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K Y B E R N E T I K A — VOLUME 3 9 ( 2003 ) , NUMBER 2, P A G E S 2 4 9 - 2 6 3 

COMPLEX CALCULUS OF VARIATIONS 

MlCHEL GONDRAN AND RlTA HOBLOS SAADE 

In this article, we present a detailed study of the complex calculus of variations intro
duced in [4]. This calculus is analogous to the conventional calculus of variations, but is 
applied here to Cn functions in C. It is based on new concepts involving the minimum 
and convexity of a complex function. Such an approach allows us to propose explicit so
lutions to complex Hamilton-Jacobi equations, in particular by generalizing the Hopf-Lax 
formula. 
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1. INTRODUCTION 

The objective of this article is to present a detailed study of the complex calculus of 
variations introduced in [4]. While the complex calculus of variations studied in [4] 
is similar to the conventional calculus of variations (Euler's equation and Hamilton-
Jacobi's equation), we apply it here to value functions as defined in C n . The present 
study is based on two new concepts that we develop in Section 2: The minimum of 
a complex value function as defined on C n and the definition of convexity for such 
functions. These concepts then lead us to defined a Fenchel transform whose prop
erties are analysed in Section 3. Finally, in Section 5, we propose explicit solutions 
to Hamilton-Jacobi equations for complex value functions defined on 5Rn or C n , in 
particular by generalizing the Hopf-Lax formula. This new approach should make it 
possible to take into account certain extensions of the calculus of variations that are 
required by modern physics, particulary in quantum mechanics. In this way, complex 
Hamilton-Jacobi equations have already been introduced in quantum mechanics by 
many authors such as Balian and Bloch [1] and Voros [6]. 

These authors show that complex Hamilton-Jacobi equations are necessary to 
carry out certain approximations more completely, such as the BKW approximation. 

2. MINIMUM OF A COMPLEX FUNCTION 

Let f(z) = f(x + iy) be a complex function of an open set fi of C n in C, expressed 
in the form f(z) = P(x,y) + iQ(x,y) with P(x,y) continuous in x and y. 



250 M. GONDRAN AND R. HOBLOS SAADE 

Definition 2.1. 

1. z0 = x0 + iy0 is a local minimum of / in ft if a neighbourhood v(z0) C ft exists 
such that: (x0,y0) is a saddle point of P(x,y) on v(z0): 

P(xo,y) < P(x0,y0) < P(x,y0) Vx :x + iy0e v(z0);\/y : x0 +iy G v(z0). 

2. z0 is a global minimum of / in ft if (x0,y0) is a saddle point of P(x,y) in the 
whole of ft: 

P(x0,y) < P(x0,y0) < P(x,y0) Vz : x + iy0 G ft;Vy : x0 + iy G ft. 

3. ft is convex for all values of z\, z<i G ft if the segment [z\ ,z^ := \Xz\ + (1 — A)z2 : 
X G [0,1]} is contained within ft. 

4. f(z) is (strictly) convex in ft if P(x,y) is (strictly) convex for x in ft and 
(strictly) concave for y in ft. 

Proposition 2.1. If f(z) is strictly convex in ft, then it will assum a unique global 
minimum value in ft. 

P r o o f . Let z0 = x0 +iy0 and z\ = x\ +iy\ denote two global minima of / in ft, 
with z0 ^ z\. Then, according to the definition of the global minimum, we obtain: 

P(%o,y) < P(x0,y0) < P(x,y0) Vx : x + iy0 e ft et VT/ : x0 + iy G ft 

and 

P(xi,y) < P(xi,yi) < P(x,yi) Vx : x + iy\ eft et Vy : X\ + iy G ft. 

But zo 7̂  %i implies x0 ^ X\ or y0 ^ y\. 
If 2/o 7̂  2/i, we obtain P(x0,y0) < P(x\,y0) < P(x\,y\) < P(x0,y\) < P(x0,y0) 

which gives rise to a contradiction. We find the same contradiction for x0 ^ X\. As 
a result, z0 = z\. • 

Proposition 2.2. If / (z ) is convex in a convex ft, then any local minimum is 
global. 

P r o o f . Let us take z0 = x0 + iy0 as a local minimum of / . Then, since Vz = 
x + iy G v(z0), we can write: 

P(xo,y) < P(x0,y0) < P(x,y0). 

