
Kybernetika

Ľuboš Čirka; Ján Mikleš; Miroslav Fikar
A deterministic LQ tracking problem: parametrisation of the controller

Kybernetika, Vol. 38 (2002), No. 4, [469]--478

Persistent URL: http://dml.cz/dmlcz/135478

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135478
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 3 8 ( 2 0 0 2 ) , N U M B E R 4, P A G E S 4 6 9 - 4 7 8 

A DETERMINISTIC LQ TRACKING PROBLEM: 
PARAMETRISATION OF THE CONTROLLER 

LUBOŠ ČIRKA, JÁN MlKLEŠ AND MIROSLAV FlKAR 

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem 
when the Youla-Kucera parametrisation of controller is used. We provide a computational 
procedure for computing a deterministic optimal single-input single-output (SISO) con­
troller from any stabilising controller. This approach allows us to calculate a new optimal 
LQ deterministic controller from a previous one when the plant has changed. The de­
sign based on the Youla-Kucera parametrisation approach is compared to the classical LQ 
design. 

1. INTRODUCTION 

Optimal control design, based on LQ performance criterion has been derived histor­
ically first in terms of the state space approach. By this method Riccati equations 
have to be solved (e. g. [5]). Progress in polynomial algebra and the algebraic polyno­
mial approach to the synthesis of control loops presented e.g. by [3, 4], have offered 
new tools for the tracking LQ control problem. Algebraic methods have been well 
developed for a wide class of both deterministic and stochastic (LQG control) sys­
tems. 

In [1], a non-conventional deterministic LQ tracking problem is discussed. This 
deterministic problem follows from some features of control of real technological 
processes. For the most part of theoretical works reference signal is assumed to be 
from a class of stochastic functions. However, in technological practice, references 
belong always to a class of deterministic functions. Moreover, practical needs of 
control show, that it is not always sufficient to restrict the output and control signals 
only. Very often, the control signal derivatives should be restricted as well. The 
solution of such a control problem represents then a non-conventional LQ problem. 
This paper introduces the non-conventional problem of optimal tracking based on 
minimisation of a modified quadratic performance criterion. 

The aim of this paper is to present an alternative to the classical LQ tracking 
problem. It is based on the Youla-Kucera parametrisation approach. We provide 
a computational procedure for computing a deterministic optimal controller from 
any nominal (stabilising) controller. This approach allows us to calculate a new 
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Fig. 1. Block diagram of the closed-loop system. 

optimal LQ deterministic controller from a previous one when the plant has changed 
(supposing that the previous controller is stabilising for the new plant, too). The 
nominal controller is based on algebraic approach developed by Kucera. The control 
design is performed in input-output formulation leading to Diophantine and spectral 
factorisation equations. 

1.1. Notation 

All systems in this work are assumed to be SISO and continuous-time. The systems 
are described by means of fractions of polynomials in complex argument 8, used in 
^-transform. Hi-Loo denote the set of stable proper rational transfer functions and 
S denote the set of stable polynomials. 

For simplicity, the arguments of polynomials are omitted whenever possible - a 
polynomial X(s) is denoted by X. We denote X*(s) = X(—s) for any function 
X(s). 

2. CLOSED-LOOP SYSTEM 

2.1. System description 

Consider the closed-loop system illustrated in Figure 1. A continuous-time linear 
time-invariant input-output representation of the plant to be controlled is considered 

Ay = Bu (i) 

where y, u are process output and controller output, respectively. A and B are 
polynomials that describe the input-output properties of the plant. 

We assume that the condition deg B < deg A holds (i. e. transfer function of the 
plant is proper). 

The reference w is considered to be from a class of functions expressed in the 
form 

Fw = H 

where H,-F are coprime polynomials and degH < degF. 
The controller is described by the equation 

Xu = Ye 

(2) 

(3) 
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where the pair X, Y are coprime polynomials and X(0) is nonzero. The precom-
pensator is described by the equation 

Fcu = u. (4) 

Evidently, the precompensator is only the component of the feedback controller. We 
suppose here that AFC and B are coprime polynomials. 

Asymptotic tracking of the reference w is ensured for an arbitrary F just when 
F in (4) divides Fc . This claim will be fulfilled always for Fc = F . By substituting 
this relation to (4), this equation can be expressed in the form 

Fu = u. ' (5) 

See [1] for details. 

Remark 1. When considering the most common case of references - step changes 
then H = 1,F = s in (2) and the precompensator is given as 1/8. However, if the 
controlled plant has a pole s = 0 (on the stability boundary), then the precompen­
sator can be removed. In general, the precompensator is not necessary if F divides 
A, which is unfortunately not true for the majority of the plants. 

