 
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Method A . 
Put pok = fk for k e K0-
For every 1 < j < m put 

Pзk = < 

P if k = 0 

/n<*> if A; € P( i) 

1 - /nW) if fc = n(j) 

0 otherwise. 

Method B. 
Put pok = fk for k e KQ. 

For every 1 < j < m, j ^ r, put 

Pjfc = < 

Я  
/п( Я +/ п < j ) 

jтП(fc) 

and 

iffc = 0 

, 0 otherwise 

/ r if k = 0 

Prk = { fU{k) if k eP(r) 

0 otherwise. 

Both these methods are based on rational assumptions. But Method A does not take 
sufficiently into account where the messages entered the network. Method B takes 
into account where the message entered the network but assumes a well organized 
centralistic protocol under which all messages are passing through the root server 
Sr. Both types of assumptions are questionable and they represent extremes of some 
kind. 

Certain compromise between these extremes might be the following combination 
of both methods. It uses probabilities -Kj of a, local communication in the subnetworks 
of servers £n(j), 1 < J < m - The local communication probabilities are defined by 

7Гí = 

pЩi) 
ЃЩJ) t 

ÍЩj) ' 
1 < j < m, 

where -Fn/j\ - s the probability that a message enters the network through the set 
of servers n^ ' ) and leaves the network from the same set of servers. Under our 
assumptions we have nr = 1. For j G B we can say only that in typical situations 
0 < TTj < 1. 
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M e t h o d C. For every 0 < j , k <m put 

Pjk =njpfk + (1-*j)pfk> 

where p?k is the solution by the Method B and IYA. is the solution by the Method A 
for the subnetwork of servers 5ny)> i-e. 

Pjk — 

j L 
fПU) ifk = 0 

£ £ if*eP(i) 
0 otherwise. 

A disadvantage of the Method C is that it requires an additional inference about 
the vector (TTJ : j G B). Expert estimates are in this situation probably difficult and 
statistical inference requires many random samplings. 

Thus neither of these methods is completely satisfactory. The exact rigorous 
solution, however, can be obtained only under additional information. 

M e t h o d D (general). Similarly as above, let F* for every j , k e Ko denote the 
probability that a message enters the network through the server Sj and then leaves 
the network from the server Sk. Suppose that the probabilities 

F = iFj }j,keKo 

are given. We have ^2jikeKo Ff = 1, and let us again write F f = YljeA 52keD Fj-
Due to the tree structure of the network, the path of every message is linear and 

uniquely given. Thus, we may observe 

pfк 
Pr(message enters Sj and then passes to Sk) 

Pr(message enters Sj) 

for j = 0, ke K0, 

for j G Ko, k = 0, 

= < 

ғҜo 

1 pJ 

1 r Л Ü ) e 

тШ rЩJ) 
i pЩJ) 

7 ( j ) rЩк)° 

0 

for j G K0, k = n(j), 

forjeKo, kGP(j), 

otherwise, 

nn(fc) 
where *y(j) = FJ

KQ + F^ffi + T,keP(j) Fn(ky i s f o r e v e r y J e KQ a n appropriate 
normalizing constant. 

M e t h o d D ' (with independence). Providing we have only the "entrance" and 
"exit" probabilities (/ i , . . . , f m ) and ( f 1 , . . . , f m ) as above, we may add the inde­
pendence assumption in order to obtain the probabilities F , namely 

-? /,••/*. 
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Then the above formulas simplify, and we have 

fk for j = 0, ke K0, 

^ y P for j G K0, k = 0, 

^ y /n ( i ) ( l - J n ( i ) ) for j G K0, k = n(j), 

- f e ( l " fu(k)) fU(k) for J G K0, k G P( j) , 

0 otherwise, 

where now 7( j) = p + /n(;)(l - / n ( j ) ) + E * 6 P ( i ) ( l " /n(*)) • Jn(fc)-
The estimate P D , in spite of being derived from the exact solution P D , can­

not be considered universally better than those obtained under A,B, and C. The 
independence assumption is rather strong and can be easily violated in practical 
situations. It depends on the number and type of users connected to the particular 
servers. (E.g., one should expect Fj = fj • fj for messages entering and leaving the 
same server Sj.) 

