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RESIDUAL IMPLICATIONS AND CO-IMPLICATIONS 
FROM IDEMPOTENT UNINORMS 

DANIEL RUIZ AND JOAN TORRENS 

This paper is devoted to the study of implication (and co-implication) functions defined 
from idempotent uninorms. The expression of these implications, a list of their properties, 
as well as some particular cases are studied. It is also characterized when these implications 
satisfy some additional properties specially interesting in the framework of implication 
functions, like contrapositive symmetry and the exchange principle-
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1. INTRODUCTION 

Introduced in the field of aggregation functions in [21] and [11], uninorms have 
proved to be useful not only in this field, but also in many others like expert sys­
tems, neural networks, fuzzy system modelling, fuzzy logic, etc. There are three 
different known classes of uninorms, stated in [4], the Umm and ZYmax class, repre-
sentable uninorms and idempotent uninorms. The first two classes are studied in 
[11] whereas the third one is studied in [5]. From these studies many other papers 
on uninorms have appeared, even some generalizations of these operators like in 
[16]. Moreover, implication operators derived from t-norms are extensively stud­
ied, as in [1] and [12], but also those derived from uninorms. Implication functions 
derived from representable uninorms, as well as from uninorms in Um\n and Um8iX, 
have been studied in [8] and [7], respectively. There are also some works involving 
idempotent uninorms, like [18] and [19] but, dealing with implication functions, only 
some few results can be found in [9] and only with respect to left-continuous and 
right-continuous idempotent uninorms. 

Uninorms are a kind of aggregation functions that have proven to be useful in 
many fields. One of them, where residual implications play an important role, is 
fuzzy mathematical morphology, see [10] and [13]. Fuzzy morphological operators are 
defined precisely from idempotent conjunctive uninorms in [13], and the properties of 
the residual implications of such uninorms are essential to obtain good morphological 
properties. 
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The main goal of this paper (which is an extended version with proofs of [20]) is 
to study those implication functions defined from idempotent uninorms in general. 
We specially study the case of implications obtained from residuation, that is, 

I(x, y) = sup{> G [0,1] | U(x, z) < y} 

for all x,y G [0,1], In this case we give first the general expression of such impli­
cations as well as a list of the properties that they satisfy. It is derived from their 
expression that all idempotent uninorms with the same associated function g have 
the same residual implication. It is also proved that some other properties, including 
contrapositive symmetry, are satisfied only in particular cases: when the associated 
function of the idempotent uninorm is a strong negation. Another way to define 
implication functions from disjunctive idempotent uninorms is the one given by 

I(±,y) = U(N(x),y) for all x , i / € [0 , l ] 

where N is a strong negation. In the special case when the associated function 
of U coincide with 1V, both kinds of implications become extremely close. More­
over, they coincide when U is right-continuous as it was already proved in [9]. The 
study of the exchange principle is also done and it brings us examples of non left-
continuous conjunctive uninorms such that their derived implications satisfy this 
important property. Finally, the last section of this paper gives a similar study for 
co-implications. 

2. PRELIMINARIES 

We assume the reader to be familiar with some basic notions concerning t-norms and 
t-conorms which can be found for instance in [14]. Also some results on uninorms 
in general, that will be used in the paper without further mention, can be found in 
[11] and [14]. 

Definition 1. (See [11].) A uninorm is a two-place function U : [0,1] x [0,1] —> 
[0,1] which is associative, commutative, increasing in each place and such that there 
exists some element e G [0,1], called the neutral element, such that U(e,x) = x for 
a l lx G [0,1]. 

It is clear that the function U becomes a t-norm when e = 1 and a t-conorm 
when e = 0. For any uninorm we have L7(0, 1) G {0,1} and a uninorm U is said 
conjunctive when L7(1,0) = 0 and disjunctive when L7(1,0) = 1. 

