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O N I N V E R T I B I L I T Y O F A R A N D O M C O E F F I C I E N T 

MOVING AVERAGE MODEL 

TOMÁŠ MAREK 

A linear moving average model with random coefficients (RCMA) is proposed as more 
general alternative to usual linear MA models. The basic properties of this model are 
obtained. Although some model properties are similar to linear case the RCMA model 
class is too general to find general invertibility conditions. The invertibility of some special 
examples of RCMA(l) model are investigated in this paper. 
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1. INTRODUCTION 

Let {et}t£z be an i.i.d. sequence of random variables. We generalize the linear 
moving average time series model. We replace the constant coefficient vector by 
a random one. Assume that {At}t£z, At = (-4t,0j • • • ,-4t,p)T is a time series of 
vector of parameters. Further we assume that for each fixed k G { 0 , 1 , . . . ,p} and 
for each t eZ the subsequences {-4t-i,k}^0

 a n d {ct-k+^'jLo a r e independent. This 
relationship between the series {et}t^z and {At}tez we call future independence 
condition (FIC). Now we introduce a random coefficient moving average model of 
order p, RCMA(p), of the general form 

Xt = AtflSt + Atiiet-i + • • • + AttPet-P. (1) 

The FIC gives the causality connection between the sequences {Xt} and {et} and 
additionally it dictates the inner structure of the model. For example in RCMA(l) 
form of non-linear moving average model 

Xt = et + aet-i + (3etet-i 

is At = (1 + /3et-i,a)T. Putting A[ = (1 ,a + fiet)
T we get the same model but the 

FIC does not hold. 
Let us denote ®t, the cr-algebra generated by {X5,5 < t}. In this general form, 

model (1) covers many known models. 
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• Linear MA models: The At is a constant vector not depending on t. 

• Time dependent MA models: The At is not random, but it depends on t. 

Self exciting threshold moving average models: The At}k = vk , k = 0, . . . ,p 1У1 

where Jt is measurable with respect to S t - i and takes values in {1,2,..., /}. 

• Strongly subdiagonal bilinear models: There exist some q G N such that each 
Atik is linear function of variables Xt-k-ijXt-k-2, • • • > ^t-k-q with time in­
variant constant coefficients. 

• Some non-linear moving average models: The At is generally non-linear func­
tion of et-i,et-2i • - -i£t-qi admitting expression in the form (1), where FIC 
condition holds and q e N. For example the models that have a finite order 
Volterra expansion (see e.g. Tong [8]) are included. 

• ARCH models: The p = 0 and Atto = J7 + J2n=i <t>iXt-n where 7 > 0, <fo > 0 
for all i. 

• Some doubly stochastic models: The Atyo = 1 a. s. for each t and the vector of 
random coefficients At is measurable with respect to *Bt-i for each t. A more 
general doubly stochastic model is introduced by Tj0stheim [7]. 

• Product autoregressive models: Here the p =' 0, white noise et is positive and 
At,0 = Xt_v For more details see McKenzie [4]. 

Some bibliographical notes about mentioned models can be found in Tong [8]. 

1.1. S ta t ionar i ty 

It is well known that linear MA(p) model is always stationary. The RCMA(p) model 
may not be stationary as is shown in the Example 1.1. 

Example 1.1. Consider p = 1, and et ~ N(0,1). Let 

f ( M t _ 2 ) r i f * > 4 , 
1 \ ( l , £ t - 3 ) r i f * < 4 . 

Thus At is the i.i.d. sequence and FIC condition holds. Now Xt is not stationary, 
because 

X$ = £5 + 646$, X4 = £4 + ssd, Xs = £3 + £2^0, 

and EX$X% = 6 ^ EX4
2X5

2 = 8. 

A sufficient condition that model (1) is stationary is that vector sequence {rjt}, 
where T]t = (Atioet,Atiiet-i,... ,AttPet-p)

T, is stationary. Example 1.2 given bel­
low shows that this condition is not necessary. It means that also non-stationary 
sequence {rjt} can produce stationary process {Xt}. It is also useful to introduce the 
following notation here. If we have column vectors Y\,..., Yn we define Vec(Vi , . . . 
...,Yn) = (YT,...,YTF. 
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Example 1.2. Consider p = 1, and et ~ N(0,1) as in Example 1.1. Let A > 0, 
t* e z, 

J 2 if t>t*, 
dt = \ 3 if t < t * , 

and 

Xt = Z t ( e t - £ t - i ) , (2) 

where Z t is a random sign given by previous white noise exceeding level A. More 
exactly 

f +1 if et-dt > A, 
Zt

 = \ 
[ - 1 if et-dt < A< 

It is seen that Z t 's form i.i.d. sequence and p = P(.Zt = 1) = 1 — $(A), where 
$ is distribution function of standard Gaussian N(0,1) distribution. Thus At = 
(Zu —Zt)

T is i.i.d. sequence and FIC condition clearly holds. 
It is not a difficult task to prove that sequence Xt defined in (2) is stationary. 

