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EFFICIENCY-CONSCIOUS PROPOSITIONALIZATION 
FOR RELATIONAL LEARNING 

FlLIP Z E L E Z N Y 

Systems aiming at discovering interesting knowledge in data, now commonly called 
data mining systems, are typically employed in finding patterns in a single relational table. 
Most of mainstream data mining tools are not applicable in the more challenging task of 
finding knowledge in structured data represented by a multi-relational database. Although 
a family of methods known as inductive logic programming have been developed to tackle 
that challenge by immediate means, the idea of adapting structured data into a simpler 
form digestible by the wealth of AVL systems has been always tempting to data miners. 
To this end, we present a method based on constructing first-order logic features that 
conducts this kind of conversion, also known as propositionalization. It incorporates some 
basic principles suggested in previous research and provides significant enhancements that 
lead to remarkable improvements in efficiency of the feature-construction process. 

We begin by motivating the propositionalization task with an illustrative example, re­
view some previous approaches to propositionalization, and formalize the concept of a 
first-order feature elaborating mainly the points that influence the efficiency of the de­
signed feature-construction algorithm. 

Keywords: machine learning, inductive logic programming, propositionalization 

AMS Subject Classification: 68T30 

1. INTRODUCTION 

A family of computer programs now collectively termed data mining systems aim to 
discover interesting knowledge in observational data. Their underlying algorithms 
are usually based on principles of inductive learning and most commonly they seek 
for dependencies among attributes (columns) in a single relational table, that hold 
in a sufficient number of instances (rows) in that table. Very often such dependen­
cies are expressed in languages reminding propositional logic, such as decision trees 
in the C4.5 algorithm [21], classification rules as in CN2 [4], or association rules 
produced by the APRIORI system [1], or the algorithm of GUHA [8], Such systems 
are generally called attribute value learners (AVL) owing to their way of forming hy­
potheses out of propositions which assign a constant value to a specified attribute. 
For instance, a rule such as 

s i z e = l a r g e , luxury = high —> affordable = no 
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would be a typical example of the kind of representation of knowledge discovered 
with an AVL system applied to a relational table with attributes containing those 
appearing on the left-hand side of the equalities. To date, there is a vast quantity 
of mature and perpetually augmented AVL systems accompanied with auxiliary 
methods such as for prc-learning attribute selection [17], pre-processing [24], e tc 

It has been however widely recognized [6, 7] that AVL systems cannot stand well 
to the challenge of discovering knowledge from highly structured or multi-relational 
data, which manifests itself in important problems such as predicting mutagenicity 
of chemical compounds [23], pharmacophore discovery and others. 

A toy problem will illustrate the difficulty inherent to such domains: consider the 
set of trains depicted in Figure 1. Here the task is to find a rule discriminating be­
tween east-bound and west-bound trains, each having a variable number of different 
cars with a variable number of wheels and different loads. 

] IKЛINSCOINCÍГASГ 2 TUAINSCOINC VVEST 

Fig. 1. The 10-train MichalskPs East-Wcst challenge. 

To represent the data in a relational database, one would resort to introducing a 
tabic with each row corresponding to a train (containing an attribute indicating the 
train's direction), another table for cars (with an attribute linking the given car to 
a train), yet another table for loads (linked to cars), etc. Unfortunately, to apply 
an AVL learner, a data miner will have to join these tables into a single one, such 
that each row thereof has to bear the whole structural information about a train. In 
order to achieve this by means of a database query, it will be necessary1 to unify the 
sizes of train descriptions by formally adding null ('dummy') cars to each train up 
to the number of cars occurring in the longest train, similarly null loads to cars with 
a smaller-than-maximum number of loads, etc. The number of attributes in such a 
joined table will clearly be excessive, with many null fields e. g. in rows corresponding 
to short trains or those mostly consisting of 'underloaded' cars. Another aspect of 
this approach is even more painful: as an AVL discriminates instances by assigning 
a value to a specific attribute, it will not be able to arrive to rules with existential 
quantification, such as a train is east-bound if one of its cars has three wheels. 

*We thank the reviewer for pointing out this issue to us. 
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In the last 15 years, a considerable effort has been devoted within the field of 
inductive logic programming (ILP), to devise learning techniques able to cope with 
such problems [G] by representing both the input data and the resulting hypotheses 
in the language of Prolog. Here, a learning example describing the first cast-bound 
train t\ (thus being a positive example of the east-bound concept) would read2 

eas t ( t l ) <r- hasCar( t l ,c l ) ,has2Whel ls (c l ) ,hasLoad(c l , l l ) ,box( l l ) . .. (etc.) 

Note that commonly in ILP, the first literal is considered the example, while the 
rest of literals belong to the background knowledge a database containing the 
descriptions of all trains. An ILP system might then generalize a set of positive 
and negative examples towards a rule3 proposing that a train goes east if it has a 
roofed car with a circle load: 

east(T) <r- hasCar(T, C), hasLoad(C, L), circle(L), hasRoof (C). (2) 

In our example, this rule would represent a hypothesis that is correct (in that its 
antecedent does not hold for any negative example, i.e. a west-bound train) but 
incomplete (in that it does not hold for all east-bound trains). The final hypothesis 
would thus have to be attained by adding further rules, while east (T) would be 
concluded for a given T if any of the rules' antecedents was satisfied for T. 

Despite the relative maturity of ILP research, the selection of available AVL 
systems suitable for various kinds of data mining tasks is overwhelmingly larger 
than that offered by ILP. One thus wonders whether structured /multi-relational 
data could be adapted into a form allowing to be processed by an AVL system while 
avoiding the obstacles imposed by the table-joining approach, as demonstrated above 
on the example of trains. Recently, the term propositionalization has been accepted 
[11] to describe this goal. 