Definition 2 . Let U be a uninorm. If there is a t-norm T and a t-conorm S such 
that U is given by 

c T ( f , f ) if0<x,y<e 

U(x,y) = \ e + ( l - e ) s ( f f f , j f E f ) i f e < r r , y < l 

min(x, y) if min(x, y) < e < max(x, y) 
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then U is said to be in Um\n, and if U is given by 

' e T ( f , f ) i f O < x , y < e 

v(x,y) = i e + ( l-e)s(fEf,?Ef) Xe<x,y<\ 
max(x, y) if min(x, y) < e < max(x, y) 

then U is said to be in ZYmax. 

Definition 3 . A uninorm U with neutral element e G (0,1) is representable if and 
only if there is a strictly increasing, continuous function h : [0,1] —> [-co, +oo] with 
h(0) = - c o , h(e) = 0 and h(l) = +oo such that U is given by 

U(a,b) = lr1(h(a)+h(b)) 

for all (a, b) G [0, l ] 2 \ {(0,1), (1,0)} and U(0,1) = [7(1,0) G {0,1}. 

Definition 4. A binary operator U : [0,1] x [0,1] —> [0,1] is said to be idempotent 
whenever U(x,x) = x for all x G [0,1], 

In [2], Czogala-Drewniak give the general form of idempotent, associative and 
increasing binary operators with a neutral element (see also Theorem 3). Particu­
lar cases of operators with these properties are of course, idempotent uninorms. A 
detailed characterization for the cases of left-continuous and right-continuous idem-
potent uninorms is given in the following theorems. 

Theorem 1. (De Baets [5].) A binary operator U is a left-continuous idempotent 
uninorm with neutral element e G [0,1] if and only if there exists a decreasing 
function g : [0,1] —> [0,1] with fix point e, satisfying g(g(x)) > x for all x < g(0) 
and g(x) = 0 for all x > g(0) such that, for all x,y G [0,1], U is given by 

f min(x, y) if y < g(x) and x < g(0) 

\max(x ,y) elsewhere. 

Theorem 2. (De Baets [5].) A binary operator U is a right-continuous idempotent 
uninorm with neutral element e G [0,1] if and only if there exists a decreasing 
function g : [0,1] —r [0,1] with fix point e, satisfying g(g(x)) < x for all x > g(l) 
and g(x) = 1 for all x < g(l) such that, for all x,y e [0,1], U is given by 

U{x,y) = \ . 
I, min(x, 

max(x, y) if y > g(x) and x > g(l) 

y) elsewhere. 

A complete characterization of Czogala-Drewniak's operators can be found in 
[15], as follows. 
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Theorem 3 . (Martin-Mayor-Torrens [15].) Let F be a binary operator on [0,1]. 
F is associative, increasing, idempotent and has a neutral element e G [0,1] if and 
only if there exists a decreasing function g : [0,1] -» [0,1] with g(e) = e, g(x) = 0 
for all x > g(0), g(x) = 1 for all x < #(1), satisfying 

-nf{y | g(y) = g(x)} < g(g(x)) < sup{y | g(y) = g(x)} (1) 

for all x G [0,1], such that 

f min(x, y) if y < g(x) or y = g(x) and x < g(g(x)) 
F(x>y) = \ max(x,y) if y > g(x) or y = g(x) and x > g(g(x)) 

^ min(x, y) or max(x, y) if y = g(x) and x = g(g(x)). 

Moreover, in this case F must be commutative except perhaps on the set of points 
(x,y) such that y = g(x) with x = g(g((x)). 

Remark 1. Let g : [0,1] —> [0,1] be a decreasing function with g(e) = e. Note that 
condition (1) becomes g(g(x)) = x for all x G [0,1] where g is strictly decreasing. 
On the other hand, when g is constant in an interval (a,b) then g(g(x)) must be 
such that a < g(g(x)) < b. 

Let us point out also that the theorem above gives a characterization of all idem-
potent uninorms, requiring only commutativity in points (x,y) such that y = g(x) 
and x = g(g(x)). In particular, this characterization includes those given in Theo­
rems 1 and 2 for left-continuous and right-continuous idempotent uninorms. In fact, 
if the function F is left-continuous it must be equal to the minimum for all points 
(x,y) such that y = g(x) and thus the function g must satisfy g(g(x)) > x for all 
x G [0,1] and similarly for right-continuity. 