6. PROGNOSIS OF PERFORMANCE AND OPTIMIZATION 

In this section we use solutions w\,..., wm of the equations (13). Before going further 
notice that if the intensities from the matrix A can be decomposed as assumed in 
(20) then these equations can be transformed into the form 

m 

5 3 Vk P^j =yj> 1<3<™> with y0 = [i0 = A. (24) 
k=o 

The desired w\,..., wm are then obtained from solution y\,..., ym of this system 
by formula 

Wj = — for 1 < j < m. 
N " " 

From w\,..., wm and the basic network parameters /?, A, ji\,..., / i n and P can 
be done conclusions about the performance of the network and prognosis of values 
of many performance parameters. The most important conclusion is that if Wj > 1 
for at least one j then the number nj of messages in the server Sj will increase to 
infinity and the whole network will collapse. When the remaining basic network 
parameters remain then the initial condition yo in (24), and therefore also solutions 
j / i , . . . , ym and i0 i , . . . , i0m, are increasing functions of A. Therefore 

C = p sup { A > 0 : sup Wj < 11 [bit/TU] (25) 
I l<i<m J 

is a capacity of the network. It is a sharp upper bound on the amount of information 
which can be transmitted by the network with a finite delay. 

In the rest of this section we assume that 0 < wn < 1 for all 1 < j < m and the 
conclusions are valid in the steady state of the network, achieved for t -> oo. Then, 
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applying the above results and the well-known Little's formula (cf., e.g. Nelson [9], 
Section 7.1), we arrive at the following conclusions. 

(i) Average number of messages in the server is 

WA 
Vi = 

1-Wj 

and the average number of all messages in the network is 

m 

(ii) A message spends in the server Sj 

^- time units (TU), 
A 

namely 
WjVj 

TU 

by waiting in a queue and 

Џ TU 
A 

by the processing and transmission. 

(iii) The average number of messages passing through the server Sj per one TU is 
fjijWj, of them HjWjPjk are routed into the server Sk-

(iv) Average delay of a message in the network is 

— TU. 
A 

Of this time 
1 771 

" " " TU 

1 771 

тJ2wiui 

is spent by waiting in the server queues and 

TU 
1 iii> 

A?> 
. 7 = 1 

by processing in the servers and transmission in the communication links. 

Prognosis of the network capacity by means of (25), and of the performance pa­
rameters by means of the formulas in (i)-(ii), enables to detect eventual problems 
in existing MHN's or in their projects. By combining the prognosed parameters 
with cost functions and network management rules, one can optimize projects of 
planned MHN's, or innovations of existing MHN's, like admission of new users or 
modernization of hardware and software. 
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7. PROGRAM 5P AND AN ILLUSTRATIVE EXAMPLE 

We prepared a Program for Prognosis of Performance Parameters and Problems 
(5P). Its basic unit is a subprogram for evaluation of solutions of Section 4. Inputs 
and outputs are provisional and simple, in order to replace them easily when 5P will 
be incorporated into professional program products of potential users. The input 
data structure describing servers Si,..., Sm is proposed so that it is independent 
on m and on the structure of links between the servers. Therefore 5P imposes no 
a priori limitations on the network size m, and the only limitation is the computing 
time. Solutions for m « 103 are very fast on most modern PC's. Input data of the 
subprogram concerning each server Sj are as follows. 

— Index n(j) of the superordinated server £n(j) (not for n = r). 

— Transmission rate Rjn(j) [bit/sec] of one link to 5 n y) (not for j = r). 

— Number of links to Sn(j) (not for j = r). 

