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SOLVING CONVEX PROGRAMS 
VIA LAGRANGIAN DECOMPOSITION 

MATTHIAS KNOBLOCH 

We consider general convex large-scale optimization problems with finite dimensional 
decision variables. Under usual assumptions concerning the structure of the constraint 
functions, the considered problems are suitable for decomposition approaches. Lagrangian-
dual problems are formulated and solved by applying a well-known cutting-plane method 
of level-type. The proposed method is also capable to handle infinite function values. 
Therefore it is no longer necessary to assume that the feasible set with respect to the 
non-dualized constraints is bounded. 

The paper primarily deals with the description of an appropriate oracle. We first discuss 
the realization of the oracle under appropriate assumptions for generic convex problems. 
Afterwards we show that for convex quadratic programs the algorithm of the oracle is 
universally applicable. 

Keywords: level method, cutting-plane methods, decomposition methods, convex program
ming, nonsmooth programming 

AMS Subject Classification: 90C25, 90C30, 90C06, 65K05 

1. INTRODUCTION 

Large-scale optimization problems has been attracting the attention of specialists 
already for many years. The reason for such an enduring interest comes from appli
cations. As an example, one can consider portfolio optimization, where the dimen
sion depend on the number of possible assets and can thus be very large. Another 
example comes from models for power plant optimization. These models are another 
class of large-scale problems. 

Usually these problems have a structure which enables to use decomposition ap
proaches. In the last years decomposition has become even more important since the 
fast development of parallel computers has revealed new areas where decomposition 
can be used to handle problems of very large scale with the help of computers. Pri
mal decomposition approaches are for instance described in [3] and [16]. A method 
using simultaneous primal-dual decomposition can be found in [13]. 

Methods for dual decomposition often need the assumption that the feasible set of 
the considered program is bounded. Our method enables to get rid of this additional 
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assumption. In [4] we have already discussed the basic theory of our method for 
convex quadratic problems. The aim of the paper is to show some application 
aspects associated with the solution of general convex programs. 

2. PROBLEM FORMULATION AND ASSUMPTIONS 

We consider optimization problems of the following form 

( f(x) -> infx 

(p) 
9(x) < ' 

h{x) < 

ж Є R " , 

where g(x) = (gi(x),g2(x),... ,gm(x))T and h(x) = (/ii(x),/t2(x), • • • ,hp(x))T. The 
functions f,gi and hj are supposed to be convex on Rn for all i and for all j . 
Moreover, it is supposed that all functions f,gi and hj are differentiate on the 
entire space lRn. 

We define the optimal value of (P) as 

/* := inf {f(x) : g(x) < O, h(x) < O} 

and we denote the optimal set of (P) by 

X* = {xeW1 : g(x) < O, h(x) < O, f(x) = /*}. 

As usual, we assume the feasible set of (P) to be nonempty, which means /* < +oo. 
Of course, the case X* = 0 is not excluded. We only have to suppose the problem 
(P) to be solvable in the sense that the optimal value of (P) is bounded from below, 
i.e. /* > - c o . 

Finally, we demand that a constraint qualification holds for the feasible set of 
(P) with respect to the constraints connected with function g. For instance, it is 
possible to assume the existence of a vector x G K n with h(x) < O such that 

gi(x) < 0 Vi = l , 2 , . . . , m . 

This assumption is usually referred as the S7a£er-condition. 
We note that in the special cases, where (P) is a linear or a convex quadratic 

program, the theory developed in this article is applicable as well. In these cases 
an additional regularity condition will be superfluous. Section 6 deals with convex, 
quadratic programs. 

3. DUAL DECOMPOSITION APPROACH 

To solve problem (P) we choose an approach which uses a dual problem correspond
ing to (P). With the help of the Lagrangian function L(x, A) defined by 

L(x,X) := / (x)-h(A,p(x)), A > 0 
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we construct the so-called dual function for (P) with respect to the constraints 
g(x) < O as 

<p(\) := inf L(x,A). 
h(x)<0 

We remark that ip(\) is defined as the optimal value of an optimization problem. 
In what follows let this program be denoted by (ip(\)). In the usual way the dual 
problem 

{ ip(\) -» maxA 

A > 0 
can be associated with the primal problem (P). Let ip* denote the optimal value of 
(D). 