3. IMPLICATION FUNCTIONS DEFINED FROM IDEMPOTENT 
UNINORMS 

In view of the theorems above any idempotent uninorm U (continuous on one side 
or not) is determined by a decreasing function g. In what follows we will refer 
to this function g as the associated function of U. Moreover, from now on, any 
idempotent uninorm U with neutral element e and associated function g will be 
denoted by U = (e,g). Note however that for some functions g, there are a lot 
of idempotent uninorms with the same neutral element e and the same associated 
function g, and of all these uninorms at most one can be left-continuous and at most 
one right-continuous. 

Definition 5. A binary operator J : [0,1] x [0,1] —> [0,1] is said to be an implication 
function or simply an implication if it satisfies: 

• I is non increasing in the first place and non decreasing in the second one. 
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• 7 satisfies: 
7(0,0) = 7(1,1) = 1 and 7(1,0) = 0. 

From the definition it follows that 7(x, 1) = 1 and 7(0, x) = 1 for all x G [0,1] 
and so the restriction of 7 to {0, l } 2 coincides with the classical implication. 

Definition 6. Let U be a uninorm. We will denote by Iu the binary operator given 
by: 

Iu = sup{z | z e [0,1], U(x, z) < y). 

When Iu is an implication function, we will say that Iu is the residual implication 
of U. 

The fact of being the operator Iu an implication function, and the properties 
that satisfies, becomes important in several contexts like: 

• Fuzzy relational equations, where the residual implicators (as well as the resid­
ual co-implicators, see next section) are the key for solving fuzzy relational 
equations of the form R o X = A, where R is a fuzzy relation and A is a fuzzy 
set (see for instance [3]). 

• Fuzzy mathematical morphology, where residual implicators play an essential 
role in order to define the erosion and the dilation operators. In this context, 
properties of the implicators like the modus ponens, contrapositive symmetry, 
or the exchange principle directly derive in good morphological properties of 
the mentioned morphological operators (see [13] and [17]). 

In this way, the study of when the operator above is an implication function 
is given in [7] and [8] for representable uninorms, as well as for uninorms in Um\n 

and Wmaxj respectively. For idempotent uninorms only some results for left and 
right-continuous cases are given in [9]. In the general case we have the following 

Proposition 1. Let U = (e,g) be any idempotent uninorm. Iu is an implication 
function if and only if g(0) = 1. 

P r o o f . Non-increasingness in the first place and non-decreasingness in the sec­
ond one are trivial from the definition. On the other hand, it is clear from the 
definition of Iu that 7rI(l, 1) = 1 and 7jI(l, 0) = 0, but in order to have 7fI(0,0) = 1, 
we need that t7(x, 0) = 0 for all x < 1 and this occurs if and only if g(0) = 1. • 

The following theorem includes Theorem 8 in [9] as a particular case. 

Theorem 4. Consider U = (e,g) any idempotent uninorm with g(0) = 1. The 
residual implication Iu is given by: 

j (x \ = { min(0(z)>2/) if 2/ < -r ^ 
\max(g(x),y) if y > x. 
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P r o o f . We divide the proof in some cases. 

• When y < x and y < g(x). In this case, we have U(x,y) = m\xi(x,y) = y. If 
we take z satisfying y < z, U(x,z) G {x,z} > y, and then 

Iu(x,y) = sup{z | ze [0,l],U(x,z) <y} = y. 

• If y < x and y > g(x). If we take z satisfying z < g(x) < y, U(x,z) = 
min(x,z) = z <y\ but if z satisfies g(x) < z, then U(x,z) = max(x,z) > x > 
y, and we can conclude that 

Iu(x, y) = sup{z | z e [0,1], U(x, z)<y} = g(x). 

• If y > x and y > g(x). Now, U(x,y) = max(x,7/) = y. But if we take z 
satisfying g(x) < y < z, U(x,z) = max(x,z) = z> y, and then 

Iu(x,y) = sup{z | z e [0,1],U(x,z)<y} = y. 