Take for instance z\ = x\+ iy\ as any point of ft. Assuming z = Xz0 + (1 — X)z\ 
with 0 < A < 1, we show that: 

P(xo,yi) < P(x0,y0) < P(x\,y0). 

We can write P(x,y0) = P(Xx0 + (1 — X)x\,y0). But P is convex in x, so P(x,y0) < 
XP(x0,y0) + (1 - X)P(x\,y0). If we assume that P(x\,y0) < P(x0,y0), this leads 
to: P(x,y0) < XP(x0,y0) + (1 - X)P(x0,y0) = P(x0,y0). This gives rise to a con
tradiction, so as a result, P(x0,y0) < P(x\,y0). 

In the same way, we can show that P(x0,y\) < P(x0,y0) using the fact that P is 
concave in y. • 



Complex Calculus of Variations 251 

Proposition 2.3. If f(z) is holomorphic, then P(x,y) is (strictly) convex for x 
in ft, and is equivalent to P(x,y) (strictly) concave for y in ft. In this case, the 
condition of optimality is simply written as: 

P(x0,yo) < P(x,yo) Vx : x + iyo € ft. 

P r o o f . Since / is holomorphic, then the Cauchy conditions are satisfied for all 
values of i and j : J £ = f g et f j - = - J g - . These conditions imply ^ £ j = 

d2p 
dyidyj ' 

P is (strictly) convex in x = ( x i , . . . , x n ) if and only if the proper values of 

the Hessian matrix (dxidx-) a r e (> 0) > 0 in fl. From this, we can 

deduce that P is (strictly) convex in x if and only if the proper values of the matrix 

( d2F ) are (< 0) < 0 in ft, and, therefore, if and only if P is (strictly) 
\cfyiOyj J i = 1 > n ; j = i | n 

concave in y = (2/1,. . . , yn). • 
Let us give some examples of strictly convex complex functions: 

1. The function f(z) = \z2 is strictly convex on C. More generally, g(z) = \z2, 
in which z2 = z\ + z\ + z2, is strictly convex on C3 . 

2. f(z) = \zlQz, where Q is defined as positive, is strictly convex over the whole 
o f C n . 

3. f(z) = \z3 is strictly convex on C+ := {x + iy, x > 0}. In fact, f"(z) = 2z, 
so Re(/"(z)) = 2x > 0. From this, we derive the strict convexity of / on C+. 

4. f(z) = \za with a being an integer a > 2, is convex in fta = {x + iy\ \y\ < 
xtan 2(^2)} on C ; . In fact, f"(z) = (a - l)za~2. 

For z = r e w , we obtain Re(/"(^)) = (a - l ) r ( a _ 2 ) cos(a - 2)9. 
Re(/"(z)) > 0 for - ^ 2 ) < 0 < 2(^2) a n d therefore iv| < x tan ^ ^ y x . 

5. f(z) = ^ ^ = 1 a n^ n with z G C?j_, a2 > 0 and an > 0. The function is convex 
in ft = {x + iy such that 3ex > 0 , |2/| < exx}. In fact, / " (z ) = 
2a2 + En=3 n(n - l )a n z— 2 . g ( x , 0) = 2a2 + £ ~ 3 n(n - l ) a n x - 2 > 0 so 
f(x) is therefore strictly convex on St4. Since Re(/"(0)) = 2a2 > 0, then, by 
continuity, there is a value ex > 0 such that we obtain Re(/"(z)) > 0 in the 
open set defined by \y\ < exx. 

6. f(z) = c2 I 1 - w l - ^ | J with c > 0 and |x| < c, where \fZ is the square 

root of Z having a real positive part. This function is convex in the open 

set ft -= {x + iy ; |x| < c, \y\ < ex\x\}. We can write /"(*) = ( l - ffj 2 . 
_ 3 

But f"(x) = M — ^-r) > 0 i s strictly convex for|x| < c and, as deduced 

from Example 5, for all values of x there is a ex > 0 for which we obtain 
R-e(/ '(z)) > 0 in the open set defined by \y\ < exx. 
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7. f(z) = | ^2 is convex on C+, with z G C+, and where \fZ is the square root 

of Z having a real positive part. In fact, since f"(z) = \z* then Re/"(z) > 0. 

The following proposition provides a general framework for the above examples. 

Proposition 2.4. If f(x) is a real analytical function strictly convex on an open set 
A of 5ftn, then its analytical prolongation f(z) is strictly convex on a neighbourhood 
ft of A in C n having the form ft = (J^GA VX> where 

vx = \z' G C , 3ex > 0 with \z' — x\< ex}. 