Our system EFFEDRIN4 implements a procedure for propositionalization, which 
is briefly as follows. First, generate a finite set of Prolog queries ('features'), each ex­
pressing a property of an object ('individual') under investigation (e. g, a train). An 
example of a feature may be hasCar(T,C) , long(C), where the key variable T binds 
to an individual. Then produce a single relational table, where each row corresponds 
to an individual, each column to a feature, and each field to the truth value of the 
corresponding feature w.r.t. the corresponding individual. Such a table is provided 
to an AVL system whose result (e. g. a set of rules) is interpreted by plugging the fea­
ture definitions in place of the corresponding attribute-identifiers occuring therein. 
This approach can be viewed as a middle-ground between attribute-value learning 
and 'full-power' inductive logic programming. Obviously, not all relational learning 
problems can be solved via propositionalization, for example those where the target 
concept includes recursion, such as many benchmarks of automatic logic program 
synthesis [14]. However, by sacrificing part of generality5, we gain the advantage of 

Lower case arguments denote constants. 
Upper cases stand for variables. 
Efficiency-minded First-order FEature DeRivation for INductive learning 
Corresponding to reducing the method scope to so called individual-centered domains [14]. 
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a strong language bias. The language of features we shall define will be considerably 
more constrained and easier to handle than unrestricted Prolog. 

The current part of the paper is organized followingly. Next we review the exist­
ing previous work on propositionalization and address a previous incarnation of the 
presently described system. Afterwards we formalize the fundamentals of the im­
plemented feature construction method paying specific attention to the points that 
influence the efficiency of the designed algorithm. 

2. RELATED WORK 

The idea of converting a relational learning problem into a propositional one was 
first materialized in the pioneering system LINUS [15]. Its principle assumed that 
all target rules were constrained, that is, all variables found in the succedent (head) 
of a rule occur also in its antecedent (body). LINUS thus can learn rules such as 

t r iangle(A,B,C) <- l ink(A,B) , l ink(A,C) , l ink (B ,C) . 

To learn such rules, LINUS considers the set of all background knowledge predicates 
with all possible placements of the head variables as the predicate arguments. Then 
a distinct binary attribute is assigned to each element of the set, holding its truth 
value for variable instantiations determined by the head of each learning example. 
With this attribute representation, a set of rules such as the above is then learned via 
an AVL, By imposing a fixed maximum arity of background predicates together with 
the assumption of constrained rules, LINUS guaranteed an efficient representation of 
a relational problem by propositional means. Unfortunately, the latter assumption 
is clearly intolerably strong in common domains. Later improvements implemented 
in the system DINUS [5] alleviated the assumption by allowing to learn determinate 
rules, where each body variable not found in the head had to be uniquely determined 
by the values of those occurring in the head. Still, even the simple rule (2) is neither 
constrained nor determinate. 

A systematically different approach to propositionalization, stemming from the 
ideas of [26], later implemented in systems such as PRO PAL [2], selects one example, 
such as (1) above, as a seed and variabilizes it by assigning a distinct variable to 
each constant found in the example and replacing all constants occurring therein 
with the corresponding variables (i. e. multiple occurrences of a constant symbol are 
replaced by the same variable). Each body literal / in the seed then corresponds to 
a newly established binary attribute a whose value is determined for each pair of a 
learning example e and each possible substitution a of variables in the variabilized 
seed with constants in e, in such a way that a is true if and only if la is present in 
e. Two shortcomings of this approach are obvious, (a) One relational example is 
presented in general by more than one attribute-value tuples, each corresponding to 
a different possible substitution, and the relational learning problem thus converts 
into what is known as a multiple-instance learning problem only few AVL systems can 
tackle, (b) The combinatorial curse here manifests itself in the number of possible 
substitutions between the seed and each example. This issue has been tackled e. g. 
by stochastic techniques [22], or using so called 'lazy propositionalization' [2]. 
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Yet another way of propositionalization is represented by systems RELAGGS 
(RELational AGGregation) [13] or POLKA6 [10] which abandon the first-order logic 
principles. Their basic principle is that of extending each attribute tuple in the 
table of main individuals with aggregate values (such as statistics of numeric values) 
computed from related records in the rest of the tables. We shall not deal with the 
details of this branch of propositionalization. 

Recently, approaches to logic-based propositionalization, based on the creation 
of new attributes holding the truth values of first-order logic queries (patterns) re­
lated to the original data, have flourished. Besides techniques utilizing some form of 
the general frequent-pattern search strategy, such as in the RAP system7 [3], several 
algorithms have been concurrently implemented based on the more constrained un­
derstanding of a first-order feature proposed by [14]. These include the systems 1BC 
(a first-order Bayesian classifier), SINUS [12] (a successor of LINUS), RSD [16] (a 
relational subgroup discovery system implemented by the first author and available 
at h t t p : / / l a b e . f e l k . c v u t . c z / ~ z e l e z n y / r s d ) as well as in the henceforth pre­
sented system EFFEDRIN, the successor of RSD's propositionalization component. 
The contribution of RSD to the propositionalization approach stems from the way 
RSD controls the complexity of the transformation process by language-bias dec­
laration techniques inspired by state-of-art ILP systems (e.g. Progol [19]). RSD 
has been shown to provide feasible means of a tackling real-world relational data 
mining problems including those in telecommunications [16] and mutagenesis pre­
diction [27]. A recent study [12] compared three propositionalization systems (RSD, 
SINUS and RELAGGS) on six benchmarks of predictive relational learning, feeding 
feature-sets generated by the respective systems into the J48 decision tree learner (a 
reimplementation of the well-known C4.5 [21] algorithm within the WEKA wrapper 
[25]). On two of the six domains, RSD provided the feature set leading to the best 
predictive accuracy of the induced model. On the problem of predicting mutagenesis 
of chemical structures - one of the most widely recognized benchmark of relational 
learning - it provided a feature set leading to the highest predictive accuracy we are 
aware of ever reported for this domain. 