First we discuss some known facts from the duality theory. Between the primal 
and the dual objective function the relation 

V(A) < f(x) 

holds for all dual feasible A and all primal feasible x. This relation is known as 
"weak duality". It follows immediately that </?* < /* and since (P) is supposed to 
be feasible we get (p* < +00. 

Since we have additionally assumed that a constraint qualification holds for (P), 
we can establish "strong duality", i.e. /* = (p* and moreover, the existence of some 
A* > O such that 

/* = ^A*) . 

This means that (D) has at least one optimal solution. 
We remind the reader that the set {x G En : h(x) < O} was not supposed to be 

bounded in general. This means that the optimal value of (<p(A)) may be equal to 
-00 for certain A > O although its objective function is differentiable on the entire 
space. Let us therefore denote by domtp the effective domain of ip(\), i. e. 

doimp = {A > O : ip(\) > - 0 0 } . 

To avoid confusion, we remark that independently of dom</> we consider the set R™ 
as the feasible set of problem (D). 

The set dom (p is always nonempty under the previous assumptions since at least 
the aforementioned dual optimal solution A* is an element of dom (p. 

Unfortunately, the existence of a primal minimizer cannot be ensured without 
additional assumptions. Consider for instance the case f(x) = ex and g(x) = x 
without any constraint function h(x). It can be easily seen that /* = 0 = </?*. 
Moreover, A* = 0 is dual optimal and dom(p = {0}, but there is no x* such that 
ex* = 0. 

It is well known from the duality theory that the function </?(A) is concave on the 
convex set dorcup. We set (p(\) := — </?(A) and consider the problem 

(i) 
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instead of considering (D). Then (1) is a convex problem of minimization. 
Obviously, the vectors from R™ \ domtp cannot be optimal in (1). Also simply 

changing the feasible set of (1) to "dom</?" is not possible since domip cannot be 
described explicitly in general. 

It can be seen that the chosen approach is not of practical use, unless the prob
lem (P) has a specific structure. In general, it is supposed that (P) is difficult to 
solve, whereas the problems (</?(A)) have nice properties and are easier to solve. The 
typical situation arises when (P) has block-angular constraints and / has a com
patible structure. The difficulty is the presence of the constraints modeled by g. 
These constraints couple all variables. They are therefore referred as the so-called 
"coupling constraints". Since our dual approach makes it possible to get rid of these 
constraints, the problems (</?(A)) can be decomposed into smaller subproblems which 
can be solved separately or one can solve them simultaneously on parallel computer 
architectures. Another possible application is the computation of lower bounds using 
the methods of integer programming via Lagrangian relaxation. 

Problem (1) is a problem of minimizing a convex objective function subject to 
nonnegativity conditions. Unfortunately, the objective function is not given in an 
explicit form. Therefore, we will have to choose an appropriate method to solve (1). 
In the next section the proposed method will be described. 

4. ALGORITHM OF THE LEVEL METHOD 

It is convenient to solve problems of the type, including also the problem (1), with 
the help of cutting plane methods. The algorithm we use to solve (1) is a so-
called level method, a special cutting plane method, was first mentioned in [10]. 
Essentially we use a variant described in [2], This algorithm generates a sequence 
{A1}2=1,2,... to find the optimal solution of a convex minimization problem with 
compact, polyhedral feasible set. Obviously, the feasible set of (1) is polyhedral but 
unbounded. For U > 0 we define 

A := { A E R ^ : A < [ / . 1 } , 

where 1 is the vector consisting of ones. Since (1) has minimizers, it is possible to 
find a suitable U such that A contains at least one minimizer of (1). Therefore, we 
henceforth consider the following problem 

Ф) T . 08 

instead of (D). It is explicitly allowed that <£(A) = +oo for certain A G A. 
The level method demands a so-called oracle to be given. The oracle can be 

imagined as a black box, which is capable to produce desired output (subgradients, 
function values, separating hyper planes) if it is provided with special input data 
(current iterate). 

Let us now describe the steps of the level method. 



Solving Convex Programs via Lagrangian Decomposition 599 

Algori thm 1. (Level Method) 

Step 0. Choose precision e > 0, starting point A1 G A, the level parameter 0 G (0,1) 
and C > 0. We set $J = °° a n d start with k = 1. 