Futhermore, f"(z) is reversible in va neighbourhood ft' (A C ft' C ft) having the 
form: ft' = [jxeAv'x where 

v'x = {z' G C , 35x > 0 with \z' - x\ < Sx < ex}. 

P r o o f . f"(z) = f"(x + iy) = u(x,y) + iv(x,y). For y = 0, f"(x) = u(x,0) + 
iv(x,0). Since f(x) is strictly convex on A, there is a value ax G 5ft such that 
f"(x) > ax > 0. This inequality leads to u(x,0) > ax and by continuity we obtain: 
Vx ,3fix : \y\ < fix and u(x,y) > ax > 0. From this, we derive the strict convexity 
of/. 

We show that f"(z) is reversible in ft' (A C ft' C ft). 
In dimension 1, the fact that f(z) is strictly convex in ft, while f"(z) = u(x,y) + 

iv(x,y), gives us (f"(z))~ = £+v2 o r u(x^v) > 0> thus (f"(z))~ ls w e h defined 
on ft' = ft. 

In dimension n, with f(z) = f"(z) = U(x,y) + iV(x,y), we need to find two 
matrices X and Y such that (U + iV)(X + iY) = I. The strict convexity of f(z) 
leads to the fact that U(x,y) is a reversible matrix. This strict convexity of f(x) is 
expressed by: 

VxGA 35X : \y\<5x U(x,y)>al>0 

VxGA 31X : M < 7 * ^ ( x , ? / ) ^ ^ / 

and therefore U~lV < 7, which leads to U_1 < 2X and, as a result, X > y in 
i^ = {z' G C , |z ' - x | < mm(5x^x,ex)}. • 

Proposition 2.5. If f(z) is a holomorphic function on a convex open set ft, then a 
necessary condition for z0 G ft to be a local minimum of / (z) in £7 is that f'(z0) = 0. 
It is sufficient if, in addition, / is convex in the neighbourhood of z0. 

P r o o f . z0 = x0 + iy0 is a local minimum of f(z) in ft, hence: 

P(x0,y0)= min P(x,y0) = max P(x0,y). 
x\ x-\-iyoev(zo) y\ xo+iy€v(z0) 

Thus, ^(x 0 ,2 /o) = f f (^o,2/o) = 0. Since / is holomorphic in ft, The Cauchy 

conditions imply f'(z0) = ^(§£ + § ) " f ( f ~ §£) = § E ( z 0 , y o ) - i f £ ( * 0 , y 0 ) = 0. 



Complex Calculus of Variations 253 

If f(z) is convex in the neighbourhood of z0> then P(x,y) is convex for x in the 
open set {x] x + iy G v(zo)}-Thus, we obtain Va: : x + iy0 G v(zo), P(xo,yo) < 
P(x,y0) + ^(x0,yo)(x0 -x). 

f'(zo) = 0 implies that ^(x0,yo) = 0, so therefore P(x0,yo) < P(x,yo) Vx : 
x + iyo ev(zo). • 

Observation. If 17 is convex, then a necessary condition for zo to be a global 
minimum of f(z) in ft is that / '(zo) = 0. 

3. FENCHEL COMPLEX TRANSFORM 

Definition 3-1. Each complex function f(z) : z G fi C C n h-» C is associated with 
its Fenchel complex transform fci}j:(p) : p G £ C C n h-> C, which, if it exists, is 
defined by: 

VpeY, , /Q ,E(P) = max(p • z - f(z)). 

Examples . 

1. For the real values m and a (a ^ 0), let us assume that /m,<r(z) = \ (^J1) 

and calculate Jm,(r(p) = maxzGc (P * z - \ (^R) J • It is easy to check that 

the function g(z) defined by: g(z) = p • z - \ (^J1) can be derived out of 
C an its derivative g'(z) is cancelled out at a unique point z = pa2 + rn. 
The maximum is thus attained (cf. Proposition 2.5), for z — pa2 + m and 

f(p) = \P2(J2 +mp. 

2. For f(z) = \zlQz , where Q is symmetric and defined as positive, we obtain: 
f(p) = max 2 e c n (pl • z — \zlQz) . The function g(z) = pl • z - ^zlQz can be 
derived out of C n an its derivative is cancelled out for z = Q p. The max
imum is therefore attained at this point (necessary condition of optimality), 
and f(p) = \plQ-lp. 

