
Kybernetika

Filip Železný
Efficiency-conscious propositionalization for relational learning

Kybernetika, Vol. 40 (2004), No. 3, [275]--292

Persistent URL: http://dml.cz/dmlcz/135595

Terms of use:
© Institute of Information Theory and Automation AS CR, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135595
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 4 0 (2 0 0 4) , NUMBER 3, PAG ES 2 7 5 - 2 9 2

EFFICIENCY-CONSCIOUS PROPOSITIONALIZATION
FOR RELATIONAL LEARNING

FlLIP Z E L E Z N Y

Systems aiming at discovering interesting knowledge in data, now commonly called
data mining systems, are typically employed in finding patterns in a single relational table.
Most of mainstream data mining tools are not applicable in the more challenging task of
finding knowledge in structured data represented by a multi-relational database. Although
a family of methods known as inductive logic programming have been developed to tackle
that challenge by immediate means, the idea of adapting structured data into a simpler
form digestible by the wealth of AVL systems has been always tempting to data miners.
To this end, we present a method based on constructing first-order logic features that
conducts this kind of conversion, also known as propositionalization. It incorporates some
basic principles suggested in previous research and provides significant enhancements that
lead to remarkable improvements in efficiency of the feature-construction process.

We begin by motivating the propositionalization task with an illustrative example, re­
view some previous approaches to propositionalization, and formalize the concept of a
first-order feature elaborating mainly the points that influence the efficiency of the de­
signed feature-construction algorithm.

Keywords: machine learning, inductive logic programming, propositionalization

AMS Subject Classification: 68T30

1. INTRODUCTION

A family of computer programs now collectively termed data mining systems aim to
discover interesting knowledge in observational data. Their underlying algorithms
are usually based on principles of inductive learning and most commonly they seek
for dependencies among attributes (columns) in a single relational table, that hold
in a sufficient number of instances (rows) in that table. Very often such dependen­
cies are expressed in languages reminding propositional logic, such as decision trees
in the C4.5 algorithm [21], classification rules as in CN2 [4], or association rules
produced by the APRIORI system [1], or the algorithm of GUHA [8], Such systems
are generally called attribute value learners (AVL) owing to their way of forming hy­
potheses out of propositions which assign a constant value to a specified attribute.
For instance, a rule such as

s i z e = l a r g e , luxury = high —> affordable = no

27G F. ŽELEZNÝ

would be a typical example of the kind of representation of knowledge discovered
with an AVL system applied to a relational table with attributes containing those
appearing on the left-hand side of the equalities. To date, there is a vast quantity
of mature and perpetually augmented AVL systems accompanied with auxiliary
methods such as for prc-learning attribute selection [17], pre-processing [24], e tc

It has been however widely recognized [6, 7] that AVL systems cannot stand well
to the challenge of discovering knowledge from highly structured or multi-relational
data, which manifests itself in important problems such as predicting mutagenicity
of chemical compounds [23], pharmacophore discovery and others.

A toy problem will illustrate the difficulty inherent to such domains: consider the
set of trains depicted in Figure 1. Here the task is to find a rule discriminating be­
tween east-bound and west-bound trains, each having a variable number of different
cars with a variable number of wheels and different loads.

] IKЛINSCOINCÍГASГ 2 TUAINSCOINC VVEST

Fig. 1. The 10-train MichalskPs East-Wcst challenge.

To represent the data in a relational database, one would resort to introducing a
tabic with each row corresponding to a train (containing an attribute indicating the
train's direction), another table for cars (with an attribute linking the given car to
a train), yet another table for loads (linked to cars), etc. Unfortunately, to apply
an AVL learner, a data miner will have to join these tables into a single one, such
that each row thereof has to bear the whole structural information about a train. In
order to achieve this by means of a database query, it will be necessary1 to unify the
sizes of train descriptions by formally adding null ('dummy') cars to each train up
to the number of cars occurring in the longest train, similarly null loads to cars with
a smaller-than-maximum number of loads, etc. The number of attributes in such a
joined table will clearly be excessive, with many null fields e. g. in rows corresponding
to short trains or those mostly consisting of 'underloaded' cars. Another aspect of
this approach is even more painful: as an AVL discriminates instances by assigning
a value to a specific attribute, it will not be able to arrive to rules with existential
quantification, such as a train is east-bound if one of its cars has three wheels.

*We thank the reviewer for pointing out this issue to us.

Efficiency-conscious Propositionalization for Relational Learning 2 7 7

In the last 15 years, a considerable effort has been devoted within the field of
inductive logic programming (ILP), to devise learning techniques able to cope with
such problems [G] by representing both the input data and the resulting hypotheses
in the language of Prolog. Here, a learning example describing the first cast-bound
train t\ (thus being a positive example of the east-bound concept) would read2

eas t (t l) <r- hasCar(t l ,c l) ,has2Whel ls (c l) ,hasLoad(c l , l l) ,box(l l) . .. (etc.)

Note that commonly in ILP, the first literal is considered the example, while the
rest of literals belong to the background knowledge a database containing the
descriptions of all trains. An ILP system might then generalize a set of positive
and negative examples towards a rule3 proposing that a train goes east if it has a
roofed car with a circle load:

east(T) <r- hasCar(T, C), hasLoad(C, L), circle(L), hasRoof (C). (2)

In our example, this rule would represent a hypothesis that is correct (in that its
antecedent does not hold for any negative example, i.e. a west-bound train) but
incomplete (in that it does not hold for all east-bound trains). The final hypothesis
would thus have to be attained by adding further rules, while east (T) would be
concluded for a given T if any of the rules' antecedents was satisfied for T.

Despite the relative maturity of ILP research, the selection of available AVL
systems suitable for various kinds of data mining tasks is overwhelmingly larger
than that offered by ILP. One thus wonders whether structured /multi-relational
data could be adapted into a form allowing to be processed by an AVL system while
avoiding the obstacles imposed by the table-joining approach, as demonstrated above
on the example of trains. Recently, the term propositionalization has been accepted
[11] to describe this goal.