Step 1. Provide the oracle with \k and let the oracle compute a vector 6* and a number 
fik such that the following conditions hold: 

• if \k G dom<£ then bk is a subgradient of (p at A* and (3k = <p(\k), 

• if \k £ dom <£ then for bk and /3* > 0 holds 

(b*,A-A*)+/?* < 0 VAGdom<£. (3) 

Step 2. If A* G dome/? then set <££ = min{ip*k_1,ip(\k)} and update the values /3k using 
the following rule 

f ^ A ' ) - ^ ifA'Gdomc.S, i = l ,2, . . . , fc 
/3- = < (4) 

[ tf-1 i f A ' g d o m p , i = l , 2 , . . . , f c - l . 

Otherwise <p\ := ^ _ x and fik := /?fc. 

Step 3. Compute Ak as the optimal value of the problem 

t —> max 

< 6 i , A - A O + # + | | M * < 0 i = l f2, . . . , fc (5) 

^ AG A. 

If <££ < co and Ak < C • e, additionally compute A'k as the optimal value of 

t -» max 

<6i,A — A*> + ^ +-"t < 0 Viitfedomtp 

<6if A —A*> +-/?* < 0 Vt : A* £dom<£ 

AG A. 

(6) 

Step 4. U A'k <e then STOP. Otherwise use the minimizer of problem 

| |A -A* | | 2 -+min 

(fci.A-A*)+ # + e - | I M •--*<<) i = l , 2 , . . . , * (7) 

A e A 

as new iterate Afc+1. 

Step 5. Set k = k + 1 and return to Step 1. 
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Remarks . 

• To prove convergence of the algorithm, several assumptions must be fulfilled: 
<p has to be a proper, convex function, all vectors bl generated by the algorithm 
must have a norm bounded by some constant L > 0, A is supposed to be a 
polyhedron and, furthermore, the set int(dom(^n A) must be nonempty. The 
last assumption especially means that we have to demand the interior of dom (p 
to be nonempty. This property cannot always be ensured. In [4] we give an 
example with int(dom^) = 0. Methods how to overcome this problem have 
not been published yet. 

• The following fact can be proven: If e > 0 then the method stops after a finite 
number k0 of iterations and we have 0 < ip*ko - (p* < e. The proof of this 
fact can be found in [3]. Note that in [3] only linear problems and primal 
decomposition methods are discussed. Nevertheless, the proof can be easily 
adapted. 

• The described algorithm already contains certain modifications. 

— In problems (5) and (7) we use normalized subgradients. If we replace 
the coefficient ||6j|| by 1 the subgradients are unnormalized. It is not a 
priori clear which one of the methods yields the better performance. 

- The described method exploits the strategy of the so-called "Deeper 
Cuts". Instead of using the cuts 

(b\\-\l) < 0 V ^ V e d o m ^ 

we use cuts of the following form 

(bl\\-\l) < < ^ - £ ( V ) Vi:\le dom tp 

in the A:th iteration. Since (p*k — ip(X) < 0 the feasible sets of (5) and (7) 
become smaller in general and therefore these cuts are called "deeper". 
Practical experience (see [16]) has shown that the level method performs 
a lot better when deeper cuts are used. 

• Further modifications for fixing the problem that our method demands un
bounded storage are known. Techniques for subgradient selection are for in
stance described in [16] and techniques for subgradient aggregation are con
tained in [9]. 

Since the algorithm demands an oracle to be given we have to construct such an 
oracle which is capable to compute the data needed for the outer iterations. In the 
next section we will describe how the oracle can be constructed. 

5. REALIZATION OF THE ORACLE 

After having described the proposed solution method, our next aim is to apply 
Algorithm 1 to problem (1). This algorithm demands an oracle to be given. The 
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core problem of an implementation of the method will be to make the oracle available. 
A brief look at the steps of the algorithm reveals that the used oracle is supposed 
to be able to: 

• decide, whether a current iterate \k is in donup or not, i. e. to compute <p(\k), 

• compute subgradients of the objective function <p, 

• construct separating hyperplanes. 

Therefore the aim of the forthcoming sections is to show, how the oracle can be 
constructed to meet all three requirements. 