— Time tjn(j) [ sec] f° r activation of the links to 5 n yj . 

— Probabilities fj and fK 

We assume the symmetry of the transmission rates, Rjk = Rkj for 1 < j , k < m, 
and RJO = oo for all 1 < j < m. 
Input data of the subprogram concerning the network are as follows. 

— Coefficient of effectivity of links a (assumed to be the same for all links). 

— Average message size /? [bit]. 

— Input intensity A [1/hour]. 

Output data of the subprogram concerning each server Sj are as follows. 

— Intensity of service fij [1/hour]. 

— Intensities Xn(j)j and Xjn(j) [1/hour] (not for j = r). 

— Intensities AJO and AOJ [1/hour]. 

— Solution Wj. 

The program is implemented in Borland Pascal for Windows, version 7. It allows 
graphical realizations of all performance parameters (except the MHN capacity) as 
functions of variable input intensity A. More details about it can be found in Janzura 
and Bocek [4]. 

Next follow an example analyzing a hypermarket MHN physically covering the 
Czech Republic and consisting of 34 servers. The input data for the subprogram 
are in Table 1, where the root server Sr = Si and the number of links between all 
servers is 1. The network data were as follows 

a = 0.8333, fi = 30000 [bit], A = 100 [1/hour] 

and the Method A of Section 5.3 was used to evaluate the routing probabilities Pjk 
for j T*= 0. Output data of the subprogram and some of the output data of the 
program are in Table 2. 
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Table 1. Input subprogram data for servers S i , . . . , S34. 

Sj Sn(j) Rjn(j) tjn(j) fj ľ 
Bl - - - 0.61181 0.39898 

s2 
5i 4800 6 0.001 0.001 

s3 
5i 4800 6 0.001 0.013 

S4 5i 4800 6 0.001 0.013 

s5 
5i 64000 4 0.03986 0.11997 

sб 5 5 
4800 6 0.001 0.013 

s7 
5 5 4800 6 0.001 0.001 

ss 
5 5 

9600 6 0.001 0.001 

S9 5 5 
9600 6 0.001 0.001 

Sю 5 5 56000 6 0.001 0.001 

Sn 
5 5 56000 6 0.001 0.001 

S l 2 5 i 256000 2 0.14791 0.11999 

5iз 5 l 2 800 6 0.001 0.001 

5 l 4 S12 4800 6 0.001 0.001 

5 i 5 5 l 2 4800 6 0.001 0.013 

5 i б 5 i 2 4800 6 0.001 0.001 

5 i 7 5 i 2 19200 6 0.001 0.001 

5 l 8 5 l 2 19200 6 0.001 0.013 

5 l 9 sl 256000 2 0.00299 0.005 

520 "^iэ 64000 6 0.00299 0.005 

S21 S20 4800 6 0.001 0.001 

S22 S20 4800 6 0.001 0.001 

5гз S20 4800 6 0.001 0.001 

524 S20 4800 6 0.001 0.001 

5 2 5 S20 4800 6 0.001 0.001 

526 S20 48000 6 0.001 0.001 

S27 S2o 4800 6 0.001 0.001 

528 S20 48000 6 0.001 0.001 

529 S20 48000 6 0.001 0.013 

5зo S20 48000 6 0.001 0.0131 

5зi S20 9600 6 0.001 0.001 

5з2 S20 9600 6 0.001 0.001 

5зз S2o 100000000 1 0.08372 0.11998 

5з4 Sl9 100000000 1 0.08372 0.11998 
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Table 2. Output subpгogгam data and some peгformance characteristics. 