For each n G N and t\ < t2 < • • • < tn we denote tn = ( t i , . . . , t n ) T and Xtn = 
(Xtl,..., Xtn)

T. First we assume that values Ztl = ztl,..., Ztn = ztn are known. 
Conditional distribution of vector Xtn is n-variate normal with zero mean and 
variance matrix 

Vtn = « } ) " i = 1 , (3) 

where v1^ = 2 and if i < j , v\^ = -ztiztj5(ti,tj - 1). Symbol 5(i,j) denotes well 
known Kronecker function which is equal to one if and only if i = j and zero 
otherwise. 

We have 
P (Ztl =Ztl,...,Ztn=ztn)= pN*» (1 - p)»-"*«, 

where Ntn = Card{l < i < n : zti = 1}. Since et's are i.i.d. the distribution of 
variable 1Vtn is independent of the time shift of fixed vector t n . Consequently the 
distribution of random vector (Ztl,..., Ztn)

T is independent of the time shift of tn. 
Employing (3) it follows that unconditional distribution of Xtn is also time shift 
independent and thus the sequence {Xt} is stationary. 

Now let us deal with the sequence {r]t}. In this example we have 

( (et, - e t - i ) T if et-dt > X, 

\ (-et,et-i)
T ifet-d. < A. 

Let us investigate the distribution of vector 

Et = Vec(r7t, r7t_i, r / t _ 2 ) = (zteu -Ztet-i, -^t-i^t-i , -Zt-\et-2, Zt-2et-2, -Zt-2et-3)T-

If t > t* + 2 , then Zt-2l Zt-\ and Zt depend on St-4, ^t-3 and e t-2, respectively. It 
follows that 

P (\Zt-2et-2\ < A, \Zt-2et-3\ < A, -Ztet-i > 0, Zt-iet-i > 0) = 0. 
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If t < t* + 2, then Zt-2> Zt-\ and Zt depend on St-s, St-\ and et-3, respectively. 
In this case it follows that 

P (\Zt-2et-2\ < A, \Zt-2et-3\ < A, -Ztet-i > 0, Zt-iet-i > 0) = ^p(l - 2p)2, 

and it means that sequence {r]t} is nonstationary. 

Examples given above show that it is very difficult to look for some general 
condition of stationarity of RCMA time series models. Because of many different 
kinds of known models that are included it is more practical to investigate special 
cases which are needed for some situations. For example the RCMA(p) process {Xt} 
given by equation (1) is stationary if it is a finite time shift invariant transformation 
of white noise, i.e. if At = / A ( £ * - I , • • • ,£t-q), Q < oo, and /A commutes with 
time shift operator. More exactly for j G Z we denote the prj projection to the 
jth coordinate, prj ({et}) = Sj and for k G Z we denote Tk the fc-step forward 
translation. It means that prj (Tk({£t})) = £j-k, for each jyk. Now the following 
lemma holds. 

Lemma 1.3. Let {et} be i.i.d. sequence of random variables and Tk the fc-step 
forward translation. Consider transformation T : RN —• RN such that {Xt} = 
T ({et}). If T commute with the time shift operator, it means T o Tk = Tk o T for 
each k G Z, then the sequence {Xt} is stationary. 

P r o o f . The proof is based on facts that i.i.d. sequence is stationary and it has 
time shift invariant distribution. Employing the commutativity with the transfor­
mation T we get assertion of the lemma. Complete proof can be found e. g. in 
Stepan [6]. • 

We meet a more complicated situation if we consider bilinear RCMA(p) model. 
It is recommended to consult the monograph Granger and Andersen [1] for the sta­
tionarity conditions. Similarly if we deal with the product autoregressive RCMA(p) 
models we refer to McKenzie [4]. 

1.2. Momen t s 

Consider stationary RCMA(p) time series with stationary parameter sequence {At}. 
Assuming existence of the moments bellow we denote 

/4 = Eek
t, a = EAu V(k) = (vij(k)) = Cov(A t, At-k) • 

Additionally we assume fi[ = 0 and n'2 = cr,?, where 0 < a^ < oo. Now we can 
describe the second order moments of the process {Xt} using the second moments of 
sequences {et} and {At}. Clearly E X t - = 0 and it is easy to verify that autocovariance 
function R(k) = EXtXt-k has the truncation property, R(k) = 0, if |fc| > p. For 
|fc| < p we have 

p P 

R(k) = EXtXt-k = (jl^EAt^At-kt-k = °lYl (vM-k(fc) + Q>iQ>i-k). 
i=k i=k 
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Especially, 
11(0) = Var Xt = a2 Tr (V (0)) + aTa. 