5.1. Determining infinity 

Algorithm 1 consists of two different types of iterations. If \k G dom (p, then a 
standard cutting-plane step is done. If \k £ dom cp, then the oracle must compute 
data to construct a hyperplane separating \k from dom tp. As already mentioned, 
there is no way to describe the set dom ip explicitly in general. Therefore, when the 
oracle is provided with a current iterate A*, its first task is to find out, if A* G dom (p. 
Henceforth points from E™ \ dom (p shall be called infinity points. 

We remind the reader that the value <p(\k) is the optimal value of a convex 
optimization problem. Therefore, it is possible to use duality theory to obtain results 
concerning the finiteness of ip(\k). The dual problem corresponding to problem 
0(A)) is 

f i>\(n) -+ supM 

џ> 

where ip\(n) is defined by 

V A M := inf {f(x) + (X,g(x)) + (fi,h(x))}. (8) 
a:£Rn 

Let ^A denote the optimal value of (<P(\)D)> Problem (<P(\)D) and the function 
ip\(li) both depend on the parameter A. 

The value ip\(iJ>) is defined as the optimal value of an unconstrained optimization 
problem. Evaluating first order necessary and sufficient conditions for this program 
and regarding duality results leads to the construction of an infinity point indicator 
function. Let 77(A) be the optimal value function of the problem 

fo(A)) | !l V / ( a ° + G{X)TX + H{X)T^2 ~* l n f ^ (9) 

where G(x) respectively H(x) is the Jacobian of g(x) respectively h(x). Obviously, 
77(A) > 0 holds for all A G E!£ and moreover, 77(A) < 00 VA G E^ since (77(A)) has 
feasible solutions for arbitrary A. 

To prove statements concerning <p(\) we will sometimes need an additional as
sumption. 
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Assumption 2. A constraint qualification holds for the feasible set of problem 
MA)). 

The feasible set of (<p(\)) is {x G W1 : h(x) < O}. We note that this set obviously 
does not depend on the parameter A. 

Solving problem (77(A)) is closely related to determining the infinity of (p(\) and 
to the construction of separating hyperplanes, too. The following theorem shows 
the possible use of (77(A)). 

Theorem 3. Let Assumption 2 hold. If A0 G domcp then 77(A°) = 0. 

P r o o f . Let A0 G dom^, i.e. <p(\°) > —00. Since in virtue of Assumption 2 
problem (</?(A0)) is regular, it follows that strong duality holds between (</?(A0)) and 
its dual (<.O(A°)£>) and the latter possesses at least one optimal solution /x° > O, i.e. 
it holds 

<p(\°) = rxo = ii>xo(n°). 

Since A0 € dom tp we have 

- 0 0 < ip(\°) 

= 4>l* 
= ign {/(*) + (\°,g(x)) + (n°,h(x))} . 

Therefore, the function f(x) + (\°,g(x)) + (/i°,/i(x)) is bounded from below and it 
is lower semicontinuous because of the differentiability of the functions / , gi and hj. 
We can therefore apply Theorem 6.3 from [6]. It follows that there is a sequence 
{xk}kLi such that 

lim (Vf(xk) + G(xk)T\° + H(xk)Tfi°) = 0 
k-»oo 

=> lim ||V/(.tfc) + G(xfc)TA° + H(a;*)V||2 = 0. 
k-*oo " " 

The sequence {(xk,/x0)7 }^Li is feasible in (T?(A0)). Moreover, this sequence realizes 
the optimal value of (rj(A0)) since T7(A°) > 0. It follows ?7(A0) = 0 and the theorem 
is proven. ---

The next corollary is a direct consequence of the previous theorem. 

Corollary 4. Let Assumption 2 hold. If TJ(A°) > 0 then A0 ^ dom</?. 

It can be seen that Theorem 3 is not sufficient to decide, whether a current iterate 
\k is in domip or not. To make 77(A) a true infinity point indicator function the 
converse statement to Theorem 3 is needed. Unfortunately, counterexamples show 
that this statement is not valid in general. Therefore we have to make additional 
assumptions. 
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Assumption 5. For arbitrary A G E ^ there exists an optimal solution of problem 
(ri(\))-

Theorem 6. Let Assumption 5 hold. If r](X0) = 0 then A0 G doimp. 