• When y > x and y < g(x). In this case, if we take z satisfying z < g(x) 
then U(x,z) = min(x,z) = x < y, but if z satisfies y < g(x) < z, then 
U(x,z) = max(x,z) = z > y, and we can conclude that 

Iu(x, y) = sup{z \ze[0,1], U(x, z) <y} = g(x). 

Now, from the steps above expression (2) follows easily. • 

As a corollary of the theorem above we obtain the following 

Corollary 1. All idempotent uninorms with the same neutral element e and the 
same associated function g with #(0) = 1, have the same residual implication, given 
by expression (2). 

Remark 2. Note that the corollary above gives no contradiction with Theorem 8 
in [9] since there, expression in case ii) is actually the same that the one given in 
cases i) and hi), which also coincides with expression (2). 

Example 1 . Now we can give the expression of Iu when U is an idempotent uninorm 
and member of Um\n. In that case, the associated function of U is 

, v f 1 if x < e 
9 ^ = {e if x>e 

and Iu is: 

Iu(x,y) = 

that can be viewed in Figure 1. 

f y if y < x and y < e 
e if y < x and y > e 
y if y > x and x > e 

< 1 -f У > x and x < e 
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0 e 1 

Fig. 1. Iu when U is an idempotent uninorm in Umin. 

The following proposition is derived from results in [7] and [8] and it can also be 
trivially deduced from Theorem 4. 

Proposition 2. Let U = (e,g) be an idempotent uninorm with #(0) = 1, and Iu 
its residual implication. Then 

i) Iu(e,y) = y for all y e [0,1], 

ii) Iu(x,y) >eiix<y. 

hi) (Generalized Modus Ponens) U(x,Iv(x,y)) < y for all (x,y) E [0, l ] 2 if and 
only if U is left-continuous, and in that case U is conjunctive. 

Proposition 3 . Let U = (e,g) be an idempotent uninorm with #(0) = 1, and Iv 

its residual implication. Then 

i) Iu(x,.) is right-continuous whereas Iu(>,y) is left-continuous if and only if so 
is g. 

ii) Iu(x,x) = max(x,g(x)). 

hi) Iu(x, y) > y if and only if y > x or (y < x and y < g(x)). 

iv) Iu(x,g(x)) =g(x). 

v) Iv(x,e) =g(x). 

P r o o f . All the statements are straightforward. 
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One special case, that will be characterized in several ways in next propositions, 
is when the associated function g is a strong negation IV. It is specially interesting, 
mainly because in this case we have a lot of nice properties. 

Proposition 4. Let U = (e,g) be an idempotent uninorm with g(0) = 1, Iu its 
residual implication and IV : [0,1] -> [0,1] a strong negation. Then 

Iu(x, e) = N(x) for all x e [0,1] 

if and only if g = IV. Moreover, in this case we have 

Iu(x,N(x)) = N(x) for all x G [0,1]. (3) 

P r o o f . It follows from points iv) and v) in the previous proposition. • 

Remark 3 . Property described by expression (3) has been recently studied in [1] 
for residual implications from t-norms, due to its applicability in the framework of 
inclusion grade indicators constructed from implications. 

Another important property, also satisfied when g is a strong negation, is contra-
positive symmetry, that is 

Iu(xyy)=Iu(N(y),N(x))) for all x € [ 0 , l ] . 

This property has been studied in [9] for left and right-continuous cases. For the 
general case we have the following proposition. 

Proposition 5. Let U = (e,g) be an idempotent uninorm with g(0) = 1, Iu its 
residual implication and IV a strong negation. Then Iu has contrapositive symmetry 
with respect to N if and only if g = IV. 