3. For f(z) = \z3 with z G C*+, we define f(p) for p G C^ as follows: f(p) = 
maxzGc* (P'Z— \z3). The necessary condition of optimality leads to f'(zp) = 0, 
that is to say p = z2. This equation allows a single root in C+, hence a single 
local maximum zp = y/p — f < &rg(zp) < f • Since /(z) is convex in C+, then 
zp is the global maximum of pz — f(z) in C!j_ (cf. Proposition 2.2). In this 
case, f(p) exists and f(p) = | p i . 

4. Let f(z) = c2(l - \Jl-$) with c > 0 and z G fl = {z, |Re(z)| < c}, 

where \/-£ is the root of Z having a real positive part. The function g(z) = 

P'Z — c2 ( l — y l — f r ) can be derived out of C and its derivative is cancelled 
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out for zp = pi yl + jjy. The Fenchel transform of f(z) therefore only exists 
for p in a sub-set £ of C such that: 

E = IpЄC : Re 

.fi^ì. 
<c 

Then, for all values of p G £, we can define the complex Fenchel transform by 

fn,v(p) = m a x z e n f P * z - c2 f 1 ~ y 1 - fr J ) and we can write /Q ,E(P) = 

For all real values of p, we obtain p G £. By continuity, we observe that £ is 
a closed set containing 5ft. 

5. For f(z) = \z4 with z G C+, we can define f(p) for p G C+, as follows: 

f(p) = max z ec* (p' z — \z4)- The necessary condition of optimality leads to 

f'(zp) = 0, that is to say p = zp. If we assume that Z* is the cube root of 
Z having a real positive part, then the equation p = zp allows a single root in 
C+, so there is only a single local maximum zp = ps with — f < arg(zp) < | 
(or \/3|2/p| < xp). As f(z) is convex in the cone il := {x + iy such that \y\ < 
x} of C, then zp is a global maximum in Q. However, it is not a global 
maximum in C+. To demonstrate this, taking P(x,y) = Re(p • z — \z4), it 
suffices to find a point (xp,yp) such that P(xp,yp) > P(xp,yp). 

For p = a + i(3 and z = x + iy we obtain P(x,y) = ax — (3y — \(x2—y2)2 + x2y2. 
Let yp = yp + 6xp, then it follows P(xp, yp) - P(xp, yp) = 36xl(6xpyp + \y2 + 
^•x2) > 0 if and only if (6xpyp + \y2 + ^-x2

p) > 0. As yp > -xp, we obtain 
6xpyp + \y2 + ^-x2 > -6x2 - \x2 + ^x2 > 0, which leads to the conclusion 
that (xp,yp) is not a saddle point of P(x,y) on C+. Hence, we can only define 

the Fenchel transform on the con fi: /^^(P ) = m&xzen(Pz ~ \z*) = | P 5 -

Theorem 3.1. Let us assume that: 

— fi and £ are two sets of C n , 

— f(z) is a function of ft in C, 

— fn,x(p) of £ in C is the complex Fenchel transform of f(z), 

For a convex £ and a holomorphic and strictly convex / , / (if it exists) is also convex 
in £. 

P r o o f . Let us note p = a + i/3, z = x + iy and f(z) = P(x,y) + iQ(x,y). The 
strict convexity of f(z) in Q means that Re(p-z — f(z)) = ax-/3y-P(x, y) is strictly 
concave in x and strictly convex in y, thus allowing, if it exists, a unique saddle point 
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(xp,yP) ofjxx-(3y-P(x,y) with zp = xp + iyp G ft. Otherwise, fa(p) = p-zp-f(zp) 
leads to P(a,/3) = axp - /3yp - P(xp,yp) and Q(a,p) = ayp + 0xp - Q(xp,yp). 
Moreover, we can readily verify the convexity of P(a,/3) in a and the concavity in 
f3. In fact, since E is convex, for a = 0ai + (1 - 0)a2 with 0 G [0,1], we can write: 

P(a, P) = maxmin ((0ai + (1 - 0)a:2)x ~ Py - p(x, y)) 
x y 

P(<*ifl) < Omaxl aix + min(-/3y -p(x,y)) > x I y J 

+(1 - 0) max < a2.c + min(-/?y - p(x, y)) > 
z t y J 

P(a,[i) < 0maxmin{ai.2; — /3y - p(x,y)} + (1 - 0)maxmin{a2-c - /??/ -P(z,2/)}-
x y x y 

So P(a,j3) < 0P(ai,(3) + (1 - 8)P(a2l/3) and consequently, P(a,/3) is convex in a. 
In the same way, we can demonstrate that P(a,fi) is concave in /3. From this, we 
deduce that if /Q exists, zp is the unique solution in ft such that f'(zp) = p. • 

Observation. The equation f'(zp) = p indicates the existence of a Fenchel trans
form if E = / ' (f t) . 