Proof. Let A0 G R™ such that rj(X°) = 0. Since Assumption 5 holds, there exists 
an optimal solution (x*,{i*) G Kn x R^ of (^(A0)). For this solution 

V/(x*) + G(x*)TA° + H(x*)V = O 

must hold. This is the necessary and sufficient condition for x* to be a global 
minimizer of problem (i/>xo (fj,*)). From the weak duality relation we get 

V(A°) > ifto 

= SUp{V>A°(,")} 

> <M//) 
= f(x*) + (\°,g(x*)) + (S,h(x*)) 
> —CO 

which proves the theorem. D 

Consequently, if Assumptions 2 and 5 hold simultaneously, then A0 G dome/? if 
and only if T/(A°) = 0. In this case the oracle is able to make a definite decision 
regarding the property to be an infinity point for a current iterate. 

5.2. Supergradients of the dual function 

For iterates Xk G dom ip the level method from Section 4 has to solve problem (tp(Xk)) 
to compute the objective function value and it has to compute a subgradient of (p 
at Afc, which is of course directly connected with a supergradient of (p. 

The following result is well-known. Nevertheless, it will be stated and proven 
here, since its message is of crucial interest for implementing Algorithm 1. 

Theorem 7. (e-Supergradients of the dual function) Let e > 0, A0 G domip and 
let x° be an ^-optimal solution of problem (<^(A0)). Then the vector g(x°) is an 
£-supergradient of the function tp(-) at A0. 

P r o o f . Since A0 G domcp it follows that <p(X) is finite. The vector x° is an 
s-optimal solution of (c^(A0)). That means 

^(A°) > f(x°) + (\0,g(x°))-e. (10) 

Moreover, x° is feasible in (<p(\)) for arbitrary A € Rm. Therefore, it holds 

f(\) < f(x°) + (\,9(x0)) VA€E m . (11) 
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Multiplying (10) by (-1) and adding it to (11) yields 

<p(\)-<p(\°) < ( p ( x 0 ) , A - A ° ) + e V A e R m (12) 

which means that g(x°) is in the £-superdifferential of (p(-) at A0. • 

One easily checks that under the assumptions of Theorem 7 — g(x°) is an e-
subgradient of (p at A0. The above stated theorem is therefore one of the necessary 
keys for the implementation of the oracle. 

5.3. Cons t ruc t ion of separa t ing hyperplanes 

This section is devoted to the construction of the so-called "domain-cuts". We 
remember the reader that a domain-cut at A0 ^ dom <p consists of a vector a and a 
number a such that the following two conditions hold: 

(a, A - A 0 ) - h a < 0 \/\edom<p 

a > 0, 

i.e. the hyperplane connected with a and a separates A0 from dom<^ and A0 has 
positive distance from the hyperplane. The basic result for the realization of this 
aim is the following. 

Theo rem 8. Let Assumptions 2 and 5 hold and let A0 £ dom<^. Let the vector 
5 be a subgradient of 77(A) at A0. Then with the vector s and the number r)(\°) a 
domain-cut can be constructed, i. e. 

(5,A-A°)+r7(A°) < 0 VAGdom</> (13) 

f?(A°) > 0. (14) 

P r o o f . Let A0 G 1R+ \ domip. Prom Theorem 6 we immediately get (14). 
Since s G drj(\°) we know 

77(A)-77(A0) > (5, A - A 0 ) V A e E m . (15) 

Considering Theorem 3 we have moreover that 77(A) = 0 V A G domip. Writing down 
(15) only for A G domip yields the validity of (13). ---

Obviously, Theorem 3 does not contain statements concerning the existence of 
subgradients of 77. But we know that the subdifferential of a convex function is 
nonempty for points in the relative interior of the function's domain and, moreover, 
it is obvious that the domain of 77 coincides with E m . Therefore, convexity of 77(A) 
should be ensured. To this purpose it is possible to use the next lemma. 
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Lemma 9. Let the function 

\\Vf(x) + H(x)T» + G(x)TX\\2 (16) 

be jointly convex with respect to (x, /i, A) on lRn x Kjj. x IRm. Then the optimal value 
function 7?(A) is convex on Rm . 