2.2. Nominal controller 

Consider the nominal plant and the nominal controller transfer functions in the 
fractional representations 

r_NG Nc , . 
G ~ ^ C = ^ ( 6 ) 

where 

N° = w D° = m (7) 

Y FX 
N° - mi' D°=M; (8) 

and Mi, M2 G S with degrees degMi = degA and degM2 = degFX, DG, NG, Dc 

and1Vc eWHoo. 
Stabilising nominal controllers are then given by solution of Diophantine equation 

DGDc + NGNc = l. (9) 

Substituting equations (7) and (8) into (9), the condition of stability in S takes the 
form 

AFX + BY = MiM2 = D (10) 
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3. DETERMINISTIC NON-CONVENTIONAL LQ TRACKING PROBLEM 

In this section two approaches to LQ tracking problem will be compared. The first 
one is more classical and it is based on the determination of optimal closed-loop poles 
that minimise the LQ cost function. The second approach follows more modern ideas 
of the Youla-Kucera parametrisation of all stable controllers. 

The general conditions required to govern the control system properties are 
- stability of the control system 

- asymptotic tracking of the reference. 
The goal of optimal deterministic LQ tracking is to design a controller that enables 
the control system to satisfy the above basic requirements and in addition the control 
law that minimises the^cost function 

J = f Uu2(t)+^e2(tUdt (11) 

where e = w — y denotes the control error and <p > 0, ij) > 0 are weighting coefficients. 
The cost function (11) can be rewritten using Parseval's theorem, to obtain an 
expression in the complex domain 

J = 2^-: fJ (u*(s)ipu(s) + e*(s)xPe(s)jds. (12) 

3.1. Classical LQ problem 

Theorem 1. Define stable polynomials Dc and Df resulting from spectral factori­
sations 

D*DC = yA*F*AF + ̂ B*B (13) 
D*fDf = A*AH*H (14) 

then internal stability and solution of the deterministic LQ problem (11) is given by 
the controller polynomials X c, Yc calculated from a pair of Diophantine equations. 
The solution exists if AF and B have no unstable common factors and is unique. 

The feedback part of the controller results as a solution of the coupled bilateral 
Diophantine equations: 

i\)B*Df-AFV* = D*YC (15) 
ipA*F*Df + BV* = D*XC. (16) 

P r o o f . See [1], • 

Corollary 1. If polynomials AF and B are coprime then the pair of Diophantine 
equations (13), (14) is reduced to the implied Diophantine equation 

AFXc + BYc = DcDf. (17) 

P r o o f . See [2,3]. • 
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3.2. LQ problem: Youla-Kucera parametrisation 

Let us now follow another approach. Suppose that a stabilising controller that gives 
rise to the closed-loop polynomial D (not necessarily LQ optimal or minimum degree) 
has been found and let us study the use of the Youla-Kucera parametrisation. 

There are infinitely many solutions of (10) that stabilise the plant. The nominal 
solution (X, Y) will serve only as a starting point. It is possible to search among 
general solutions to minimise the cost (11). In our case, all such controllers (cf. 
Figure 2) are given by the following theorem: 

Theorem 2. Let the nominal model plant G = Nc/Dc, with Nc and Dc coprime 
over VMoo, be stabilised by a controller C — Nc/Dc, with Nc and Dc coprime 
over TVHoo- Then the set of all stabilising controllers for the plant G is given by 

where 

SeWHoo. • (19) 

P roo f . See [6]. D 

Corollary 2. Let the nominal model plant G = Nc/Dc = B/A, with Nc, Dc, 
B and A defined by (7), be stabilised by a controller C = Nc/Dc = Y/FX, with 
Nc, Dc, Y and FX defined by (8). Then the set of all stabilising controllers for 
the plant G is given by 

ri(G\ — C(^) — ^* — m ~̂~ m ^ — m ~̂~ ^m^S l /QQN 

FXS FXm — BmFS Xm — BmS F 

where 

S = FS e llUoo, Am = _4M2, Bm = M 2 , Xm = XMX and Ym = YMX. (21) 

Remark 2. Asymptotic tracking can be assured only if the denominator in (20) 
is divisible by F. Therefore, S = FS is chosen. The term 1/F represents the 
precompensator that forms a part of the controller. Prom aspects of some following 
procedures one may be formally separated from the controller. 

We now present a solution to the deterministic LQ controller design problem in 
the Youla-Kucera parametrisation framework starting from the plant model B/A 
and any stabilising controller Y/FX, using the set of all stabilising controllers for 
the plant, i.e. we show how to compute optimal S that minimises (11). 
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Fig. 2. Block diagram of the closed-loop system. 