Theorem 3.2. Take a convex set of C n as well as a function f(z) of ft in C, which 
is holomorphic and strictly convex in ft. Let ft' be the open set of ft where f"(z) is 
reversible. Then, for all p G £ ' = /'(ft')> / is involutive: 

Vz G ft' fQ>^,(z) = max(p • z - /P^.E'CP)) = / (z ) . 

P r o o f . The strict convexity of / in ft means that f"(z) is reversible in ft'. Since 
E' = / ' ( f t ' ) , zp exists and the equation / ' (z p ) = p leads us to the fact that -^ exists 

and is equal (f"(zp))~ . Furthermore, we obtain the maxpGx;' Ip • z — /c2',E'(P)J for 

p by verifying z - zp - p • ^ + / ' (z p ) ^ - = 0, That is z = zp. From this, we obtain 

/ft'.E'OO = m a x p G E / ( p - z - p - 2 p + / (z ) ) = / (*) . D 

Observation. In dimension 1, we obtain ft = ft' and E = E'. In this case, 

/ Q , E ( * ) = /(*) Vz G ft (cf. Theorem 2.4). 

4. COMPLEX CALCULUS OF VARIATIONS 

Let L : C n x f x 3ft+ —•> C, where L(z,q,t) is a holomorphic function in z and 
<I which can be derived in t. This function is referred to as a complex Lagrange 
function. In addition, we may assume that L(z,q,t) is strictly convex in q. 
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Definition 4.1. Let us establish z0 and Zf E C n and t > 0. We define the 
functional complex action J by: 

J[w(.)] = l\(w(s),^-,s)ds (1) 

and the class of allowable functions: 

A = {w(-) : [0, t] -r C n holomorphic/uv(0) = z0,w(t) = zf}. (2) 

The problem of the complex calculus of variations is then to define a curve w0(-) E 
A such that: 

J[w0(-)] = mm J[w(-)] (3) 

where min is the global minimum taken in the sense of the complex min in def
inition 2.1: noting that w0(t) = u0(t) + iv0(t) and J(w0(t)) = P(u0(t),v0(t)) + 
iQ(u0(t),v0(t)), while for all w(t) = u(t) + iv(t) E A : 

P(u0(t),v(t)) < P(u0(t),v0(t)) < P(u(t),v0(t)). 

Theorem 4 . 1 . (Complex Euler equation) If function z(-) is a holomorphic solution 
of (1), (2), (3), then z(-) satisfies the complex Euler equation: 

d (dL, , . dz . dL, , . dz \ ^ Wrt 

-d7(«JW s ) 'S' s ) +aI ( 2 (- ' ) 'd;' s)= 0 V ( ) £ s^' <4» 

P r o o f . Let us consider the function G : [0,t] -> C n such that G(0) = G(t) = 0. 
We define the function w(-) = Z(-) + TG(-) for r E C. Let BT = {W(-) + TG(-)/G(-) E 
C2([0, t]; C n ) , with G(0) = G(t) = 0}. It is evident that BT C A and that z(-) E BT 

(T = a + i/3 where a = (3 = 0). According to the Lemma 4.1 given below, the 
function g defined by: #(r) = J[z(-) + TG(-)] has a complex minimum in r = 0. As 
a result, #'(0) = 0. 

9(T) = [ L(z(s)+TG(s),z'(s)+TG,(s),s)ds 
Jo 

ft flT ft Qr 

g'(T) = / — (Z + TG,Z' + TG',s)Gds+ / — (z + TG,Z' + TG',s)G'ds 
jo dz j 0 dq 

ft ftj ft o r 

g'(0) = J ^(z(s),z'(s),s)G(s)ds + j ^(z(s),z'(s),s)G'(s)ds = 0. 

After integrating each part, we find: 

£ ^(z(s),z'(s), s) G(s) ds-J*± ( ^ ( * ( » ) , z ' ( s ) , s ) ) G(s) ds = 0. 