Our system EFFEDRIN4 implements a procedure for propositionalization, which
is briefly as follows. First, generate a finite set of Prolog queries ('features'), each ex­
pressing a property of an object ('individual') under investigation (e. g, a train). An
example of a feature may be hasCar(T,C) , long(C), where the key variable T binds
to an individual. Then produce a single relational table, where each row corresponds
to an individual, each column to a feature, and each field to the truth value of the
corresponding feature w.r.t. the corresponding individual. Such a table is provided
to an AVL system whose result (e. g. a set of rules) is interpreted by plugging the fea­
ture definitions in place of the corresponding attribute-identifiers occuring therein.
This approach can be viewed as a middle-ground between attribute-value learning
and 'full-power' inductive logic programming. Obviously, not all relational learning
problems can be solved via propositionalization, for example those where the target
concept includes recursion, such as many benchmarks of automatic logic program
synthesis [14]. However, by sacrificing part of generality5, we gain the advantage of

Lower case arguments denote constants.
Upper cases stand for variables.
Efficiency-minded First-order FEature DeRivation for INductive learning
Corresponding to reducing the method scope to so called individual-centered domains [14].

278 F. ŽELEZNÝ

a strong language bias. The language of features we shall define will be considerably
more constrained and easier to handle than unrestricted Prolog.

The current part of the paper is organized followingly. Next we review the exist­
ing previous work on propositionalization and address a previous incarnation of the
presently described system. Afterwards we formalize the fundamentals of the im­
plemented feature construction method paying specific attention to the points that
influence the efficiency of the designed algorithm.

2. RELATED WORK

The idea of converting a relational learning problem into a propositional one was
first materialized in the pioneering system LINUS [15]. Its principle assumed that
all target rules were constrained, that is, all variables found in the succedent (head)
of a rule occur also in its antecedent (body). LINUS thus can learn rules such as

t r iangle(A,B,C) <- l ink(A,B) , l ink(A,C) , l ink (B ,C) .

To learn such rules, LINUS considers the set of all background knowledge predicates
with all possible placements of the head variables as the predicate arguments. Then
a distinct binary attribute is assigned to each element of the set, holding its truth
value for variable instantiations determined by the head of each learning example.
With this attribute representation, a set of rules such as the above is then learned via
an AVL, By imposing a fixed maximum arity of background predicates together with
the assumption of constrained rules, LINUS guaranteed an efficient representation of
a relational problem by propositional means. Unfortunately, the latter assumption
is clearly intolerably strong in common domains. Later improvements implemented
in the system DINUS [5] alleviated the assumption by allowing to learn determinate
rules, where each body variable not found in the head had to be uniquely determined
by the values of those occurring in the head. Still, even the simple rule (2) is neither
constrained nor determinate.

A systematically different approach to propositionalization, stemming from the
ideas of [26], later implemented in systems such as PRO PAL [2], selects one example,
such as (1) above, as a seed and variabilizes it by assigning a distinct variable to
each constant found in the example and replacing all constants occurring therein
with the corresponding variables (i. e. multiple occurrences of a constant symbol are
replaced by the same variable). Each body literal / in the seed then corresponds to
a newly established binary attribute a whose value is determined for each pair of a
learning example e and each possible substitution a of variables in the variabilized
seed with constants in e, in such a way that a is true if and only if la is present in
e. Two shortcomings of this approach are obvious, (a) One relational example is
presented in general by more than one attribute-value tuples, each corresponding to
a different possible substitution, and the relational learning problem thus converts
into what is known as a multiple-instance learning problem only few AVL systems can
tackle, (b) The combinatorial curse here manifests itself in the number of possible
substitutions between the seed and each example. This issue has been tackled e. g.
by stochastic techniques [22], or using so called 'lazy propositionalization' [2].

Efficiency-conscious Propositionalization for Relational Learning 279

Yet another way of propositionalization is represented by systems RELAGGS
(RELational AGGregation) [13] or POLKA6 [10] which abandon the first-order logic
principles. Their basic principle is that of extending each attribute tuple in the
table of main individuals with aggregate values (such as statistics of numeric values)
computed from related records in the rest of the tables. We shall not deal with the
details of this branch of propositionalization.

Recently, approaches to logic-based propositionalization, based on the creation
of new attributes holding the truth values of first-order logic queries (patterns) re­
lated to the original data, have flourished. Besides techniques utilizing some form of
the general frequent-pattern search strategy, such as in the RAP system7 [3], several
algorithms have been concurrently implemented based on the more constrained un­
derstanding of a first-order feature proposed by [14]. These include the systems 1BC
(a first-order Bayesian classifier), SINUS [12] (a successor of LINUS), RSD [16] (a
relational subgroup discovery system implemented by the first author and available
at h t t p : / / l a b e . f e l k . c v u t . c z / ~ z e l e z n y / r s d) as well as in the henceforth pre­
sented system EFFEDRIN, the successor of RSD's propositionalization component.
The contribution of RSD to the propositionalization approach stems from the way
RSD controls the complexity of the transformation process by language-bias dec­
laration techniques inspired by state-of-art ILP systems (e.g. Progol [19]). RSD
has been shown to provide feasible means of a tackling real-world relational data
mining problems including those in telecommunications [16] and mutagenesis pre­
diction [27]. A recent study [12] compared three propositionalization systems (RSD,
SINUS and RELAGGS) on six benchmarks of predictive relational learning, feeding
feature-sets generated by the respective systems into the J48 decision tree learner (a
reimplementation of the well-known C4.5 [21] algorithm within the WEKA wrapper
[25]). On two of the six domains, RSD provided the feature set leading to the best
predictive accuracy of the induced model. On the problem of predicting mutagenesis
of chemical structures - one of the most widely recognized benchmark of relational
learning - it provided a feature set leading to the highest predictive accuracy we are
aware of ever reported for this domain.

From RSD, EFFEDRIN inherits the understanding of the concept of a first-order
feature, along with the technique of language-bias declaration. However, the systems
differ in one some principal procedural aspects. While RSD separates the phase of
purely syntactical construction of features from the phase of their evaluation on the
user's data, EFFEDRIN clones both operations into a common procedure. This allows
for early rejections of irrelevant features and, most importantly, for pruning of whole
subspaces of the feature search space based on both data-related and syntactical
considerations. Furthermore, an operator for ordering of literals in a feature has
been redesigned to enable a faster exploration of the feature search space.

6The name is meant to be indicative of the two main procedural steps of the algorithm detailed
in [10], analogous to the two steps taken in the Czech dance Polka.