Sj Џj *n(j)j *jn(j) Лoj Лjo Wj vз uj/X ЏjWj 

Si 1302.38754 0 0 39.898 796.81372 0.10709 0.1199337 0.001199 139.4726817 

s2 
172.45665 0.17246 172.28419 0.1 0.17246 0.00127 0.001271615 0.000013 0.219019946 

Sз 172.45665 0.17246 172.28419 1.3 0.17246 0.01517 0.015403674 0.000154 2.616167381 

S4 
172.45665 0.17246 172.28419 1.3 0.17246 0.01517 0.015403674 0.000154 2.616167381 

S5 719.92081 33.01557 686.90525 11.997 28.69604 0.04181 0.043634352 0.000436 30.09988907 

Sб 172.45665 0.17246 172.28419 1.3 0.17246 0.0151 0.015331506 0.000153 2.604095415 

S7 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S8 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526 

Ą 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526 

Sю 494.82318 0.49482 494.32835 0.1 0.49482 0.00045 0.000450203 0.000005 0.222670431 

-Sц 494.82318 0.49482 494.32835 0.1 0.49482 0.00045 0.000450203 0.000005 0.222670431 

S12 1513.98044 233.01673 1280.96371 11.999 223.93285 0.03178 0.032823119 0.000328 48.11429838 

SIЗ 38.66235 0.03866 38.62369 0.1 0.03866 0.0052 0.005227181 0.000052 0.20104422 

S14 172.45665 0.17246 172.28419 0.1 0.17246 0.00119 0.001191418 0.000012 0.205223414 

S15 172.45665 0.17246 172.28419 1.3 0.17246 0.01509 0.015321197 0.000153 2.602370849 

Slб 172.45665 0.17246 172.28419 0.1 0.17246 0.00119 0.001191418 0.000012 0.205223414 

S17 370.06097 0.37006 369.69091 0.1 0.37006 0.00057 0.000570325 0.000006 0.210934753 

S18 370.06097 0.37006 369.69091 1.3 0.37006 0.00705 0.007100055 0.000071 2.608929839 

S19 1638.17352 303.75013 1334.42339 0.5 4.89814 0.05775 0.061289467 0.000613 94.60452078 

S20 761.69571 75.18698 686.50873 0.5 2.27747 0.04469 0.046780626 0.000468 34.04018128 

S21 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S22 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S23 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S24 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S25 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S26 480.71961 0.48072 480.23889 0.1 0.48072 0.00046 0.000460212 0.000005 0.221131021 

S27 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798 

S28 480.71961 0.48072 480.23889 0.1 0.48072 0.00046 0.000460212 0.000005 0.221131021 

S29 480.71961 0.48072 480.23889 1.3 0.48072 0.00545 0.005479865 0.000055 2.619921875 

Sзo 480.71961 0.48072 480.23889 1.31 0.48072 0.00549 0.005520306 0.000055 2.639150659 

Sзi 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526 

S32 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526 

Sзз 3375.4913 282.59613 3092.89517 11.998 282.59613 0.01001 0.010111213 0.000101 33.78866791 

Sз4 3375.4913 282.59613 3092.89517 11.998 282.59613 0.01102 0.011142794 0.000111 37.19791413 



Prognosis and Optimization of Homogeneous Markov Message Handling Networks 645 

Moreover, the program calculated the average delay of messages in the network 

1 3 4 

Y 2_] ui = 0-04281 hours = 2 minutes and and 34 seconds, 
2 = 1 

of which t ime the messages spend in average 

1 3 4 

T X ^ w* vi ~ 0-00226 hours = 8 seconds 
i=l 

in the server queues (buffers) and 

1 3 4 

— y~]wj = 0.04055 hours = 2 minutes and 26 seconds 
2 = 1 

in the servers and transmission lines. Further, the program calculated tha t for 

Amax = 933 messages per hour 

the maximal solution wmax of equations (13) achieves 1. Therefore the capacity of 
the network is 

C = 0- A m a x = 30000 x 933 = 27990000 [bit/hour] = 2.8 Mbits per hour. 

If the message flow into the network approaches the critical value 2.8 Mbi t s /hour 
then the congestion of the network is unavoidable. 

(Received January 26, 2001.) 
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