For all G satisfying the boundary conditions. Thus, V0 < s < t 

- — (— 
As \dq 
d íдL(z(s),z'(s),s)) + ^(Z(s),z'(s),s) = 0. 
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Lemma 4.1. Let us consider the variational problem: 

J[z(-)}= min J[w(-)]. 
w(-)eA 

Let us assume B is a sub-set of A such that z(-) G B. Then: 

J[z(-)] = m i n J M - ) ] . 
w(-)eB 

P r o o f . Let us note z(-) = x(-) + iy(-), w(-) = u(-) + iv(-) and J[w(-)] = 
P(u,v) + iQ(u,v). According to Definition 2.1, (x(-),y(-)) is a saddle point of 

P(u,v): P(x(-)M')) < P(x(-),y(')) < P(u('),v(')) Vu : fi(-) + t»(-) G A Vv : 
x(-) + iv(-) € A. But B C A. Thus, the inequalities given above are valid 
Vw : u(-) + iy(-) € B Vv : x(-) + iv(-) G .6, so therefore «/[z(-)] = minu.(.)GB J[w(-)}. 

D 

Definition 4.2. We define the complex action S(z, t) as the complex minimum of 
the integral of the complex Lagrange function: 

S(z(t)9t) = min \s0(z')+ I L(v(s))ds\ (5) 
v(s),0<s<t { J o ) 

where the complex minimum is taken for all the tests l/(s), s G [0,£], while the 
change of state z(s) is given by the system evolution equations: 

^ = i/(s) et z(0) = z' 
as 

where ^o and z' are given, and where z(t) is a holomorphic function. 

Theorem 4.2. Let us assume that L(-) is convex. Then, for z G C n and £ > 0, the 

function K(z,t,zf) = tL (^-p-) is the complex minimum of JQ L(w'(s))ds, where 

w(-) G A, that is to say w(-) is holomorphic, while w(0) = z' and w(t) = z. 

The demonstration of this theorem is based on an inequality that is equivalent 
to the one used by Jensen on complex functions: 

Lemma 4.2. Let / be a holomorphic and convex function of C n in C, which can 
be expressed in the form f(z) = P(x,y)+iQ(x,y). Let w = u + iv be a holomorphic 
function on an open bounded set ft of C n . Then, we can write: 

IP (<fu,v\ < P (lu, l v \ < &P (u, j>v\ (6) 

where § u(x) dx := \ fQ u(s) ds. 
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Proof. / is convex and holomorphic, while for all (x0,y0) G 5Rn x 9ftn, there is 
r\, T2 G C n such that 

P(x,Vo) > P(xo,y0) + r1(x-x0) and P(x0,y) < P(x0,y0) +r2(y-y0) 

for all x G 5ftn, and for all 2/ G 5ftn. Let us assume that 

X0 = (p u(x) , Yo = (p v(x) , X = u(x) and Y = v(x). 

Accordingly 

P f u(x), (p v(x) 1 > P I 6 u(x), 0 v(x) 1 + n f u(x) - <p u(x) 1 

and 

Thus 

P I ш u(x), v(x) ) < P í Ф u(x), Ф г)(x) ) + Г2 í v(a?) — <þ v(x) } . 

Ф P[f u(x),v(x)\ <P[f u(x), f v(x)) < f P (u(x), fv(x)\ 

Proof of T h e o r e m 4.2. Let us assume z = x + iy, z' = x' + iy', 

w' = u' + iv', L(w'(s)) = P(u'(s),v'(s)) + iQ(u'(s),v'(s)). By noting w0(s) = z' + 

j(z - z') (0 < s < t), we show that (u'0(s) >^o(5)) = (̂ 7̂ ~> U~tL) ls a saddle point 

of Re(/ 0 L(w'(s))dsy We obtain Re (/0 L(w'(s))ds^j = /0 P(u'(s),v'(s))ds. 

Since §w'(s)ds = \(z — z'), then §u' = \(x — x') and §v' = \(y — y'). Thus 

j j P(u'0(s), v'0(s)) ds = f* P (*=f, - f - ) = f* P (§ u', § v'). We then apply Lemma 

4.2, taking into account that v'0(s) = § v' and u'0(s) = §u', 

f pliu'Av^j < f <j>P(u',v'0)ds= I P(u',v'0)dsW. 