From RSD, EFFEDRIN inherits the understanding of the concept of a first-order 
feature, along with the technique of language-bias declaration. However, the systems 
differ in one some principal procedural aspects. While RSD separates the phase of 
purely syntactical construction of features from the phase of their evaluation on the 
user's data, EFFEDRIN clones both operations into a common procedure. This allows 
for early rejections of irrelevant features and, most importantly, for pruning of whole 
subspaces of the feature search space based on both data-related and syntactical 
considerations. Furthermore, an operator for ordering of literals in a feature has 
been redesigned to enable a faster exploration of the feature search space. 

6The name is meant to be indicative of the two main procedural steps of the algorithm detailed 
in [10], analogous to the two steps taken in the Czech dance Polka. 

7 RAP searches for maximal patterns, i.e. the longest literal conjunctions subject to exceeding 
a minimum coverage on data. Clearly, this approach goes against the Occam's dogma, which we 
follow in our work, dictating to bias feature selection towards simple, rather than complex features. 
It would surely be interesting to compare the two 'antagonist' approaches in a systematic empirical 
study. 
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In this necessarily incomplete review we have not mentioned a few other interest­
ing approaches to propositionalization, such as those based on extracting features 
from theories constructed by a relational learner on the original relational form of the 
data, various stochastic strategies for feature extraction (see e. g. the recent work-in-
progress paper [20]), etc. The source [11] provides a well-elaborated, though neither 
complete review. 

3. ADMISSIBLE FEATURES 

In all that follows we assume that three mutually disjoint countable sets of symbols 
are given: P ("predicate symbols"), T ("variable types") and V ("variable sym­
bols"). We assume there is an irrefexive total order (e.g. alphabetical) -<y on V 
and we denote IU = max^v (IV) the maximum of a finite subset IV C V with respect 
to -<\' (i.e. w £ IV and w' -<y w for all w' £ IV), similarly we introduce the 
minimum of IV, and finally u' = s<v(v) (u,v' £ V) the successor of u in V (i.e. 
v -<y v' and there is no v" such that v -<y v" -<y v'). Further, Ex will be a finite 
domain whose* elements are called "examples". By N we denote the set of natural 
numbers, {} is the empty set and \S\ stands for the number of elements in a finite 
set 5 . Every expression p(v\, O>, • • •, va) where a £ N, p £ P, v\ ... v(l £ V is called 
an atom. 

We shall now describe how to arrive to what we perceive as an admissible set of 
features. A language used for the feature notation has to respect a grammar, and 
we first expose the way of its specification. There is a four-stage trajectory from 
the grammar to an admissible feature-set. We subsequently define (1) which atoms 
form admissible literals, (2) when a sequence of admissible literals forms a feature 
candidate, i.e. when such a sequence may be extended to potentially form a feature 
and will thus be considered as a node in the feature search space, (3) when a feature 
candidate is an admissible feature and finally (4) which set of admissible features is 
an admissible feature-set. The main role of the feature grammar is the introduction 
of variable moding and typing, which has been recognized as a convenient way of 
constraining language bias in ILP systems (e.g. [19]). 

Definition 1. (Feature grammar.) A feature grammar is a pair G = (K, A) where 
n £ T and A = {Si; OV,...; Sn], n £ N such that 

1. for each 1 < i < n 

Si = [n , pi(rai . **- , . . . . miarity{i) Uarity{i))] (3) 

where ri,arity(i) £ N, pi £ P and for all 1 < j < arity(i): mij £ { + , - } , 
Uj € T, 

2. for each 1 < i < n there is some j such that m^. = +, 

3. there is some i and j such that nti-t^ = +«, 

4. for each 1 < i,j < n if pi = pj and arity(i) = arity(j) then i = j . 



FfTicioncy-conscious Propositionalization for Relational Learning 281 

We call K, the "key", 5j the "declaration for the predicate Pi/arity(i)"s and r, its 
"recall value", denoted recall^ (pi/arity(i)). The rest of symbols in o~; are said 
to declare successively the "mode" and "type" of each argument of the predicate. 
Lastly, the set of all feature grammars is denoted V. 

The definition thus requires that the recall value (whose meaning will be clarified 
later in the text), along with the modes and types of all variables are specified for a 
predicate in a non-ambiguous way (item 4). The + ( —) mode will denote an "input" 
("output") variable of the declared predicate, such that each declared predicate has 
to have at least one input (item 2) and at least one predicate declared by a featuie 
grammar takes the key (the type corresponding to the main individual, such as a 
train in the ongoing example) as an input (item 3). For example, the hasCar/2 
predicate here may have a declaration9 [5,hasCar(+car, - t r a i n ) ] . From the 
technical point of view, the grammar is specified by the user of the system using the 
same system interface as in RSD (see e.g. [16]). 

The next definition qualifies atoms which are 'correct' with respect to a given 
declaration. 