P r o o f . When g = IV, by one side we have: 

(min(N(x),y) if y < x 
U[X'y)~\m<ix(N(x),y) if y > x 

and by the other 

r f„f ^ Mt ^ j^HN(N(y)),N(x)) if N(x) < N(y) 
Iu(N(y),N(x))= i 

\ • 

-{ 

max(IV(IV(<y)),IV(г/)) if IV(x) > N(y) 

min(y, IV(x)) if y < x 

max(y,N(x)) if y > x 

and this proves that Iu has contrapositive symmetry with respect to IV. 
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Conversely, let us first show that N(e) = e. We have, using that Iu has contraposi-
tive symmetry with respect to 1V, 

e = Iu(e,e) = Iv(N(e),N(e)) = max{#(/V(e)),/V(e)}. 

Now, if JV(e) > g(N(e))y then e = N(e). If JV(e) < g(N(e)), then g(N(e)) = e 
and N(e) < e. Consequently, for all x E (1V(e),e) we have g(x) = e and also 
N(x) E (1V(e),e) and we can write that 

x = Iv(e,x) = Iv(N(x),N(e)) = min(g(N(x)),N(e)) = N(e) 

which is a contradiction. 
Then, using that N(e) = e, we have for all x G [0,1] 

g(x) = Iu(x,e) = Iu(N(e),N(x)) = Iu(e,N(x)) = N(x). 

Example 2. Consider the strong negation N(x) = 1 — x and the right continuous 
idempotent uninorm U = (1/2, N). In this case we have 

at \ fmin(z>2/) if y<l-x U(x,y) = \ 
t max(x, y) it y > 1 — x 

and its residual implication 

Iu(x,y) = | 
min(l — x, y) if y < x 

max(l — x,y) if y > x 

satisfies contrapositive symmetry with respect to N by previous proposition. This 
residual implication can be viewed in Figure 2. 

0 1/2 1 

Fig. 2. Iu with U = (1/2,1V) and 1V(x) = 1 - x. 
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In [7] it was defined for any uninorm U and strong negation IV the binary operator 

Iu%N = U(N(x),y) 

that is obviously an implication if and only if U is disjunctive. The case of repre-
sentable uninorms was studied in [8] whereas, concerning left and right-continuous 
idempotent uninorms, it was proved in [9] the following 

Proposi t ion 6. (De Baets-Fodor [9].) Let IV be a strong negation and Ur (Ui) the 
right (left) continuous idempotent uninorm with IV as associated function. Then 
the following equalities hold: 

Iur,N = Iur = lUr 

From Corollary 1, it is clear that the result above can be generalized to any 
idempotent uninorm U = (e, IV) as follows: 

Propos i t ion 7. Let IV be a strong negation and U = (e,7V) any idempotent uni­
norm. Then the following equality holds: 

Iur,N = Iu-

Moreover, it can be proved an if and only if version of this result. 

Proposi t ion 8. Let N be a strong negation and U = (e, g) any idempotent uninorm. 
Then IU,N = lu if and only if g = IV and U is right-continuous. 

P r o o f . If g = N and U is right-continuous, we have U = Ur and the proposition 
above proves IU,N = lu- Conversely, if IU,N = lu we have by one side 

IuM*>e) = U(N(x),e)=N(x) 

and by the other, using proposition 3 v), 

Iu(x,e) = g(x). 

Thus g(x) = N(x) for all x 6 [0,1]. Moreover, applying IU,N(X,X) = Iu(x,x) for all 
x we obtain, using Proposition 3 ii), 

U(N(x)yx) = max(IV(x),x) 

following the right-continuity of U. • 
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To finish this section, let us study the exchange principle. Given an implication 
I, it verifies the exchange principle if 

I(x,I(y,z)) = I(y,I(x,z)) (A) 

for all x,y,z in [0,1]. 

Proposition 9. Let U = (e,N) be any idempotent uninorm with iV a strong nega­
tion. Then lu verifies the exchange principle. 