7 RAP searches for maximal patterns, i.e. the longest literal conjunctions subject to exceeding
a minimum coverage on data. Clearly, this approach goes against the Occam's dogma, which we
follow in our work, dictating to bias feature selection towards simple, rather than complex features.
It would surely be interesting to compare the two 'antagonist' approaches in a systematic empirical
study.

280 F. ZELEZNY

In this necessarily incomplete review we have not mentioned a few other interest­
ing approaches to propositionalization, such as those based on extracting features
from theories constructed by a relational learner on the original relational form of the
data, various stochastic strategies for feature extraction (see e. g. the recent work-in-
progress paper [20]), etc. The source [11] provides a well-elaborated, though neither
complete review.

3. ADMISSIBLE FEATURES

In all that follows we assume that three mutually disjoint countable sets of symbols
are given: P ("predicate symbols"), T ("variable types") and V ("variable sym­
bols"). We assume there is an irrefexive total order (e.g. alphabetical) -<y on V
and we denote IU = max^v (IV) the maximum of a finite subset IV C V with respect
to -<\' (i.e. w £ IV and w' -<y w for all w' £ IV), similarly we introduce the
minimum of IV, and finally u' = s<v(v) (u,v' £ V) the successor of u in V (i.e.
v -<y v' and there is no v" such that v -<y v" -<y v'). Further, Ex will be a finite
domain whose* elements are called "examples". By N we denote the set of natural
numbers, {} is the empty set and \S\ stands for the number of elements in a finite
set 5 . Every expression p(v\, O>, • • •, va) where a £ N, p £ P, v\ ... v(l £ V is called
an atom.

We shall now describe how to arrive to what we perceive as an admissible set of
features. A language used for the feature notation has to respect a grammar, and
we first expose the way of its specification. There is a four-stage trajectory from
the grammar to an admissible feature-set. We subsequently define (1) which atoms
form admissible literals, (2) when a sequence of admissible literals forms a feature
candidate, i.e. when such a sequence may be extended to potentially form a feature
and will thus be considered as a node in the feature search space, (3) when a feature
candidate is an admissible feature and finally (4) which set of admissible features is
an admissible feature-set. The main role of the feature grammar is the introduction
of variable moding and typing, which has been recognized as a convenient way of
constraining language bias in ILP systems (e.g. [19]).

Definition 1. (Feature grammar.) A feature grammar is a pair G = (K, A) where
n £ T and A = {Si; OV,...; Sn], n £ N such that

1. for each 1 < i < n

Si = [n , pi(rai . **- , miarity{i) Uarity{i))] (3)

where ri,arity(i) £ N, pi £ P and for all 1 < j < arity(i): mij £ { + , - } ,
Uj € T,

2. for each 1 < i < n there is some j such that m^. = +,

3. there is some i and j such that nti-t^ = +«,

4. for each 1 < i,j < n if pi = pj and arity(i) = arity(j) then i = j .

FfTicioncy-conscious Propositionalization for Relational Learning 281

We call K, the "key", 5j the "declaration for the predicate Pi/arity(i)"s and r, its
"recall value", denoted recall^ (pi/arity(i)). The rest of symbols in o~; are said
to declare successively the "mode" and "type" of each argument of the predicate.
Lastly, the set of all feature grammars is denoted V.

The definition thus requires that the recall value (whose meaning will be clarified
later in the text), along with the modes and types of all variables are specified for a
predicate in a non-ambiguous way (item 4). The + (—) mode will denote an "input"
("output") variable of the declared predicate, such that each declared predicate has
to have at least one input (item 2) and at least one predicate declared by a featuie
grammar takes the key (the type corresponding to the main individual, such as a
train in the ongoing example) as an input (item 3). For example, the hasCar/2
predicate here may have a declaration9 [5,hasCar(+car, - t r a i n)] . From the
technical point of view, the grammar is specified by the user of the system using the
same system interface as in RSD (see e.g. [16]).

The next definition qualifies atoms which are 'correct' with respect to a given
declaration.

Definition 2. (Admissible literal.) Let G = (ft, A) be a feature grammar. Let
further / = p(v\ .. .va) be an atom. We say that / is a literal10 admissible by G if
S = [r,p(m\t\,... ,matn)] G A and for all 1 < z, j < a, i ^ j

1. (type respecting) if Vi = Vj then t\ = tj

2. (distinguished outputs) If rtii = nij = —, i < j and there is no k, i < k < j
such that nik = — then Vj = s<v(vi).

Further, Vi is said to be of type ti and to be an input variable of / if mi = + , otherwise
it is an output variable thereof. The type of Vi is denoted typeA(/ ,^i) and the set
of input and output (respectively) variables of / under A is denoted invars A (/) and
outvarsA(Z). Finally we set vars(Z) = {v\ .. .va} and recaliA(Z) = recaliA(p/a).

Note that type respecting here merely dictates that a variable cannot appear si­
multaneously at two argument places declared with different types. However, typing
does not delimit the set of values the variable can acquire. While it is completely
up to the user to specify argument types, the intended role of types is to discrimi­
nate between 'incompatible' quantities (thereby ultimately constrain the number of
constructible features that miss an intuitive rationale). On one hand, a type here
does not need to be as specific as to coincide with the notion of a relational at­
tribute - for example, if two of the properties (attributes) of cars were their height

As usual in the practice of logic programming, two different predicates may share the predicate
symbol, being distinguished only by different arities. We thus do not assign arity directly to a
predicate symbol.

For the moment, we are not interested in the recall value 5, here chosen arbitrarily.
10Note that for simplicity we do not consider a literal being the negation of the atom p(v\ . . . va)-

This does not constrain generality-the semantics of the predicate p/a can be inverted e.g. within
its definition in the background knowledge database.

282 F. ŽELEZNÝ

and width, we may want to approve for a feature comparing these two quantities
(e.g. hasCar(T,C), height(C,H) , width(C,W), H > W) and we would thus as­
sign a type such as l i nea r_s i ze to both the quantities (assuming there is some
declaration for the inequality predicate with this type for both arguments). On the
other hand, an argument type will not necessarily be as general as a data type. For
instance, although the number of wheels and the number of loads in a car are both
integer values, we will most likely want to ascribe a distinct type (e.g. wheelnum,
loadnum) to each of them for it is hardly reasonable to compare these quantities, or
represent them by a common variable.