Definition 2. (Admissible literal.) Let G = (ft, A) be a feature grammar. Let 
further / = p(v\ .. .va) be an atom. We say that / is a literal10 admissible by G if 
S = [r,p(m\t\,... ,matn)] G A and for all 1 < z, j < a, i ^ j 

1. (type respecting) if Vi = Vj then t\ = tj 

2. (distinguished outputs) If rtii = nij = —, i < j and there is no k, i < k < j 
such that nik = — then Vj = s<v(vi). 

Further, Vi is said to be of type ti and to be an input variable of / if mi = + , otherwise 
it is an output variable thereof. The type of Vi is denoted typeA( / ,^i) and the set 
of input and output (respectively) variables of / under A is denoted invars A (/) and 
outvarsA(Z). Finally we set vars(Z) = {v\ .. .va} and recaliA(Z) = recaliA(p/a). 

Note that type respecting here merely dictates that a variable cannot appear si­
multaneously at two argument places declared with different types. However, typing 
does not delimit the set of values the variable can acquire. While it is completely 
up to the user to specify argument types, the intended role of types is to discrimi­
nate between 'incompatible' quantities (thereby ultimately constrain the number of 
constructible features that miss an intuitive rationale). On one hand, a type here 
does not need to be as specific as to coincide with the notion of a relational at­
tribute - for example, if two of the properties (attributes) of cars were their height 

As usual in the practice of logic programming, two different predicates may share the predicate 
symbol, being distinguished only by different arities. We thus do not assign arity directly to a 
predicate symbol. 

For the moment, we are not interested in the recall value 5, here chosen arbitrarily. 
10Note that for simplicity we do not consider a literal being the negation of the atom p(v\ . . . va)-

This does not constrain generality-the semantics of the predicate p/a can be inverted e.g. within 
its definition in the background knowledge database. 
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and width, we may want to approve for a feature comparing these two quantities 
(e.g. hasCar(T,C), height(C,H) , width(C,W), H > W) and we would thus as­
sign a type such as l i nea r_s i ze to both the quantities (assuming there is some 
declaration for the inequality predicate with this type for both arguments). On the 
other hand, an argument type will not necessarily be as general as a data type. For 
instance, although the number of wheels and the number of loads in a car are both 
integer values, we will most likely want to ascribe a distinct type (e.g. wheelnum, 
loadnum) to each of them for it is hardly reasonable to compare these quantities, or 
represent them by a common variable. 

We are now heading to define the concept of a feature candidate, which is a 
correctly built sequence of admissible literals. It is a basic element of the search 
space traversed by the algorithm when seeking for features: it may not itself consti­
tute a feature but it may be refined towards a feature by adding further admissible 
literals. A feature candidate has to comply with (a) the given feature grammar, 
(b) constraints on its syntactical complexity and additionally, (c) its literals have to 
be ordered in such a way that no other ordering of the same literals is a feature can­
didate. The efficiency-related motivation for condition (c) is obvious by interpreting 
a node as a conjunction of logic goals: we do not want to explore two nodes such 
that one is a permutation of the other's literals. 

Let us digress into a small discussion. Alternatively to introducing a required 
literal order, we might rather proceed to see a feature as a set of literals. Our basic 
requirements on a feature may be formulated as order-independent, e.g. for each 
literal with some non-key input variable V we would check if another literal, where V 
is an output, is in the set. An obvious additional workload in this approach would lie 
in preventing input-output loops in features. Loops are eliminated automatically in 
the order-employing approach. But more importantly, designing a unique total order 
and viewing features as series of literals under that order allows for a straightforward 
recursive implementation (described later in the text) of the feature search. 

Note that the ordering itself will be constrained by the feature grammar. Namely, 
we will stipulate that a literal with a non-key input variable can only appear after 
a literal where the same variable is an output. The feature grammar thus already 
imposes a partial order with whom the selected unique total order has to be com­
patible. Due to this constraint, we split the definition of a feature candidate into 
parts. First we define a 'search node' satisfying (a), then define what we mean by 
'literal ordering' and then at last we define a feature candidate satisfying all of (a), 
(b) and (c). 

Definition 3. (Search node.) Let G = («, A) be a feature grammar and for 
some n G ./V let / = ( / i , / 2 , - . - , 'n) where each U = Pi(vh,... ,viarity{i)) is a literal 
admissible by G. We denote vars ( / ) = Uf=1vars(Z) and say that / is a search node 
(for G) if 

1. (type respecting) for all v e vars(/) and 1 < ij < n: typeA(liyv) = 
type A(lj,v) = typeA(f,v), 

2. (key) there is exactly one v G vars(/) \ U"=1outvarsA(/i), denoted v = 
k e y A ( / ) , and it holds typeA(f,v) = K, 
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3. (variable production) for each v G vars( / ) , v 7-- k e y A ( / ) : if 3j: v G invarsA( / ;) 
then 3 i, j > i: v G outvarsA ( / i ) , 

4. (new outputs) for each 1 < i < n: U*"* vars(/j) fl outvars(Zi) = {}. 

Let N(G) be the set of all search nodes for G. If / G N(G) then we denote the set 
of all literals in / as l i t s ( / ) = {I1J2, • • • Jn}- We also say that two literals lj, Ik 
in / are in the same call, denoted11 lj ~ / Ik if Pj — Pk, arity(j) = arity(k), and 
i ^ = yk for each input variable Vjq of lj. Further we set Recalls(f) = {I \ I C 
{ l , 2 , . . . , n } , lj ~ / Ik Vj,k G / } . Finally we denote r e c a l l / , h ) = \I\ such that 
i G I G Recalls(f) for a literal U in / . 