P r o o f . As it is said in corollary 1, if we take two uninorms with the same 
generator function, they have the same residual implicator. Then, if we take Ur = 
(e,N): 

min(x,y) if y < N(x) 
Ur(x,y) = 

max(x,y) if y > N(x). 
We know that lu = Iur and, by the previous proposition, that Iur,N = Iur- Then 
Iu(x,y) = Iur,N(x,y) = Ur(N(x),y). Now, using that Ur is associative and com­
mutative, we have that 

Iu(x,Iu(y,z))= Ur(N(x),Ur(N(y),z)) = Ur(Ur(N(x),N(y)),z)) 

= Ur(Ur(N(y),N(x)),z)) = Ur(N(y),Ur(N(x),z)) 

= Iu(y,Iu(x,z)), 

for all x,y,z in [0,1]. • 

All idempotent uninorms such that their residual implications satisfy this im­
portant property, including consequently those given in the proposition above, are 
characterized in next theorem. 

Theorem 5. Let U = (e,g) be any idempotent uninorm with g(0) = 1. Then lu 
satisfies the exchange principle if and only if the following property is satisfied: 

if g(g(x)) < x for some x G [0,1], then x > e and g(x) = e. (5) 

P r o o f . First, suppose that lu satisfies the exchange principle, and a G [0,1] 
which g(g(a)) < a. Now we divide the proof in several cases. 

• First note that a / e because g(g(e)) = e. 

• If a < g(a), then we have g(g(a)) < a < g(a) and by one side 

Iu(a,Iu(g(a),a))= Iu(a,min(g(g(a)),a)) = Iu(a,g(g(a))) 

= min(g(g(a)),g(a)) = g(g(a)), 
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and by the other 

Iu(g(a),Iu(a,a))= Iu(g(a),m&x(g(a),a)) = Iv(g(a),g(a)) 

= mzx(g(g(a)),g(a)) = g(a). 

And then g(a) = g(g(a)), but this lead us to a contradiction. 

• If a > g(a), then g(a) < g(g(a)), and we have by one side 

Iu(a,Iu(g(a),g(g(a)))) = Iu(a,g(g(a))) = min(g(g(a)),g(a)) = g(a), 

and by the other 

Iu(g(a),Iu(a,g(g(a))))= Iu(g(a),mm(g(a),g(g(a)))) = Iv(g(a),g(a)) 

= mzx(g(g(a)),g(a)) = g(g(a)). 

And then g(a) = g(g(a)), that means that g(a) = e and a > e, because e is 
the only fixpoint of g. 

In any case, if Iu satisfies the exchange principle, it satisfies (5). 
Conversely, suppose that g satisfies (5). Since Iu(x,y) £ {g(x),y}, we divide the 
proof in several cases depending on the values of Iu(x,z) and Iu(y,z). 

1) If Iu(x,z) = z and Iu(y,z) = z. We have: 

Iu(x, Iv(y, z)) = Iu(x, z) = z = Iu(y, z) = Iv(y, Iu(x, z)) 

and then the exchange principle is satisfied. 

2) Iu(y, z) = z and Iu(x, z) = g(x). Then, by one side we have 

Iu(x,Iu(y,z)) = Iv(x,z) =g(x) 

and by the other 
lu(yJu(x,z)) = lu(y,g(x)). 

Now we study the value of Iu(y,g(x)). 

— If z < y then Iu(y, z) = min(g(y), z) = z and consequently z < g(y). 

* If z < x then Iu(x,z) = min(g(x),z) = g(x) and therefore z > g(x). 
Using that g(x) < z < y and g(x) < z < g(y) we can compute the 
value of Iu(y,g(x)): 

Iu(y,g(x)) = min(g(y),g(x)) = g(x). 

* If z > x then we have that x < z < g(y) and x < z < y that implies 
that g(y) < g(x). 
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• If x ^ g(y) then x < g(y). By definition of idempotent uninorm, 
this means that y < g(x) and then 

Iu(y,g(x)) = max(g(y),g(x)) = g(x). 

• If x = g(y) then g(y) < g(x) = g(g(y)) and we have 

iu(y,g(x))= iu(y,g(g(y))) 

_ f min(g(y),g(g(y))) if g(g(y)) < y 
\ m&x(g(y),g(g(y))) if g(g(y)) > y 

_ (g(y)(=e) if g(g(y)) <y 

\ g(g(y)) if g(g(y)) > y-

Now, using that g satisfies (5), we obtain: 

Iu(y,g(x)) =g(g(y)) = g(x). 