Theorem 3. Consider the minimisation of the cost function (11) with respect to 
the Youla-Kucera parameter S that is specified as a transfer function. Solve spectral 
factorisation equations (13), (14) for stable Dc and Df and the bilateral Diophantine 
equation with unknown 5 n , V* 

i)DfB*X - <pDfA*F*Y = SnD* + V*D. 

The optimal Youla-Kučera parameter is then given as 

(22) 

(23) 

Since JDC, Df, M2 are stable, it follows that S is a stable transfer function and fulfills 
the condition from the Youla-Kucera parametrisation. 

P r o o f . To begin the proof, the two signals (u, e) used in the cost function (11) 
are derived using the equations (1), (3), (5), and (20) describing the closed-loop 
system (so that the desired signals are functions of only the external signal w) 

u = 

e = 

Ym + Amг o m ~г -т-m--' *-' л jp Ym + Amг b 

Mi(AFX + BY) 

Mx{AFX + BY) 

MiD 
AH 

AFw = 
Xn вms 

MiD 
AH. 

(24) 

(25) 

Minimising equation (11) with respect to all stable S represents minimising the 
following cost function in complex domain 

1 fJOO 1 rjOQ 

J=— {u*(s)<pu(s) + e*(s)^e(s))ds = —-. / (ipS* + *PS6) ds (26) 
ATS3 J-joo -S7TJ J-joo 
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where Su and Se are spectral functions of the form 

д~, — 
V MiD J V M'D 

л* л p*p д* p*ү 
S*SA*AH*H.ZІm* * + S*A*AH*H- m m 

M*D*MXD M*D*MiD 

+SA"AH"Hwmb+A"AH"HM!m\5 (27> 
Se — e*e = (Xm-BmSAH\ (Xm-BmSAH 

\ MXD J \ MXD 

= S*SA*AH*H %J*™B™ „ - S*A*AH*H „B™X™ „ 
MZD*MYD M*D*MXD 

-SA*AH*H-J^^ + A*AH*H *™*~? „• (28) 

The direct minimisation of the cost function (26) with respect to a polynomial is a 
difficult task. Therefore, we complete the terms to squares. 

ipSu + %bSe = 

= s"sw-m£D{*A:*A"F"F+*B'M 

^"wmiD^"^-**"^ 
+s^md> <^"Fy™" * * • * - > + T Q & H D ( « y - + « x » > 

= s " s i ^ k {vA"AF"F+*B*B>+S'W^ {vA"F"Y ~ *B"X) 

+SMM"D- {vAFY" ~ *BX"] + ~~mr {vY"Y+*x'x) • (29> 
Let us now consider the term (29) and its first part containing S*S 

A* A II* II 
s- = -mM-jr^A*AF*F+*B*B) 

D*fDf (DfD^ * ( D ^ \ 

MlMtMxMiW V ' \MiMi1 \MiMiJ 

where the stable polynomials Dc,Df are defined from two spectral factorisation 
equations (13) and (14). The completing the squares approach gives thus 

c 4../.Q (DfDco , <pDfA*F*Y tPDfB*X\* 

*5- + *S- = \J^S + —Db- DD*-) 
..(DfDcq *D,A*F*Y *DtB*X\ 
X\M1M1

b+ DD* DD* ) + V d ( 3 0 ) 
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where yd is the rest that is independent of S. 
For reaching the minimum value of J , clearly the way is to put the first term 

equal to zero. From this equation, the optimal S can be determined. However, the 
simple putting the brace equal to zero would not do the job: the resulting S would 
not be stable. Therefore, we manipulate the second and third terms in brackets. 
These can be separated in 

1>DfB*X _ ipDfA*F*Y _S_ V_ 
DD* DD* D D*c'

 [ ' 

The first term (Sn/D) is stable and the second one (V*/D*c) is unstable. Because 
the second term is unstable and S is required be stable it vanishes in the cost. The 
brace now reads 

(DfDc Sn\_(DfDc Sn \ 
VMjMi . D J ~ VMiMx MlM2)' K ' 

Setting it to zero, S now reads 

Because the denominator is stable, so is S as well. D 

Comparison of two approaches to LQ tracking problem is summarised by the 
following corollary. 

Corollary 3. If the classical LQ controller (X c, Yc) is obtained from (15), (16) 
and the parametrised LQ controller (Xs, Ys) is obtained from (20), (33) with stable 
polynomials Dc and Df calculated from (13) and (14), then transfer functions of 
these controllers are identical. 