P r o o f . See [15] Proposition 2.6. • 

Unfortunately, the assumption of Lemma 9 is not always valid. An analogue of 
Theorem 8 can also be proved, if we assume that rj is quasi-convex and the normal 
vector 5 is from a generalized, quasi-convex sub differential. To prove quasi-convexity 
of rj it is sufficient that (16) is jointly quasi-convex. Nevertheless, the next example 
will show that even that property is not possible to be proven in general. 

Example 10. We consider problem (P) with 

f(xi, x2) = yjl + x\+x\+x\ 

and with arbitrary convex differentiate functions g and h. For (16) to be quasi-
convex it is necessary that (16) is quasi-convex with respect to x for fixed /x and 
A. Let fi := A := O. It is then necessary that ||V/(.ri,a;2)||2 is quasi-convex. 
Considering 

l |V/(* l f * 2 ) | | a = ( ** 2+2Xl) + X} (17) 
\yj\ + x\+x\ ) l + x(+X< 

one easily checks that (17) is not quasi-convex. 

From Lemma 9 one can immediately conclude that for linear programs and for 
convex, quadratic programs function r](X) is convex. See Section 6 for more details. 

Besides Lemma 9 there are more cases where r\ is a convex function. They shall 
not be stated and proven here since they are beyond the scope of this paper. We 
will work with a new assumption in the forthcoming parts of this article instead. 

Assumption 11. The function rj(-) is convex on E m . 

The above assumption ensures that for every iterate Xk £ dom ip it is possible to 
build up a separating hyperplane with the help of a subgradient of rj. 

Finally, we have to discuss how the needed subgradient can be computed. We will 
show that this subgradient is connected with an optimal solution of (77(A)). Since 
(16) is not supposed to be jointly convex it is not possible to make use of known 
results. 
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Theorem 12. Let Assumptions 5 and 11 hold. For A G Rm let (x*(A),/x*(A)) be 
a global optimal solution of (77(A)). Then 

Vr/(A) = 2-G(x*(\))(Vf(x*(\)) + H(x*(\))Tfi*(\) + G(x*(\))T\) 

holds. 

P r o o f . Let A0 G Rm arbitrary but fixed. Since rf is convex by assumption there 
is a subgradient of 77 for each A G lRm. Let therefore be a G drj(\°). It holds 

77(A) -?j(A0) > (a, A - A 0 ) V A e l m 

<=> 77(A) - ( a , A) > 77(A°)-(a,A°) VAGR m , 

which means that A0 is a global optimal solution of the program 

in f {»7 (A) - (a ,A>} . 

Applying the definition of rf we get that A0 is a global optimal solution of problem 

i n f | ^ n f i { | | V / ( x ) + H(x)T
M + O(x)TA||2}-(a,A)}. 

Considering that (x*(A°),/i*(A0)) is a global optimal solution of problem V77(A0)) it 
follows that (x*(A°),/i*(A°), A0) is a global optimal solution of the following opti
mization problem: 

^A^fix) + ^(a;)V + GWTA||2 - (a,A)} . 

Since (x*(A°),/x*(A°), A0) is an optimal solution, the first order necessary conditions 
must hold. This means especially that 

2.G(x*(A0)).(V/(x*(A0))-FG(x*(A0))TA0-fH(x*(A°))T/x*(A0)) = a. (18) 

Since a was an arbitrary element of dj](\°) and since we have proven that a can be 
represented by the above formula, we have actually proven that dr](\°) only consists 
of one single element. Considering that the domain of function 77(A) coincides with 
Rm and together with the convexity of 77(A) we have proven that the left-hand-side 
of (18) is the gradient of 77 at A0. 0 

Therefore, the above theorem yields the last property, which is necessary to realize 
the oracle. 

5.4. Algorithm of the oracle 

The theorems stated in the previous subsections clarify how the oracle has to be 
implemented. Nevertheless, we will give the steps of the detailed algorithm of the 
oracle for the sake of completeness. We suppose that Assumptions 2,5 and 11 hold. 
Moreover, we assume that for every A G dome/? there is an optimal solution of 
problem (</?(A)). 

Assume that the algorithm of the oracle has been started with \k being the input. 