We are now heading to define the concept of a feature candidate, which is a
correctly built sequence of admissible literals. It is a basic element of the search
space traversed by the algorithm when seeking for features: it may not itself consti­
tute a feature but it may be refined towards a feature by adding further admissible
literals. A feature candidate has to comply with (a) the given feature grammar,
(b) constraints on its syntactical complexity and additionally, (c) its literals have to
be ordered in such a way that no other ordering of the same literals is a feature can­
didate. The efficiency-related motivation for condition (c) is obvious by interpreting
a node as a conjunction of logic goals: we do not want to explore two nodes such
that one is a permutation of the other's literals.

Let us digress into a small discussion. Alternatively to introducing a required
literal order, we might rather proceed to see a feature as a set of literals. Our basic
requirements on a feature may be formulated as order-independent, e.g. for each
literal with some non-key input variable V we would check if another literal, where V
is an output, is in the set. An obvious additional workload in this approach would lie
in preventing input-output loops in features. Loops are eliminated automatically in
the order-employing approach. But more importantly, designing a unique total order
and viewing features as series of literals under that order allows for a straightforward
recursive implementation (described later in the text) of the feature search.

Note that the ordering itself will be constrained by the feature grammar. Namely,
we will stipulate that a literal with a non-key input variable can only appear after
a literal where the same variable is an output. The feature grammar thus already
imposes a partial order with whom the selected unique total order has to be com­
patible. Due to this constraint, we split the definition of a feature candidate into
parts. First we define a 'search node' satisfying (a), then define what we mean by
'literal ordering' and then at last we define a feature candidate satisfying all of (a),
(b) and (c).

Definition 3. (Search node.) Let G = («, A) be a feature grammar and for
some n G ./V let / = (/ i , / 2 , - . - , 'n) where each U = Pi(vh,... ,viarity{i)) is a literal
admissible by G. We denote vars (/) = Uf=1vars(Z) and say that / is a search node
(for G) if

1. (type respecting) for all v e vars(/) and 1 < ij < n: typeA(liyv) =
type A(lj,v) = typeA(f,v),

2. (key) there is exactly one v G vars(/) \ U"=1outvarsA(/i), denoted v =
k e y A (/) , and it holds typeA(f,v) = K,

Efficiency-conscious Propositionalization for Relational Learning 283

3. (variable production) for each v G vars(/) , v 7-- k e y A (/) : if 3j: v G invarsA(/ ;)
then 3 i, j > i: v G outvarsA (/ i) ,

4. (new outputs) for each 1 < i < n: U*"* vars(/j) fl outvars(Zi) = {}.

Let N(G) be the set of all search nodes for G. If / G N(G) then we denote the set
of all literals in / as l i t s (/) = {I1J2, • • • Jn}- We also say that two literals lj, Ik
in / are in the same call, denoted11 lj ~ / Ik if Pj — Pk, arity(j) = arity(k), and
i ^ = yk for each input variable Vjq of lj. Further we set Recalls(f) = {I \ I C
{ l , 2 , . . . , n } , lj ~ / Ik Vj,k G / } . Finally we denote r e c a l l / , h) = \I\ such that
i G I G Recalls(f) for a literal U in / .

We interchange 'search node' with 'node' when there is no risk of confusion. An
informally expressed meaning of items 1 to 3 is: "A literal is a part of a search node
only if each of its input arguments is of a type equal to the type of some output
argument of a preceding literal, or is the key variable. The key variable is the only
one 'entering' the feature, i.e. not produced within it."

For example hasCar(T,Cl) , long(Cl) , shor t (C2) does not qualify to be a search
node.

Assumption 4 (in conjunction with item 2 of Definition 2) guarantees that a new
variable will be used in place of each output argument of a literal in a search node.
This gives the user the freedom of choosing the types of variables considered for
equality checking. For example12 Number Of Wheels (C1,N) , NumberOf Wheels (C2,N)
cannot in principle be a substring of a search node, however, NumberOf Wheels (CI ,N1) ,
NumberOf Wheels (C2,N2) , N1---N2 is a legal substring if the user elects to declare the
equality predicate (with two inputs) for the type describing the number of wheels
(e.g. integer).

Finally, two literals are said to be in the same call if they are of the same pred­
icate and they share the same variable in each of their inputs. The relation which
we denote as ~ / is clearly an equivalence relation (reflexive, symmetric and tran­
sitive) and so the set Recalls(f) consists of equivalence classes disassembling the
set {1,2, . . . , n } . Thus for a given i G {1 ,2 , . . . ,n} there is exactly one / such that
i G I G Recalls(f) and consequently the value r e c a l l / , U) is determined uniquely.
We will use this quantity later in the text as a means to introduce a natural bound
on the complexity of a feature.

Before we turn attention to defining a desired literal order, let us expose three
auxiliary values called variable depth, literal depth and node depth. The node depth
will be used as a complexity-constraining parameter, delimiting how 'deep' a feature
can go in the structure of an individual.

Definition 4. (Depth.) Let G = (n, A) be a feature grammar and / = (Zi, l2 ..., ln) €
N(G). The variable v = k e y A (/) is said to be in depth 0, denoted d e p t h A (/ , v) = 0.
For other variables v' G vars(/) we define

depth A(f,v') = 1 + max d e p t h A (/ , w) (4)
tv£invarsA(t\')

11 For clarity, the dependence of the relation on A is implicit in the notation.
12 We omit the obvious declaration of the exemplified predicate.

284 F. ŽELEZNÝ

where k satisfies v' G outvarsA (/ ;) , and for a literal lj, 1 < j < n we define

depth A (/ , lj) — max depth A (/ , w)
ii;GinvarsA(/{)

and lastly we define

depth A (/) = max depth A (/ ,w) . (G)
u;£vars(/)

Considering items 3 in Definition 3 and the fact v' ^ k e y A (/) , there must be
an i such that v' G outvarsA (/ ;) . Further, from item 4 in the same definition it
follows that a variable does not appear as an output in more than one literal in / .
Therefore h is determined uniquely and consequently the values of depth A (/ ,v ') ,
depthA(/,lj) and depth A (/) are determined uniquely for any v', lj and / , respec­
tively. As an example, consider the search node hasCar(T,C) , hasShape(C,Sl) ,
hasLoad(C,Ll), hasShape(Ll ,S2) , s i m i l a r (S I , S 2) , hasLoad(C,L2). Here, the
variables T, C, SI , LI , S2 and L2 have successively depths 0, 1, 2, 2, 3 and 2, the
literals have (in order of their appearance) depths 0, 1, 1, 2, 3, 1, and the node has
depth 3.