P r o o f . It is not difficult to check that 

Yc Ys (34) 
FXC FX c x y^s 

Transfer function of the classical controller (Yc, Xc) can be obtained from equations 
(15) and (16) 

Yc ipB*Df - AFV* 

FXC F(ipA*F*Df + BV*) 

Using equations (31) and (33), we can rewrite the Youla-Kucera parameter S as 
follows 

o B/f „/. n D * v ,-n A*TP*\/- T\ir* T\/T 

(35) 5 : 
>Ьn 

M i фDfB*X - <pDfA*F*Y -DV* Mx 5 : 
DcDf M 2 D*DcDf м 2 

Putting (35) into (20) we have 

Y. YMi + AM2FS фB*Df -•AFV* 

FX8 FXMX - BM2FS F(<pA*F*Df + BV*) 
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4. ILLUSTRATIVE EXAMPLE 

In this section, an example is presented to to show all steps of the calculation in 
both cases of LQ design. Let us consider the controlled system described by the 
following transfer function 

вw= щ s ) 

A(s) 55 + 1 

The reference has been chosen as step change w(t) = l(t). The weighting coefficients 
if and tp in the cost function (11) have been selected as ip = 0.7, if) = 0.8. Both 
stable polynomials Dc(s) and Df(s) obtained from spectral factorisations (13), (14) 
are of the form 

Dc(s) = dc2s
2 + dcis + dc0 

Df(s) = dfis + dfo 

and their coefficients are given as 

dco = \ / # n 5 dc2 = 

dci = vV + 2dc2dco 

dfi = | a i | ; dfo = 1. 

The resulting degrees of both polynomials of the controller transfer function are 
deg Y^s) = degX c(s) = 1. Their coefficients have been calculated from the poly­
nomial equation (17). The proper transfer function of the feedback classical LQ 
controller (with precompensator) is given as 

Yc(s) _ 4.4725 + 0.894 
C'c(s) — F(s)Xc(s) 4.18352 +4.8115 

For the Youla-Kucera parametrised LQ controller a nominal controller that sta­
bilises the closed-loop is chosen as 

- r ( g ) _ 0.81335 + 0.3333 
^ " F(s)X(s) ~ 0.252 + 0.565 

and yields the closed-loop pole polynomial of the form 

D(s) = M1{s)M2{8) 

where Mi(s) = (1 + s) and M2(s) = (1 + s)2. 
The polynomial Sn(s) is calculated from (22). This gives the optimal Youla-

Kucera transfer function S(s) as 

- Sn(8) Mi(5) _ -2.5085 2 -2.6245-1.103 Mi (5) 

^ - Df(s)Dc(s) ' M2(s) " 20.9253 + 28.24s2 + 18.23s + 2.683 " M2(s)' 
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Finally, calculation of the LQ controller Cs(s) yields 

Ys(s) _ Y(s)M1(s) + A(s)M2(s)F(s)S(s) 
Cs(s) = 

F(s)Xs(s) F(s)X(s)M1(s) - B(s)M2(s)F(s)S(s) 

with the same controller polynomials as in the first case. 

5. CONCLUSIONS 

In this paper, we have presented a procedure to compute deterministic LQ controller 
from a stabilising controller using the Youla-Kuceraparametrisation. The presented 
controller design procedure ensures stability of the controlled system and asymptotic 
tracking of the references most commonly used in practice. Two approaches have 
been compared. The same result has been obtained in both cases. The proposed 
approach can be applied in adaptive control framework. 

(Received December 1, 2000.) 

REFERENCES 

[1] P. Dostal, A. Meszaros, and J. Mikles: A modified LQ tracking problem. Journal 
Electrical Engrg. 45 (1994), 4, 129-133. 

[2] K. J. Hunt and M. Sebek: Implied polynomial matrix equations in multivariable 
stochastic optimal control. Automatica 27 (1991), 2, 395-398. 

[3] V. Kucera: Discrete Linear Control: The Polynomial Equation Approach. Wiley, 
Chichester 1979. 

[4] V. Kucera: New results in state estimation and regulation. Automatica 17 (1981), 
745-748. 

[5] H. Kwakernaak and R. Sivan: Linear Optimal Control Systems. Wiley, New York 
1972. 

[6] M. Vidyasagar: Control System Synthesis: A Factorization Approach. MIT Press, 
Cambridge, MA 1985. 

Ing. EuboŠ Čirka, Prof. Ing. Ján Mikleš, DrSc, Doc. Dr. Ing. Miroslav Fikar, Depart­
ment of Information Engineering and Process Control, Faculty of Chemical and Food 
Technology, Slovák University of Technology, Radlinského 9,812 37 Bratislava. Slovakia. 
e-mails: cirka@chtf.stuba.sk, mikles@cvt.stuba.sk, fikar@cvt.stuba.sk 


		webmaster@dml.cz
	2015-03-25T21:15:49+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