- If z > y the proof is similar to the previous case. 

And in any case Iu(y,g(x)) = g(x) and the exchange principle is satisfied. 

3) If Iu(y,z) = g(y) and Iu(x,z) = z. This case is similar to the previous one 
because x and y play a symmetric role in the equation (4). 

4) If Iu(y,z) — g(y) and Iu(x,z) = g(x). We have by one side 

Iu(x,Iv(y,z)) = Iv(x,g(y)), 

and by the other 
Iu(y,Iu(x,z)) = Iu(y,g(x)). 

- If x / g(y) and y ^ g(x), by definition, if x > g(y) then y > g(x) but 
y i1 g(x), and therefore if x > g(y) then y > g(x). Similarly we have that 
if y > g(x), then x > g(y). That is, y > g(x) if and only if x > g(y). 
Then, 

j (x ( )) = I min(2(x)'0(2/)) if x > y(y) 
\ mzx(g(x),g(y)) if x < g(y) 

and 
r ( ( w fmin(d(x),g(y)) if y>g(x) 
lu(y,g(x)) = \ 

{ max(g(x),g(y)) if y < g(x) 

are the same, and the exchange principle is satisfied. 

- If y = g(x) we have that: 

Iu(y,g(x)) = Iu(g(x),g(x)) = ma,x(g(g(x)),g(x)) 
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and 
Iu(x,g(y))= Iu(x,g(g{x))) 

- { 
max(g(x),g(g(x))) if g(g(x)) > x 

mm(g(x),g(g(x))) if g(g(x)) < x 

= m^x(g(x),g(g(x))) 

because g satisfies (5). Therefore Iu(x,g(y)) = Iu(y,g(x)). 

- If x = g(y), the case is similar to the previous one. 

Consequently if g satisfies (5) then lu satisfies the exchange principle. • 

Remark 4. Note that in the previous theorem we have found non left-continuous 
uninorms such that their residual implications lu satisfy the exchange principle. 
In particular, idempotent uninorms in ZYmin (that are right-continuous) satisfy the 
condition in the theorem above and, consequently, their residual implications satisfy 
the exchange principle. 

4. CO-IMPLICATION FUNCTIONS AND DUALITY 

Similarly to the previous section, we define 

Definition 7. A binary operator J : [0,1] x [0,1] -> [0,1] is said to be a co-
implication function or simply an co-implication if it satisfies: 

• J is non increasing in the first place and non decreasing in the second one. 

• J(0,0) = J ( l . l ) = 0 and J(0,1) = 1. 

While residual implicators can be viewed as a fuzzy generalization of the classical 
implication (p = > q), residual co-implicators generalize the classical co-implication 

(Q¥=>P). 

Definition 8. Let U be a uninorm. We will denote by Ju the binary operator given 
by: 

Ju = 'mf{z | ze[0,l],U(x,z)>y}. 

We will say that Ju is the residual co-implication of U if Ju is a co-implication 
function. 

Similarly to the case of implication functions, the following results can be proved. 

Proposition 10. Let U = (e,g) be any idempotent uninorm. Ju is a co-implication 
function if and only if g(l) = 0. 
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Although, in fuzzy mathematical morphology, the morphological operators are 
usually defined throughout residual implications, co-implication functions and their 
properties are also essential to obtain certain good morphological properties, like for 
instance the idempotence of fuzzy opening and fuzzy closing (see [6]). 

Theorem 6. Consider U = (e,g) any idempotent uninorm with #(1) = 0. The 
residual co-implication J^ is given by: 

j ex x\ = {mm(g(x),y) if y <* , * 
\max(g(x),j/) if y > x. 

Remark 5. Comparing (2) and (6) we can see that, given any uninorm with g as 
associated function satisfying g(0) = 1 and g(l) = 0, both Iu and Ju coincide except 
on the set of points (x,x). 