We will now formally prove a 'monotonicity' lemma about depths and recalls,
which is rather obvious intuitively, but quite important for later theorems influencing
the procedural design of the feature construction.

Lemma 1. Let G -= (AC, A) be a feature grammar, f = (h,h- • • Jn) € N(G) and
/ ' = (/ i , /2 . . . , / ,n) G N(G), m < n. Then it holds depth A (/) > depth A (/ ') and
for each literal lt in / ' it holds recallA(/ , h) > recallA(/ ' ' ,h).

P r o o f . It clearly suffices to prove the inductive step, i.e. to show that both
assertions hold if / ' = (h,h • • • •>ln-i)- We will treat both assertions successively.

Regarding the depth inequality, clearly vars(/ ') C va r s (/) . Considering equation
(6), it suffices to see that all variables in / ' have the same depth in / and / ' .
Due to condition 4 in Definition 3 and the fact that / ' is a search node, for every
variable v' occurring in / ' there is exactly one literal h in / i , / 2 ... , / n - i such that
v' G outvarsA(/;). If h,h---,h\ is also a search node and v' G outvarsA(/;)
(i < n) then v' ^ outvarsA(/n)- It holds (equation (4)) that depthA(/ , t ' /) =
1 + maxu;EinvarSA(/.) depth A (/ , w) where v' G outvarsA(Zi). Since U / /n , the
depth of v' does not depend orr ln. Sirrce we have shown that the depth of an
arbitrary variable v' in / ' does not depend on Zn, the depth of v' is thus equal in
both / ' and / . Consequently, due to equation (6), the depth of / is equal or larger
than that of / ' .

The recall inequality is rather simple to show. Note that ~ / is an equivalence
relation on { l , 2 , . . . , n } (see Definition 3 and the attached comment). Thus clearly
for each 1 < i < n - 1 if h ~ / ln then recallA(/',/i) < r e c a l ^ / , h) , otherwise
r e c a l l A (/ ' , / i) = r e c a l l A (/ , / i) . •

Let us now postulate what we require from a literal-ordering operator O, which
will help to prevent a repetitive inspection of search nodes with the same logic

Efficiency-conscious Propositionalization for Relational Learning 285

meaning during the search space exploration. Rather than viewing the order as a
relation on literals, it will be more convenient to define it as a function on nodes.
Informally, the operation of O will be as follows: a search node n will be explored
(and refined) only if 0[n] = n.

Definition 5. (Literal order.) Let G = (K , A) be a feature grammar. A litrral
order for G is a function O : N(G) -> N(G) such that for all / , / ' G N(G), f =
(l\,l-2, • • • Jn), / ' = (l'lJ'2^ • • • Jn)

1. (permutation) if 0[f] = o then l its(/) = lits(o),

2. (monotonicity) if 0[f] = (o_, o 2 , . . . , on) and (/_, / 2 , . . . , ln-i) G N(G) then
0[(h , 12 , . • • , ln-\)] = (Ol, 02 , . . . , 0„__),

3. (unification) if l its(/) = lits(/') then 0[f] = 0[f'].

It is important to realize that O is a function, i.e. it must order any search node.
The first item in the definition merely guarantees that O does not remove or add
any literal from/to the ordered search node. The importance of the second item will
be illuminated in the context of a further exposed theorem. The last condition's role
is obvious.

It is straightforward from the respective definitions that the depth of a variable
and the recall value of a literal in a search node do not depend on the order of literals
in the search node. We thus have an immediate corollary of Lemma 1.

Corollary 1. Let G = (A.*, A) be a feature grammar and / , / ' G N(G), such that
lits(/') C l its(/) . Then it holds depth A (/) > depthA (/ ') and for each literal Z. in
/ ' it holds recallA(/ , / i) > recall_\(/', Z_).

Unfortunately, the space alloted does not allow us to analyze formally our design
of the specific literal-ordering operator as implemented in EFFEDRIN. However, a few
technical remarks are in order. First of all, note that the ordering operator has to
comply with the partial order induced by Definition 3 (see the discussion preceding
that definition). This means that some permutations of a search node do not produce
a search node, therefore applying a simple total (e. g. alphabetical) order on literals
may cause 0[f] £ N(G). For example, while hasCar (T,C), awesome(C) is a search
node, awesome(C) , hasCar(T,C) is not. A principal proviso to make O comply
with the assumptions is that 0[f] = 01,02,. . . ,o n for any / G N(G) must satisfy
the implication

o. -<+ Oj -> i < j (7)

where -<+ is the transitive closure of -< such that o_ -< Oj whenever invarsA(/,Oj) fl
outvarsA(/ , 0̂) ^ {}. However, in general there are clearly still many possible
literal-orderings O satisfying this condition. To systemize them, each search node

286 F. ŽELEZNÝ

/ = h,h, • • • ln is viewed as an undirected graph13 7/ having a node for each k and
a link between h and lj whenever

lj = max{/fc I lk -< lu depth(/ , / f c) = depth(/ , / ;) - 1} (8)
<A

where max</4 is the maximum with respect to an arbitrary fixed total order (e.g.
alphabetical) <A on atoms. It can be shown that 7/ is connected and acyclic and
therefore is a tree. Further, its nodes can be enumerated by a standard systematic
tree exploration procedure (such as breadth-first or depth-first search) starting in
the node l\ = o\ (chosen as the 'root' as there is clearly no U s.t. U -<+ /1). As
long as children of any node are explored in the order dictated by <A, equation
(8) guarantees that the node order resulting from such an enumeration satisfies
condition 7 above and thus 0[f] £ N(G). It is trivial to check that conditions 1 and
3 of Definition 5 hold as well for this order. It is a little more technical to show that
2 is also valid, the proof (which we skip for lack of space) namely considers that due
to condition 4 in Definition 3, no output variable of ln occurs in / 1 , . . . , / n _ i .