We interchange 'search node' with 'node' when there is no risk of confusion. An 
informally expressed meaning of items 1 to 3 is: "A literal is a part of a search node 
only if each of its input arguments is of a type equal to the type of some output 
argument of a preceding literal, or is the key variable. The key variable is the only 
one 'entering' the feature, i.e. not produced within it." 

For example hasCar(T,Cl) , long(Cl) , shor t (C2) does not qualify to be a search 
node. 

Assumption 4 (in conjunction with item 2 of Definition 2) guarantees that a new 
variable will be used in place of each output argument of a literal in a search node. 
This gives the user the freedom of choosing the types of variables considered for 
equality checking. For example12 Number Of Wheels (C1,N) , NumberOf Wheels (C2,N) 
cannot in principle be a substring of a search node, however, NumberOf Wheels (CI ,N1) , 
NumberOf Wheels (C2,N2) , N1---N2 is a legal substring if the user elects to declare the 
equality predicate (with two inputs) for the type describing the number of wheels 
(e.g. integer). 

Finally, two literals are said to be in the same call if they are of the same pred­
icate and they share the same variable in each of their inputs. The relation which 
we denote as ~ / is clearly an equivalence relation (reflexive, symmetric and tran­
sitive) and so the set Recalls(f) consists of equivalence classes disassembling the 
set {1,2, . . . , n } . Thus for a given i G {1 ,2 , . . . ,n} there is exactly one / such that 
i G I G Recalls(f) and consequently the value r e c a l l / , U) is determined uniquely. 
We will use this quantity later in the text as a means to introduce a natural bound 
on the complexity of a feature. 

Before we turn attention to defining a desired literal order, let us expose three 
auxiliary values called variable depth, literal depth and node depth. The node depth 
will be used as a complexity-constraining parameter, delimiting how 'deep' a feature 
can go in the structure of an individual. 

Definition 4. (Depth.) Let G = (n, A) be a feature grammar and / = (Zi, l2 ..., ln) € 
N(G). The variable v = k e y A ( / ) is said to be in depth 0, denoted d e p t h A ( / , v) = 0. 
For other variables v' G vars( / ) we define 

depth A(f,v') = 1 + max d e p t h A ( / , w ) (4) 
tv£invarsA(t\') 

11 For clarity, the dependence of the relation on A is implicit in the notation. 
12 We omit the obvious declaration of the exemplified predicate. 
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where k satisfies v' G outvarsA ( / ; ) , and for a literal lj, 1 < j < n we define 

depth A ( / , lj) — max depth A ( / , w) 
ii;GinvarsA(/{) 

and lastly we define 

depth A ( / ) = max depth A ( / ,w) . (G) 
u;£vars(/) 

Considering items 3 in Definition 3 and the fact v' ^ k e y A ( / ) , there must be 
an i such that v' G outvarsA ( / ; ) . Further, from item 4 in the same definition it 
follows that a variable does not appear as an output in more than one literal in / . 
Therefore h is determined uniquely and consequently the values of depth A ( / ,v ' ) , 
depthA(/,lj) and depth A ( / ) are determined uniquely for any v', lj and / , respec­
tively. As an example, consider the search node hasCar(T,C) , hasShape(C,Sl) , 
hasLoad(C,Ll), hasShape(Ll ,S2) , s i m i l a r ( S I , S 2 ) , hasLoad(C,L2). Here, the 
variables T, C, SI , LI , S2 and L2 have successively depths 0, 1, 2, 2, 3 and 2, the 
literals have (in order of their appearance) depths 0, 1, 1, 2, 3, 1, and the node has 
depth 3. 

We will now formally prove a 'monotonicity' lemma about depths and recalls, 
which is rather obvious intuitively, but quite important for later theorems influencing 
the procedural design of the feature construction. 

Lemma 1. Let G -= (AC, A) be a feature grammar, f = (h,h- • • Jn) € N(G) and 
/ ' = ( / i , /2 . . . , / ,n) G N(G), m < n. Then it holds depth A ( / ) > depth A ( / ' ) and 
for each literal lt in / ' it holds recallA( / , h) > recallA(/ ' ' ,h). 

P r o o f . It clearly suffices to prove the inductive step, i.e. to show that both 
assertions hold if / ' = (h,h • • • •>ln-i)- We will treat both assertions successively. 

Regarding the depth inequality, clearly vars( / ' ) C va r s ( / ) . Considering equation 
(6), it suffices to see that all variables in / ' have the same depth in / and / ' . 
Due to condition 4 in Definition 3 and the fact that / ' is a search node, for every 
variable v' occurring in / ' there is exactly one literal h in / i , / 2 ... , / n - i such that 
v' G outvarsA(/;). If h,h---,h\ is also a search node and v' G outvarsA(/;) 
(i < n) then v' ^ outvarsA(/n)- It holds (equation (4)) that depthA( / , t ' /) = 
1 + maxu;EinvarSA(/.) depth A ( / , w) where v' G outvarsA(Zi). Since U / /n , the 
depth of v' does not depend orr ln. Sirrce we have shown that the depth of an 
arbitrary variable v' in / ' does not depend on Zn, the depth of v' is thus equal in 
both / ' and / . Consequently, due to equation (6), the depth of / is equal or larger 
than that of / ' . 