Solving Convex Programs via Lagrangian Decomposition 607 

Algorithm 13. (Oracle) 

Stop 1. Compute the optimal value ^(A*) and an optimal solution (x*(\k),fi*(\k)) of 
problem 

f || V / ( s ) + G(x)T\k + H(x)Tn\\2 -> inf..,,, 

\ n > O, x e w1. 

Stop 2. If r/(A*) > 0 then 

bk := G(x*(\k)) • (Vf(x*(\k)) + G(x*(A*))TA* + H(x*(\k))T
fi*(\k)) 

ft •= t?(Afc) 

and STOP. Otherwise continue with Step 3. 

Stop 3. Compute the optimal value ip(\k) and an optimal solution xk of problem 

J f(x) + (\k,g(x))->mfx 

\ h(x) < O 

and set 

bk = -g(xk). 

After the algorithm of the oracle has been described, we are able use the algorithm 
to solve (1). Therefore, we can devote our interest to further topics which we intend 
to discuss, namely, to a very important subclass of convex programs. 

6. LINEAR AND CONVEX QUADRATIC PROGRAMS 

Of course, the theory of the previous sections covers linear and convex quadratic 
programming problems. Nevertheless, we will devote the current section to a brief 
overview over this class of programs because of its importance in practical applica
tions. See [4] for a more detailed survey of dual decomposition in convex quadratic 
programming. 

In the sequel we consider the special case of problem (P) of the following form: 

| (x , Qx) + (c,x) —> infa-

(PQ){ Gx<g 

Hx<h. 

The matrix Q is supposed to be symmetric and positive semidefinite. The case 
Q = O is allowed. Since the constraint functions are affine, the necessary constraint 
qualification for our dual approach holds. 

The following statement is the key to the realization of the oracle for the consid
ered class of problems. 
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Proposition 14. Assumptions 2,5 and 11 are valid for (PQ). 

P r o o f . For the considered class of programs, the problems (<p(\)) look as follows 

y>(A) = inf { l(x,Qx) + <c,z) + (A, Gx - g)} 
Hx<n 

and have a polyhedral feasible set. Therefore these problems are regular and As
sumption 2 holds. 

For A G R!p the function 77(A) is defined by 

77(A) = inf HQx + c + ^ A + ZIVll2 

x,n>0 

The function || • || is convex. Composition with an affine function yields a convex 
function, too. The function (-)2 is convex and nondecreasing for nonnegative argu
ments. It can be concluded that the function \\Qx + c + GT\ + HTfi\\2 is jointly 
convex with respect to (x, /i, A) on En x R̂ _ x E m . Using Lemma 9 it follows that 
77(A) is convex on Rm and Assumption 11 holds. 

Moreover, the objective function of (77(A)) is convex, quadratic function which is 
bounded from below by zero and the constraints are affine. Therefore, for all A G W™ 
problem (77(A)) has minimizers which means that Assumption 5 holds. • 

Instead of using the squared Euclidean norm in problem (77(A)) it is possible to 
use || • | |i, where ||x||i = J^iLi lx-l- The advantage of using this norm is the fact that 
(77(A)) can be written as a linear program. The dual problem corresponding to this 
program is 

(C + G T A , K ) - )max K 

QK = 0 
(19) 

HK>0 

-1 <K< 1 . 

To indicate the difference to function 77(A) we denote the optimal value function of 
(19) by 77(A). Since strong duality holds, we only solve (19) to compute the value of 
77(A) in each iteration. Obviously 77(A) has essentially the same properties as function 
77(A) does, i. e. it is an infinity point indicator function. 

Moreover, problem (19) will help us to find subgradients of 77(A). 

Theorem 15. Consider problem (PQ). Let A0 ^ dom<£ and let K* be an optimal 
solution of problem (19) for A = A0. Then 

GK* G d77(A°). 

P r o o f. See [4] Theorem 4. • 
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Remarks . 

• The advantage of using || • 11x instead of || • H2 is the fact that for linear and 
quadratic programs the oracle has to solve a linear program instead of a convex 
quadratic program. 

• For the considered class of programs it is possible to describe a way to con
struct approximate feasible and approximate optimal primal solutions using 
the iteration data of the level method. For the sake of brevity we skip this 
theorem. 

(Received September 30, 2003.) 
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