Let us provide an illustrative example. A breadth-first exploration of 7/ for a
node / may yield the node

hasCar(T,C), s h o r t (C) , hasLoad(C, L I) , hasLoad(C,L2), s m a l l (L l) ,
round(L2), notSame(Ll,L2)

whereas a depth-first exploration for the same node would yield14

hasCar(T,C), s h o r t (C) , hasLoad(C, L I) , sma l l (L l) , hasLoad(C,L2),
round(L2), notSame(Ll,L2).

The breadth-first node ordering basically corresponds to the 'layer' structure of
bottom clauses generated in some state-of-art ILP systems15 (such as Progol [19]
or Aleph). However, we shall see later in this paper that the depth-first version of
ordering will be more convenient for our purposes.

Having both the notions of order and depth at hand, we can proceed to define a
feature candidate.

Definition 6. (Feature candidate.) Let G = (K, A) be a feature grammar, O a
literal order for G. Let further D,L e N and / = (/1,/2 , • . . , l n) G N(G). Then / is
said to be a feature candidate admissible by (G, O, D) and L if

1. (order respecting) 0[f] = / ,

2. (recall respecting) r e c a l l / , h) < r e c a l l (/ i) for each literal h in / ,

1 3This graph should not be confused with the graph induced later by a refinement operator which
determines links between search nodes.

14 It should be clear that not Same (LI, L2) is connected in 7 / by an edge only with hasLoad(C,L2),
not e.g. with hasLoad(C, LI). The two former literals lie both in depth 1, and hasLoad(C, LI)
<A hasLoad(C, L2).

1 5And in fact it alone can be implemented with less computational expenditures than the more
general approach described hereby

Efficiency-conscious Propositionalization for Relational Learning 2 8 7

3. (length respecting) n < L,

4. (depth respecting) d e p t h A (/) < D.

We denote NO,D,L(G) the set of all such nodes.

The first assumption installs the unique-order requirement, whose underlying
ideas we described in the discussion preceding Definition 3 and another one con­
nected to Definition 5. Assumption 2 is based on the declared recall value of a literal
recall(Zi) (see Definition 2) and the computed recall value r e c a l l / , U) (see Defi­
nition 3). This assumption16 allows the user to incorporate a rather natural bound on
the number of immediate substructures of one structure that can be addressed within
a feature. For example, with declarations containing [2 ,ha sCar (+ t r a in , - ca r)]
and [l ,hasLoad(+car , - load)] , the string

hasCar(T,C), hasLoad(C,Ll) , hasLoad(C,L2), . . .

could not appear in a search node since it refers to two loads of one car (whether
or not LI — L2), although the following could: hasCar(T,Cl) , hasLoad(Cl ,L1) ,
hasCar(T,C2) , hasLoad(C2,L2) , . . . The last two assumptions in Definition G
implement straightforward constraints on the complexity of a feature. As follows
from the comment preceding Definition 4, the D parameter sets the maximum depth
in an object structural description that is addressable by a feature candidate (and
therefore any admissible feature). For example, if D — 2, then a feature can regard
a car of a train, a load of a car, but not any substructures of a load, were there any.
The L parameter, simply constraining the feature description length, is crucial. This
will follow from an algorithmic complexity discussion provided later in the paper.

The following theorem will clarify the 'procedural' utility of a feature candidate.

Theorem 1. Let G be a feature grammar, O an order for G and D,L G N. If
/ = (/i,/2,...,*n) £ N0,D,L(G) and n > 1 then (/ i , / 2 , . . . , /m) G N0,D,L(G) for any
1 < m < n.

Proo f . Assuming / G NO,D,L(G) for n > 1, to prove the theorem we need
to prove the inductive step, i.e. that (Zi,/2, •.. , /n) £ NO,D,L(G) implies / ' —
(Zi,/2, • • • , /n- i) £ NO,D,L(G). This will be proved by contradiction. Consider / ' ^
NO,D,L(G). Then either / ' G N(G) or / ' £ N(G). We treat the two cases separately.

If / ' G N(G), then necessarily one or more of the conditions 1-4 of Definition 6
does not hold for / ' . But condition 1 holds by the assumption 2 of Definition 5,
conditions 2 and 4 hold due to Lemma 1 and condition 3 holds trivially since n - 1 <
n. Since all conditions 1-4 hold for / ' while / ' ^ NO,D,L(G), it must be that
/ ' fi N(G), i.e. we have a contradiction.

Now consider the case when / ' ^ N(G). Since all literals in / are admissible then
so must be all literals in / ' . Thus one or more conditions 1 - 4 of Definition 3 must be
invalid. It is straightforward to check that conditions 1, 3 and 4 hold for / ' provided
they hold for / , and we leave it to the reader. It remains to check if condition 2 is

16inspired by a similar constraint used in the ILP systems Progol [19] and Aleph

288 F. ŽELEZNÝ

satisfied for / ' . Given that this condition holds for / , it can be invalidated when
removing ln only if In is the only literal containing the variable k e y A (/) , since clearly
vars(/ ') C vars(/) . But this variable is also contained in l\: if it were not, 1\ would
either have no input variable, thus harming condition 2 of Definition 1 (and failing
to be an admissible literal) or at least one input variable, thus violating condition 3
od Definition 3. Since we assumed n > 1, it holds ln ^ l\ and therefore ln cannot
be the only literal containing k e y A (/) and condition 2 is valid for / ' . Since all
conditions 1 4 of Definition 3 are then valid, it holds / ' G N(G) which contradicts
with the assumption of this paragraph. •

We have thus seen an important property of a feature candidate: any prefix
thereof is a feature candidate. In other words, adding literals to any literal sequence
that is not a feature candidate will never produce a feature candidate. Since a
feature, as we shall define in a moment, will itself have to be a feature candidate
and we will construct features by successively adding literals, we will abandon any
'non-candidate' literal sequences in this process. Let us now formalize the step of
adding literals.

Definition 7, (Refinement.) Let G be a feature grammar, O a literal order for
(7, and D,L e N. Let N^v be a subset of jNo,D,L(G) such that for each / =
(/i,/-2,... , /n) G N<v and each i, 1 < i < n it holds

min[outvars(/i)] = s<v(v) (9)
-<v

where
v - maxlU-Jjvars(Zj) U invarsA(/;)]• (10)

-<v J

The refinement for (G,0,J?,L) is the function ref(r7,o,D,L) : {Empty} U N<v —>
2N<v such that17 ref[Empty] = {/ G N^v; | l i ts(/) | = 1} and r e f [(/ , , l 2 r . . , ! ; l)] =
{/ G N^v\f = (/i,/'2, • • • JnJn+\)}' A refinement closure is a function ref+ :
{Empty} U N^v -> 2N*v such that it holds ref+[Empty] = N^v and re f f [(/ i ,
/ 2 , - . . , U] = {/ e N^v-n < m < LJ = (/ i , / 2 , . . . , / m) } .