The recall inequality is rather simple to show. Note that ~ / is an equivalence 
relation on { l , 2 , . . . , n } (see Definition 3 and the attached comment). Thus clearly 
for each 1 < i < n - 1 if h ~ / ln then recallA(/',/i) < r e c a l ^ / , h ) , otherwise 
r e c a l l A ( / ' , / i ) = r e c a l l A ( / , / i ) . • 

Let us now postulate what we require from a literal-ordering operator O, which 
will help to prevent a repetitive inspection of search nodes with the same logic 
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meaning during the search space exploration. Rather than viewing the order as a 
relation on literals, it will be more convenient to define it as a function on nodes. 
Informally, the operation of O will be as follows: a search node n will be explored 
(and refined) only if 0[n] = n. 

Definition 5. (Literal order.) Let G = ( K , A ) be a feature grammar. A litrral 
order for G is a function O : N(G) -> N(G) such that for all / , / ' G N(G), f = 
(l\,l-2, • • • Jn), / ' = (l'lJ'2^ • • • Jn) 

1. (permutation) if 0[f] = o then l its(/) = lits(o), 

2. (monotonicity) if 0[f] = (o_, o 2 , . . . , on) and (/_, / 2 , . . . , ln-i) G N(G) then 
0[(h , 12 , . • • , ln-\ )] = (Ol, 02 , . . . , 0„__ ), 

3. (unification) if l its(/) = lits(/') then 0[f] = 0[f']. 

It is important to realize that O is a function, i.e. it must order any search node. 
The first item in the definition merely guarantees that O does not remove or add 
any literal from/to the ordered search node. The importance of the second item will 
be illuminated in the context of a further exposed theorem. The last condition's role 
is obvious. 

It is straightforward from the respective definitions that the depth of a variable 
and the recall value of a literal in a search node do not depend on the order of literals 
in the search node. We thus have an immediate corollary of Lemma 1. 

Corollary 1. Let G = (A.*, A) be a feature grammar and / , / ' G N(G), such that 
lits(/') C l its( /) . Then it holds depth A (/) > depthA ( / ' ) and for each literal Z. in 
/ ' it holds recallA(/ , / i) > recall_\(/', Z_). 

Unfortunately, the space alloted does not allow us to analyze formally our design 
of the specific literal-ordering operator as implemented in EFFEDRIN. However, a few 
technical remarks are in order. First of all, note that the ordering operator has to 
comply with the partial order induced by Definition 3 (see the discussion preceding 
that definition). This means that some permutations of a search node do not produce 
a search node, therefore applying a simple total (e. g. alphabetical) order on literals 
may cause 0[f] £ N(G). For example, while hasCar (T,C), awesome(C) is a search 
node, awesome(C) , hasCar(T,C) is not. A principal proviso to make O comply 
with the assumptions is that 0[f] = 01,02,. . . ,o n for any / G N(G) must satisfy 
the implication 

o. -<+ Oj -> i < j (7) 

where -<+ is the transitive closure of -< such that o_ -< Oj whenever invarsA(/,Oj) fl 
outvarsA(/ , 0̂ ) ^ {}. However, in general there are clearly still many possible 
literal-orderings O satisfying this condition. To systemize them, each search node 
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/ = h,h, • • • ln is viewed as an undirected graph13 7/ having a node for each k and 
a link between h and lj whenever 

lj = max{/fc I lk -< lu depth(/ , / f c) = depth( / , / ; ) - 1} (8) 
<A 

where max</4 is the maximum with respect to an arbitrary fixed total order (e.g. 
alphabetical) <A on atoms. It can be shown that 7/ is connected and acyclic and 
therefore is a tree. Further, its nodes can be enumerated by a standard systematic 
tree exploration procedure (such as breadth-first or depth-first search) starting in 
the node l\ = o\ (chosen as the 'root' as there is clearly no U s.t. U -<+ /1). As 
long as children of any node are explored in the order dictated by <A, equation 
(8) guarantees that the node order resulting from such an enumeration satisfies 
condition 7 above and thus 0[f] £ N(G). It is trivial to check that conditions 1 and 
3 of Definition 5 hold as well for this order. It is a little more technical to show that 
2 is also valid, the proof (which we skip for lack of space) namely considers that due 
to condition 4 in Definition 3, no output variable of ln occurs in / 1 , . . . , / n _ i . 

Let us provide an illustrative example. A breadth-first exploration of 7/ for a 
node / may yield the node 

hasCar(T,C), s h o r t ( C ) , hasLoad(C, L I ) , hasLoad(C,L2), s m a l l ( L l ) , 
round(L2), notSame(Ll,L2) 

whereas a depth-first exploration for the same node would yield14 

hasCar(T,C), s h o r t ( C ) , hasLoad(C, L I ) , sma l l (L l ) , hasLoad(C,L2), 
round(L2), notSame(Ll,L2). 

The breadth-first node ordering basically corresponds to the 'layer' structure of 
bottom clauses generated in some state-of-art ILP systems15 (such as Progol [19] 
or Aleph). However, we shall see later in this paper that the depth-first version of 
ordering will be more convenient for our purposes. 

Having both the notions of order and depth at hand, we can proceed to define a 
feature candidate. 

Definition 6. (Feature candidate.) Let G = (K, A) be a feature grammar, O a 
literal order for G. Let further D,L e N and / = (/1,/2 , • . . , l n ) G N(G). Then / is 
said to be a feature candidate admissible by (G, O, D) and L if 

1. (order respecting) 0[f] = / , 

2. (recall respecting) r e c a l l / , h) < r e c a l l ( / i ) for each literal h in / , 

1 3This graph should not be confused with the graph induced later by a refinement operator which 
determines links between search nodes. 

14 It should be clear that not Same (LI, L2) is connected in 7 / by an edge only with hasLoad(C,L2), 
not e.g. with hasLoad(C, LI). The two former literals lie both in depth 1, and hasLoad(C, LI) 
<A hasLoad(C, L2). 