In the same way, 

( P(£U',(£V') > f I P(u'0,v')ds= f P(u'0,v')dsW. 

Thus, (^j^-, UltL) is a saddle point of /0 P(u'(s),v'(s)) ds and therefore 

jrrf (j\(w'(s))ds) = J\(w'0(s))ds = tL { ^ ) . 

D 
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Corollary 4.1. Let us assume that L(-p) is also convex, and that S0(z) is holo-
morphic as well as strictly convex. Hence, for z G C n and t > 0, the function 

S(z,t) = inf (tL ( ^ ) +S0(z')) (7) 

is the solution of 

inf inf if L(w'(s))ds + S0(z')\ (8) 

where inf is taken on w', with w(-) being holomorphic and w(t) = z, and on z' = 
w(0). 

P r o o f . For a given value of z', Theorem 4.2 implies: tL (:L=p-) + S0(z') = 

inf^/ <JQL(w'(s))ds + S0(z')>. Since L(—p) is convex, then L ( ^ = ^ - J is convex 

in z' and tL 1^-) + S0(z') is a holomorphic and convex function in z'. Thus, 

inf2/ (tL ( ^ j M + S0(z')j is well defined and is equal to infz/ inf^/ I JQ L(w'(s)) ds 

+S0(z')}. D 

5. SOLUTIONS OF THE COMPLEX HAMILTON-JACOBI EQUATION 

Let us consider the following system of partial differential equations, which we use 
to look for the functions a(x,t) and b(x,t) G C2(5ftn x 5ft+; 5ft): 

Tt + \{Va)2 " \{Vb)2 = ° V ( M ) e RW x ^ W 
.£- + Vo-V6 = 0 V(x,t)€ 5ftnx5R+ (10) 

a(x,0) = a0(x) b(x,0) = b0(x) Vx G 5ftn (11) 

where ao(a;) and b0(x) are analytical functions of 9ftn in 5ft, ao(z) is strictly convex 
in an open set O of 5Rn, while b0(x) is affine. By assuming S(x, t) = a(x, t) + ib(x, t), 
the previous system is equivalent to the complex Hamilton-Jacobi equation: 

f)Q 1 

^ + ^(VS) 2 = 0 V(x,*)eftnx5ft+ (12) 

S(x,0) = So(x) V x e R n (13) 

where S0(x) = a0(x)+ ib0(x). Let S0(z) be the analytical extension of S0(x) having 
the form a0(z) + ib0(z). According to Proposition 2.4, a0(z) (and thus S0(z) as well, 
since b0(z) is affine) is strictly convex in a neighbourhood ft, of 5ftn in C n . 
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Theorem 5.1. The function S(x,t) defined by: 

S ( M ) = m m ( 5 0 ( , ) + ^ ) (14) 

is a solution for small values of t in the system (12),(13). 

P r o o f . So(z) + 2t is a holomorphic and convex function in fl. The necessary 
condition of optimality follows only if zxj is the solution of: 

Vso(z) + -"-=--- = 0. (15) 

In other words: zXit = x — tVSo(zXit) is an element of fi, which corresponds to the 
optimal solution. The equality (15) is continuous in z. It is satisfied in x for t = 0. As 
fi contains a ball with centre x in C n , the equality (15) allows a solution zxj, within 

this ball for sufficiently small values of t. In this case, S(x,t) = SQ(ZXJ) + ^ 

and VS(x,t) = (vS0(zx,t) + i ^ p i ) VzXft - ^ P = ^f^. Since §(x,t) = 

- ( a ; ~ ^ t ) 2 , then | f ( M ) = - | ( V 5 ) 2 Vx G 3?n and at small values of t. • 

Corollary 5.1. When So(z) is quadratic, then So(z) is convex in Cn and the 
function 

S ( l, t)=mm(s„(z)+<^£) 

is a solution of (12),(13) for all values of t. 

Observation. We may note that, to obtain the real solution to the problem 
(9), (10), (11), it was necessary to make use of complex variables. This appears to be 
a general principle and proves advantageous in calculating the complex variations in
troduced above. Moreover, the various formulae for resolving the Hamilton-Jacobi 
equations, cf. [9], can be generalized for complex Hamilton-Jacobi equations. In 
particular, we obtain the following generalization of the Hopf-Lax formula. 