The refinement provides all feature candidates that are one-literal extensions of a
feature candidate, so that the first newly introduced variable (which must clearly be
an output of the added literal) is the successor in the variable order <y of the 'max­
imum variable' (with respect to this order) found in the refined feature candidate.
This condition (along with condition 2 of Definition 2) prevents obtaining multiple
feature candidates differring only in variable naming. Also note that r e f + (/) =
UnFn (l<n<L- m) where Fi. = ref (/) and Fn+l = {/' G ref (/"); / " G F n } , for
any / = (/ i , / 2 , . . . , /m) ^ N0ID,L(G).

Some of the conditions a feature will have to comply with are determined by the
quantity of instances for which the feature holds. Whether a feature holds for an

17Henceforth we shall dismiss the parameters (C7,O ,D ,L) in the subscript when their instantia­
tion is obvious from the context.

Efficiency-conscious Pwpositionalization for Relational Learning 289

instance means that, in the first-order logic interpretation, it is more general than
the instance description (such as the antecedent in Example 1). In this paper we
abstract from technicalities inherent to verifying this, rather we merely reflect three
properties of a function yielding the subset of instances ('examples') for which a
feature holds.

Definition 8. (Coverage.) A coverage is a function cov : A x 2Ex -> 2FjV (where
A is the set of all finite sequences of atoms) if for any G G T, E C Ex, D,L e N,
any literal order O for G and all / , / ' , / " G NOJ)Jj(G) it holds:

1. (contraction) cov(/ , E) C E,

2. (disconnected conjunction) if lits(/") — lits(/') U lits(/) and

vars(/ ') H vars(/) C {key A (/)} then cov(/" , E) = cov(/ ' , E) n cov(/ , £) ,

3. (subsumption) if/ ' G re f (/) then c o v (/ ' , £) C cov(/,.E),

where ref is the refinement for (G, 0 ,L) ,L) .

As we are nevertheless concerned with the efficiency of the explained method, we
should address the question of whether the above function can be computed effi­
ciently. The issue of efficiently proving whether a Prolog (Datalog18) clause entails
a fact with respect to a background knowledge has been under investigation in both
the field of logic programming and ILP (e.g. [9]). Not imposing constraints on the
background knowledge database, this problem is in general undecidable, but can
be solved approximately. A naive, but rather tolerable technique guaranteeing an
efficient approximation of logic entailment is a step-bounded resolution procedure
[19] (know also as h-easy resolution), conducted in several state-of-art ILP systems.
Among more sophisticated methods falls Stochastic matching' [22] exploiting the
correspondence between first-order logic subsumption (in this case constrained to
the frame of Datalog) and the generally NP-complete constraint-satisfiability prob­
lem, and existing fast probabilistic algorithms applicable on the latter form. Also,
based orr the same problem correspondence and research of the phase transition phe­
nomenon in constraint satisfiability, deterministic methods have been suggested to
speed up subsumption check [18]. Any of such proving techniques could in princi­
ple be incorporated into the feature construction method. However, in our previous
experimentation the dimensionality of the feature space has consistently been a dom­
inant tractability factor, diminishing the efficiency aspects of the inherent proving.
We nonetheless do not exclude a future augmentation of the currently implemented
proving procedure e. g. for problems characterized by a large number of data in­
stances.

Let us now proceed to define the concept of a feature.

18Prolog without functions of arity greater than 0. All example features in this paper are proper
Datalog clauses.

290 F. ZELEZNY

D e f i n i t i o n 9. (Admissible feature.) Let C be a tuple C = (G,0,D,M,L) where
G — (n, A) is a feature g rammar with a literal order O and D,M,L G N. Then C
is called a feature constraint. Let cov be a coverage and let E C Ex. Finally, let
/ = (h,h, • • • Jn) € NO,D,L(G). We say tha t / is a feature admissible with cov on
E by C if

1. (variable consumption) if 3z: u G ou tva r sA(/ i) then 3j, v G invarsA(Zj),

2. (non-triviality) cov(f,E) C £ .

3. (relevance) | c o v (/ , £) | > M,

4. (undecomposability) there are no non-empty I, J C {1 ,2 , . . . , n } such tha t
I = {1, 2 , . . . ,n) \ J and [U i G /vars (U)] n [U j e J v a r s (/,)] C { k e y A (/) } .

Condition 1 implements a principle suggested by [14] tha t all ou tpu t variables
should be 'consumed' within the feature . Note tha t if / is a feature, this condition
automatically implies j > i, otherwise / would violate one of the conditions 3, 4
in Definition 3, thereby not being a search node and contradicting the assumption
of the definition above . Assumptions 2 and 3 reflect a s tandard constraint used in
general feature-selection approaches to avoid features tha t are either unusable for
da ta discrimination, or too special (their scope is too limited) . In the lat ter case,
such features are avoided in the effort of preventing the effect of da t a ovcrfitting.
Assumption 4 is motivated clearly: if it did not hold, it would be possible to express
the feature as a conjunction of two or more features, which we will formally prove in
prepared continuation of the paper. We do not care for such decomposable features,
since AVL systems are themselves typically able to construct conjunctive formulas
from feature identifiers. A decomposable feature is thus redundant . Besides, we
will present several theorems enabling for an often massive search space pruning
accompanied with a dramat ic speed-up of the feature construction . Some of them
largely exploit the notion of undecomposabili ty by pruning search subspaces surely
containing only decomposable features .

A C K N O W L E D G E M E N T

The authors are grateful to Jaroslav Pokorny (MFF UK, Prague) for his unreserved criti­
cism of a previous version of this paper, which led to the discovery of several flaws thereof.
The author is supported by the US Department of Defense through the DARPA grant
F30602-01-2-0571 and by the Ministry of Education, Youth and Sports of the Czech Re­
public through the grant MSM 212300013. Part of the method described in the paper
was developed while Filip Zelezny was on leave at the Institute Josef Stefan in Ljubljana,
working with Nada Lavrac.