1 5And in fact it alone can be implemented with less computational expenditures than the more 
general approach described hereby 
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3. (length respecting) n < L, 

4. (depth respecting) d e p t h A ( / ) < D. 

We denote NO,D,L(G) the set of all such nodes. 

The first assumption installs the unique-order requirement, whose underlying 
ideas we described in the discussion preceding Definition 3 and another one con­
nected to Definition 5. Assumption 2 is based on the declared recall value of a literal 
recall(Zi) (see Definition 2) and the computed recall value r e c a l l / , U) (see Defi­
nition 3). This assumption16 allows the user to incorporate a rather natural bound on 
the number of immediate substructures of one structure that can be addressed within 
a feature. For example, with declarations containing [2 ,ha sCar (+ t r a in , - ca r ) ] 
and [ l ,hasLoad(+car , - load) ] , the string 

hasCar(T,C), hasLoad(C,Ll) , hasLoad(C,L2), . . . 

could not appear in a search node since it refers to two loads of one car (whether 
or not LI — L2), although the following could: hasCar(T,Cl) , hasLoad(Cl ,L1) , 
hasCar(T,C2) , hasLoad(C2,L2) , . . . The last two assumptions in Definition G 
implement straightforward constraints on the complexity of a feature. As follows 
from the comment preceding Definition 4, the D parameter sets the maximum depth 
in an object structural description that is addressable by a feature candidate (and 
therefore any admissible feature). For example, if D — 2, then a feature can regard 
a car of a train, a load of a car, but not any substructures of a load, were there any. 
The L parameter, simply constraining the feature description length, is crucial. This 
will follow from an algorithmic complexity discussion provided later in the paper. 

The following theorem will clarify the 'procedural' utility of a feature candidate. 

Theorem 1. Let G be a feature grammar, O an order for G and D,L G N. If 
/ = (/i,/2,...,*n) £ N0,D,L(G) and n > 1 then ( / i , / 2 , . . . , /m) G N0,D,L(G) for any 
1 < m < n. 

Proo f . Assuming / G NO,D,L(G) for n > 1, to prove the theorem we need 
to prove the inductive step, i.e. that (Zi,/2, •.. , /n) £ NO,D,L(G) implies / ' — 
(Zi,/2, • • • , /n- i ) £ NO,D,L(G). This will be proved by contradiction. Consider / ' ^ 
NO,D,L(G). Then either / ' G N(G) or / ' £ N(G). We treat the two cases separately. 

If / ' G N(G), then necessarily one or more of the conditions 1-4 of Definition 6 
does not hold for / ' . But condition 1 holds by the assumption 2 of Definition 5, 
conditions 2 and 4 hold due to Lemma 1 and condition 3 holds trivially since n - 1 < 
n. Since all conditions 1-4 hold for / ' while / ' ^ NO,D,L(G), it must be that 
/ ' fi N(G), i.e. we have a contradiction. 

Now consider the case when / ' ^ N(G). Since all literals in / are admissible then 
so must be all literals in / ' . Thus one or more conditions 1 - 4 of Definition 3 must be 
invalid. It is straightforward to check that conditions 1, 3 and 4 hold for / ' provided 
they hold for / , and we leave it to the reader. It remains to check if condition 2 is 

16inspired by a similar constraint used in the ILP systems Progol [19] and Aleph 
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satisfied for / ' . Given that this condition holds for / , it can be invalidated when 
removing ln only if In is the only literal containing the variable k e y A ( / ) , since clearly 
vars( / ' ) C vars( / ) . But this variable is also contained in l\: if it were not, 1\ would 
either have no input variable, thus harming condition 2 of Definition 1 (and failing 
to be an admissible literal) or at least one input variable, thus violating condition 3 
od Definition 3. Since we assumed n > 1, it holds ln ^ l\ and therefore ln cannot 
be the only literal containing k e y A ( / ) and condition 2 is valid for / ' . Since all 
conditions 1 4 of Definition 3 are then valid, it holds / ' G N(G) which contradicts 
with the assumption of this paragraph. • 

We have thus seen an important property of a feature candidate: any prefix 
thereof is a feature candidate. In other words, adding literals to any literal sequence 
that is not a feature candidate will never produce a feature candidate. Since a 
feature, as we shall define in a moment, will itself have to be a feature candidate 
and we will construct features by successively adding literals, we will abandon any 
'non-candidate' literal sequences in this process. Let us now formalize the step of 
adding literals. 

Definition 7, (Refinement.) Let G be a feature grammar, O a literal order for 
(7, and D,L e N. Let N^v be a subset of jNo,D,L(G) such that for each / = 
(/i,/-2,... , /n) G N<v and each i, 1 < i < n it holds 

min[outvars(/i)] = s<v(v) (9) 
-<v 

where 
v - maxlU-Jjvars(Zj) U invarsA(/;)]• (10) 

-<v J 

The refinement for (G,0,J?,L) is the function ref(r7,o,D,L) : {Empty} U N<v —> 
2N<v such that17 ref[Empty] = {/ G N^v; | l i ts( /) | = 1} and r e f [ ( / , , l 2 r . . , ! ; l ) ] = 
{/ G N^v\f = (/i,/'2, • • • JnJn+\)}' A refinement closure is a function ref+ : 
{Empty} U N^v -> 2N*v such that it holds ref+[Empty] = N^v and re f f [ ( / i , 
/ 2 , - . . , U ] = {/ e N^v-n < m < LJ = ( / i , / 2 , . . . , / m ) } . 