Theorem 5.2. Take the complex Hamilton-Jacobi equation: 

^-+H(VS) = 0 V ( ^ , f ) e ( l x » + (16) 

S(z,0) = So(z) VzEft (17) 

where H and So are two holomorphic functions, and Cl is a convex set. 
Let us assume that So is strictly convex in Q, = i-f'(E), and that H is strictly 

convex in E = SQ(Q). If the complex Fenchel transform H of H is holomorphic in 
E, then, for small values of £, the function S(z,t) defined by: 

S(z, t) = mm (So(z') + tH ( 1 y ^ ) ) * (18) 
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is a solution of the system (16),(17). 

P r o o f. H is holomorphic and strictly convex in S. H is holomorphic and convex 
in f_. Consequently, S0(z')+tH(^-) is convex and holomorphic in _.. The necessary 
condition of optimality means that, if z0. the solution of: 

VS0(z') - WH í^—^-) = 0 (19) 

is in f_, and it will correspond to the optimal solution. Since H is holomorphic and 
strictly convex in S, then the necessary condition of optimality only applies if p, the 
solution of: 

VH(p) = Z-^- (20) 

is in S, thus corresponding to the optimal solution. 
For t = 0, z' — z G f_. For small values of _, z' G vx C _. where x = Re(z). Thus, 

^—f- £ f_. Since __ = H'(S), then there exists pz> G S such that 

vя'*-

Hi ——)=——-Pz'-H(pz,) Vz'€f_. 

WS0(z') - Vif (r—f-) = VSb(-') + (z - - ' )Vjv - p z - - tVH(p2,)Vpz, = 0. 

The equality (20) leads to VS0(z') - pz< = 0. Since S0(n) = _ , then there 

exists z0 e fi such that S(z,t) = S0(z0) + tH ( ^ - 1 ) . VS(z,t) = VS0(z0)Wz0 + 

Vtf ( ^ ) (I - Vz0). The equality (19) leads to VS(z,t) - VF? (^f1). 

^)(^)-(^)-» + ̂  •*»--<»).*» 

^(^"•^"rr'^"*-7 ' 
9 5 / JA S ^ - ^ o ^ (z-z0\dH(z-z0\ -(z,t) = H \-j-j - ^ - _ j — ( - - J . 

9 - / z - z 0 \ /zo ~ z \ 2 0 - 2 

9 5 . x ^ (z - z0\ z0-z TTt \ 

f + i.(V„)=0. 

But, 

then 

Thus, 

D 
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Examples . 

1) For small values of £, the function S(z, t) = min2'efi \ So(z') + $**' \ is a solu

tion of: 

^ + 2 ( v 5 ) f = 0 V ( z , t ) e f t x 5 f t + 

S(z,0) = S0(z) VzGfi. 

In fact, for ft = E = C_j_, the function H(p) = |p2 is convex in C_j_ and Vp G C_j_, 
H'(p) = p2 £ C_j_. Otherwise, we choose So to be holomorphic and convex in 
C*+ = ft, and such that S0(ft) = C*+ = S (for example, S0(z) = | z 2 ) . The condi
tions of Theorem 5.2 are thus well satisfied. 

2) For small values of t, the function S(z, t) = min^r} < So(z') + 4A r is a solu

tion of: 

^ + £(V5)* = 0 V ( z , t ) E f t x 3 t + 

S(z,0) = S0(z) Vze f t 

In fact, for ft = {a; + iy/ |y| < \x\} f| C+ and E = C_j_ the function II(p) = | p3 is 
convex in S. We choose 5o to be holomorphic and convex in ft, such that ^ ( f t ) = 
C_j_ = E (for example, So(z) = \z2 or 5o(z) = \z*). The conditions of Theorem 5.2 
are thus well satisfied. 

Observation. In the case where II and So are quadratic functions, they are strictly 
convex in C n , and 

S(г,0 = ^ m ( 5 o ( г ' ) + t я ( - ^ ) ) 

is a solution of the complex Hamilton-Jacobi equation (16), (17) for all (z,t) G 
C n x K + . 

Corollary 5.2. Let ft be an open set of C n . The complex action S(z,t) defined 
by (5) satisfies the complex Hamilton-Jacobi equation: 

r\ Qt 

^- + H(VS) = 0 V(z ,*)e f txSR + (21) 

S(z,0) = So(z) VzGft (22) 

where H(p) is the complex Fenchel transform of L(q). 

P r o o f . This corollary can be directly deduced from Theorems 4.2 and 5.2. • 

(Received October 10, 2002.) 
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