(Received November 21, 2003.)

Efficiency-conscious Propositionalization for Relational Learning 291

REFERENCES

1] R. Agrawal and R. Siikant: Fast algorithms for mining association rules. In: Proc
20th Internat. Conference Very Large Data Bases, VLDB, Morgan Kaufmann, San
Francisco, CA 1994 pp. 487-499.

2] E. Alphonse and C. Rouveirol: Lazy propositionalization for relational learning. In:
Proc. 14th European Conference on Artificial Intelligence (ECAF2000) (W. Horn, ed.),
IOS Press 2000, pp. 256-260.

3] J. Blatak and L. Popelinsky: Feature construction with RAP. In: Proc. of the Work-
in-Progress Track at the 13th Internat. Conference on Inductive Logic Programming,
University of Szeged 2003.

4] P. Clark and T. Niblett: The cn2 induction algorithm. Mach. Learning 3 (1989),
261-283.

5] S. Dzeroski: Numerical Constraints and Learnability in Inductive Logic Programming.
Ph.D. Thesis. Faculty of Electrical Engineering and Computer Science, University of
Ljubljana 1995.

6] S. Dzeroski and N. Lavrac, eds.: Relational Data Mining. Springcr-Verlag, Berlin
2001.

7] W. Emde and D. Wettschereck: Relational instance based learning. In: Machine Learn­
ing - Proc. 13th Internat. Conference on Machine Learning, Morgan Kaufmann, San
Francisco, CA 1996, pp. 122-130.

8] P. Hajek: Mechanizing Hypothesis Formation. Springer-Verlag, Berlin 1966.
9] J. U. Kietz: Some lower bounds for the computational complexity of inductive logic

programming. In: Machine Learning: ECML-93, Proceedings of the European Con­
ference on Machine Learning, volume 667, Springer-Verlag, Berlin 1993, pp. 115-123.

10] A.J. Knobbe, M. de Haas, and A. Siebes: Propositionalisation and aggregates. In:
Proc. Fifth European Conference on Principles of Data Mining and Knowledge Dis-
overy (PKDD), Springer-Verlag, Berlin 2001.

11] S. Kramer, N. Lavrac, and P. A. Flach: Propositionalization Approaches to relational
data mining. In: Relational Data Mining (N. Lavrac and S. Dzeroski, eds.), Springer-
Verlag, Berlin 2001.

12] M.A. Krogel, S. Rawles, F. Zelezny, P. A. Flach, N. Lavrac, and S. Wrobel: Com­
parative evaluation of approaches to propositionalization. In: Proc. 13th Internat.
Conference on Inductive Logic Programming, Springer-Verlag, Berlin 2003.

13] M. A. Krogel and S. Wrobel: Transformation-based learning using multirelational ag­
gregation. In: Proc. 11th Internat. Conference on Inductive Logic Programming (ILP),
Springer-Verlag, Berlin 2001, pp. 142-155.

14] N. Lavrac and P. A. Flach: An extended transformation approach to inductive logic
programming. ACM Trans. Comput. Logic 2 (2001), 4, 458-494.

15] N. Lavrac and S. Dzeroski: Inductive Logic Programming: Techniques and Applica­
tions. Ellis Horwood, 1993.

16] N. Lavrac, F. Zelezny, and P. A. Flach: RSD: Relational subgroup discovery through
first-order feature construction. In: Proc. 12th Internat. Conference on Inductive Logic
Programming (ILP), Springer-Verlag, Berlin 2002.

17] H. Liu and H. Motoda: Feature Selection for Knowledge Discovery and Data Mining.
Kluwer, Dordrecht 1998.

18] J. Maloberti and M. Sebag: Theta-subsumption in a constraint satisfaction perspec­
tive. In: Proc. 11th Internat. Conference on Inductive Logic Programming (ILP) (Lec­
tures Notes in Artificial Intelligence 2157), Springer-Verlag, Berlin 2001, pp. 164-178.

19] S. Muggleton: Inverse entailment and Progol. New Generation Computing, Special
Issue on Inductive Logic Programming 13 (1995), 3-4, 245-286.

292 F. ŽELEZNÝ

[20] B. Pfahringer and G. Holmes: Propositionalization through stochastic discrimination.
In: Proc of the Work-in-Progress Track at the 13th Internat. Conference on Inductive
Logic Programming, University of Szeged 2003.

[21] J. Ross Quinlan: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco, CA 1992.

[22] M. Scbag and C. Rouveirol: Tractable induction and classification in first-order logic
via stochastic matching. In: Proc. 15th Internat. Joint Conference on Artificial Intel­
ligence, Morgan Kaufmann, San Francisco, CA 1997, pp. 888-893.

[23] A. Srinivasan, S.H. Muggleton, M. J. E. Sternberg, and R.D. King: Theories for mu­
tagenicity: a study in first-order and feature-based induction. Artificial Intelligence 85
(1996), 1,2, 277 299.

[24] O. Stcpankova, P. Aubrecht, Z. Kouba, and P. Miksovsky: Preprocessing for Data
Mining and Decision Support Data Mining and Decision Support: Integration and
Collaboration. Kluwer, Dordrecht 2003.

[25] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and Sally Jo Cunningham: Weka:
Practical Machine Learning Tools and Techniques with Java Implementations. Morgan
Kaufmann, San Francisco, CA 1999.

[26] J. D. Zucker and J. G. Ganascia: Representation changes for efficient learning in struc­
tural domains. In: Internat. Conference on Machine Learning 1996, pp. 543 551.

[27] F. Zelezny, N. Lavrac, and S. Dzeroski: Constraint-based relational subgroup discov­
ery. In: Proc. Multi-Relational Data Mining Workshop at KDD 2003, Washington
2003.

Filip Zelezny, Department of Cybernetics, Faculty of Electrical Engineering, Czech Tech­
nical University in Prague, Technickd 2, 166 27 Praha 6, Czech Republic, and University
of Wisconsin Medical School, Department of Diostatistics, Medical Science Center, 1300
University Avenue, Madison, WI 53706, U.S.A.
e-mails: zelezny@biostat.wisc.edu, zelezny@fel.cvut.cz

		webmaster@dml.cz
	2015-03-23T13:43:26+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