The refinement provides all feature candidates that are one-literal extensions of a 
feature candidate, so that the first newly introduced variable (which must clearly be 
an output of the added literal) is the successor in the variable order <y of the 'max­
imum variable' (with respect to this order) found in the refined feature candidate. 
This condition (along with condition 2 of Definition 2) prevents obtaining multiple 
feature candidates differring only in variable naming. Also note that r e f + ( / ) = 
UnFn (l<n<L- m) where Fi. = ref (/) and Fn+l = {/' G ref ( /"); / " G F n } , for 
any / = ( / i , / 2 , . . . , /m) ^ N0ID,L(G). 

Some of the conditions a feature will have to comply with are determined by the 
quantity of instances for which the feature holds. Whether a feature holds for an 

17Henceforth we shall dismiss the parameters (C7,O ,D ,L) in the subscript when their instantia­
tion is obvious from the context. 
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instance means that, in the first-order logic interpretation, it is more general than 
the instance description (such as the antecedent in Example 1). In this paper we 
abstract from technicalities inherent to verifying this, rather we merely reflect three 
properties of a function yielding the subset of instances ('examples') for which a 
feature holds. 

Definition 8. (Coverage.) A coverage is a function cov : A x 2Ex -> 2FjV (where 
A is the set of all finite sequences of atoms) if for any G G T, E C Ex, D,L e N, 
any literal order O for G and all / , / ' , / " G NOJ)Jj(G) it holds: 

1. (contraction) cov(/ , E) C E, 

2. (disconnected conjunction) if lits(/") — lits(/') U lits(/) and 

vars( / ' ) H vars( / ) C {key A ( / )} then cov( /" , E) = cov( / ' , E) n cov(/ , £ ) , 

3. (subsumption) if/ ' G re f ( / ) then c o v ( / ' , £ ) C cov(/,.E), 

where ref is the refinement for (G, 0 ,L ) ,L ) . 

As we are nevertheless concerned with the efficiency of the explained method, we 
should address the question of whether the above function can be computed effi­
ciently. The issue of efficiently proving whether a Prolog (Datalog18) clause entails 
a fact with respect to a background knowledge has been under investigation in both 
the field of logic programming and ILP (e.g. [9]). Not imposing constraints on the 
background knowledge database, this problem is in general undecidable, but can 
be solved approximately. A naive, but rather tolerable technique guaranteeing an 
efficient approximation of logic entailment is a step-bounded resolution procedure 
[19] (know also as h-easy resolution), conducted in several state-of-art ILP systems. 
Among more sophisticated methods falls Stochastic matching' [22] exploiting the 
correspondence between first-order logic subsumption (in this case constrained to 
the frame of Datalog) and the generally NP-complete constraint-satisfiability prob­
lem, and existing fast probabilistic algorithms applicable on the latter form. Also, 
based orr the same problem correspondence and research of the phase transition phe­
nomenon in constraint satisfiability, deterministic methods have been suggested to 
speed up subsumption check [18]. Any of such proving techniques could in princi­
ple be incorporated into the feature construction method. However, in our previous 
experimentation the dimensionality of the feature space has consistently been a dom­
inant tractability factor, diminishing the efficiency aspects of the inherent proving. 
We nonetheless do not exclude a future augmentation of the currently implemented 
proving procedure e. g. for problems characterized by a large number of data in­
stances. 

Let us now proceed to define the concept of a feature. 

18Prolog without functions of arity greater than 0. All example features in this paper are proper 
Datalog clauses. 
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D e f i n i t i o n 9. (Admissible feature.) Let C be a tuple C = (G,0,D,M,L) where 
G — (n, A) is a feature g rammar with a literal order O and D,M,L G N. Then C 
is called a feature constraint. Let cov be a coverage and let E C Ex. Finally, let 
/ = (h,h, • • • Jn) € NO,D,L(G). We say tha t / is a feature admissible with cov on 
E by C if 

1. (variable consumption) if 3z: u G ou tva r sA( / i ) then 3j, v G invarsA(Zj), 

2. (non-triviality) cov(f,E) C £ . 

3. (relevance) | c o v ( / , £ ) | > M, 

4. (undecomposability) there are no non-empty I, J C {1 ,2 , . . . , n } such tha t 
I = {1, 2 , . . . ,n) \ J and [U i G /vars (U)] n [ U j e J v a r s (/,)] C { k e y A ( / ) } . 

Condition 1 implements a principle suggested by [14] tha t all ou tpu t variables 
should be 'consumed' within the feature . Note tha t if / is a feature, this condition 
automatically implies j > i, otherwise / would violate one of the conditions 3, 4 
in Definition 3, thereby not being a search node and contradicting the assumption 
of the definition above . Assumptions 2 and 3 reflect a s tandard constraint used in 
general feature-selection approaches to avoid features tha t are either unusable for 
da ta discrimination, or too special (their scope is too limited) . In the lat ter case, 
such features are avoided in the effort of preventing the effect of da t a ovcrfitting. 
Assumption 4 is motivated clearly: if it did not hold, it would be possible to express 
the feature as a conjunction of two or more features, which we will formally prove in 
prepared continuation of the paper. We do not care for such decomposable features, 
since AVL systems are themselves typically able to construct conjunctive formulas 
from feature identifiers. A decomposable feature is thus redundant . Besides, we 
will present several theorems enabling for an often massive search space pruning 
accompanied with a dramat ic speed-up of the feature construction . Some of them 
largely exploit the notion of undecomposabili ty by pruning search subspaces surely 
containing only decomposable features . 
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