Recall that, given any idempotent uninorm U = (e,g) and a strong negation IV, 
we can construct the dual operator 

U(x,y) = N(U(N(x),N(y))) 

that is also an idempotent uninorm. Its neutral element is e = IV(e) and its associ­
ated function is g(x) = N(g(N(x))). For example, if U £ Umm, then U G ZYmax. 

Now, let J be any co-implication, then the dual operator 

J(x,y) = N(J(N(x),N(y))) 

is an implication. Moreover, given an idempotent uninorm U = (e,g) with ^(1) = 0, 
we have that the following equalities hold, for any strong negation IV: 

Ju = I~ and Iv = J~. 

That is, for any idempotent uninorm U = (e,g) with g(l) = 0, the dual operator of 
the residual co-implication Ju of L7, is the residual implication of U. 

Remark 6. Note that in the special case^ of g = IV, U and U have the same 
associated function, IV, and consequently Jir = lu. 

From this duality it is easy to see that each result for implications proved in the 
section above has its corresponding result for co-implications. We state here the 
result corresponding to the exchange principle and we leave the others to the reader. 

Theorem 7. Let U = (e,#) be any idempotent uninorm with g(l) = 0. The 
following items are equivalent: 

i) Ju satisfies the exchange principle, 

ii) I~ satisfies the exchange principle. 
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iii) If x < g(g(x)) for some x € [0,1], then x < e and g(x) = e. 

P r o o f . For all x, y,z in [0,1] we have that if Ju satisfies the exchange principle 

I~(x, I~(y, z))= Ju(x, Ju(y, z)) = N(Jv(N(x), N(Tu(y, z)))) 

= N(Ju(N(x),N(N(Ju(N(y),N(z)))))) 

= N(Ju(N(x),Ju(N(y),N(z)))) 

= N(Ju(N(y),Ju(N(x),N(z)))) 

= N(Ju(N(y),N(N(Ju(N(x),N(z)))))) = Tu(y,Tu(x,z)) 

= Iu(yJu(x,z)), 

then I~ satisfies the exchange principle. Conversely, a similar proof shows that if I~ 
satisfies the exchange principle, Ju does, and we have equivalence between i) and 
ii). 

Now, by applying Theorem 5, we know that I~ satisfies the exchange principle if 
and only if the following equivalent statements hold 

If x > g(g(x)) for some x G [0,1], then x > e and g(x) = e 

t 
If x > N(g(N(N(g(N(x)))))) for some x 6 [0,1], then x > N(e) and 

N(g(N(x))) = N(e), 

lix> N(g(g(N(x)))) for some x € [0,1], then x > N(e) and g(N(x)) = e, 

t 
If N(x) < g(g(N(x))) for some x G [0,1], then N(x) < e and g(N(x)) = e, 

If x < g(g(x)) for some x G [0,1], then x < e and g(x) = e, 

and consequently, ii) is equivalent to iii). • 

Remark 7. Now we have that given any idempotent uninorm in ZYmax (left-continuous 
and disjunctive uninorm), its residual co-implication Ju satisfies the exchange prin­
ciple. 

Example 3 . Consider N(x) = y/\ — x2 , and U the right-continuous idempotent 
uninorm U = (\/2/2, IV) given by the expression: 

u(x \ _ í min(a;,í') if y < Vi-x2 

l max(ar, y) if y > y/l — x2 
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V2 
2 

0 f 1 

Fig. 3. Ju with U = (y/2/2,N) and N(x) = y/l-x2. 

its residual implication 

Iu{x,v) = \ 

and its residual co-implication 

Ju(x,y) = \ 

min(\/ l — x2,y) if y < x 

max(\/ l — x2,y) if y > x 

min(V'l — x2,y) if y < x 

max(\/ l — x2,y) if y < x 

that can be viewed in Figure 3. Note that the only difference between Iu and Ju is 
in the set of points {(xyx)/x G [0,1]}. In this case, Iu and Ju satisfy the exchange 
principle and both satisfy contrapositive symmetry with respect to N. 
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