It is useful to note that assumption /i^ = 0 is important for the truncation covariance 
property. Counter-example is given in following Example 1.4. 

Example 1.4. Consider stationary RCMA(l) model given by formula 

Xt = St-2Zt + St-2Et-i, 

where Eet = JJL 7- 0. It is easy to calculate that 

R(2) = Cov(Xt,Xt__2) = 2fi2a2 5- 0. 

In accordance with our expectations if the higher order moments exist they are 
more complicated and strongly depend on the sequence {At} and its relationship 
with the white noise sequence {st}. Higher order moments thus can be exploited for 
identification and estimation of RCMA models. 

2. INVERTIBILITY 

The invertibility is usually defined as measurability of each variable et with respect to 
cr-algebra Bt generated by {Xs : s <t}. The invertibility conditions are well known in 
linear MA(p) case. The situation in the RCMA case is more complicated, because in 
a non-linear model the dependence of et on Xtl -Xt__,... is more complicated. Thus 
in this section we deal with RCMA(l) model only instead more general RCMA(p). 

Consider RCMA(l) model given by formula 

Xt = Atioet + AtAet-i. (4) 

Similarly as in the linear MA(1) case we express 

et = -I—Xt--I^et-i. (5) 
Atlo Atio 

Iterating equation (5) we get 

£t = y ; ÍZDÍ ( TT _1____A Xt-j + (-1)" (li %=*A et-r, 
U A*>° \ L \ At-k'° ) \tJoA*-k'<>) 

(6) 

Denote 

and 

R(O)_J_ ) Bm = _At-k+hiB(k-i) f o r f c > 0 ) (7) 
At,o At-k,Q 

d 0 ) = l, dk) = _i4«-fc+-»--c(fc--) forJfc>0. . (8) 
At-fc+1,0 
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Now equation (6) has the form 

n - l 

£t = ^ &t Xt-j + Ct St-n-
i=o 

If all variables Bt are measurable w.r.t. Bt then it is natural to define a sequence 

{<4n)}„°_i ^ 
П - 1 

.w=x;в{лJ-,-J. 
i=o 

(9) 

Our next step is to look for conditions ensuring the convergence et —> St as n —> oo 
for each t G Z . The next lemma contains some sufficient conditions. 

Lemma 2.1. Let {Xt} be an RCMA(l) process defined by equation (4). Let B t , 
Ct\ and et be defined by equations (7), (8) and (9), respectively. Let variable 
B\ ' be measurable with respect to Bt for each t G Z and n G N. Assume that at 
least one of the next conditions holds for each _ G Z : 

(i) 

(ii) there exists p > 0 such that 

,w C W - - - 0 І 

Ct

(n)Г|_t_n >0; 
I J n—>oo 

(iii) P(|£_| < oo) = 1 and there exists a positive sequence Kn / oo such that 

KnC\ (n) P - 0 ; 

(iv) there exists <5 > 0 such that 

P Aiminf {u, : \At.kyl(u)\ < (1 - 6)\At-kto{u>)\}\ = 1; 

(v) P (|_4t,i| < |-4t,o|) = 1 and there exists 5 > 0 such that 

P fl imsupju; : | - 4 t - M M I < (1 - 5)\At-ky0(uj)\} J = 1; 
\ k€N0

 L V 

(vi) {At} is stationary and ergodic process with 

Elogl_4t.il < Elog|_4t,o|; 
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(vii) {At} is stationary and ergodic process and there exists a real constant R > 1 
such that 

P (\AtA\ < R\At,0\) = 1 and P ( R | A U | < | ^ t , 0 | ) > \-

Then the process {Xt} is invertible. 

P r o o f . First assume that condition (i) holds. Since 

- Лn) 
Єt — єt Ot(n)|kt-n| o, 

we have et • et. It follows that there exists subsequence {st }j which con­

verges to et almost surely. Considering the St-measurability of all variables B\3' 

and following /3rmeasurability of et we have proved the fact that et is a. s. limit 

of /^-measurable variables e^ and thus also fit-measurable. 
Now we show that condition (ii) implies condition (i). For a given 6 > 0 it holds 

0 < P ( |O ( n ) | | e t _ n | > *) < 8-P E [|O ( n ) |P |_t_n|»»] — - > 0. 

Further we show that also condition (iii) implies condition (i). For a given 0 < 
5 < 1 denote Sn = 5/Kn. Condition (iii) gives 

p(Kn\c[n) >5) >0 
\ I / n-*oo 

and also 
?{\et-n\>Kn) >0. 

n—>oo 

Thus for m € N there exists ni(m) such that for each n > ni(m) 

p(Kn|c(n)|><s)<<*m. 

Analogically there exists n2(m) such that for each n > n2(m) 

P(\et-n\>Kn)<8m. 

It holds 

P(|-.-n||c t
(n ) |>.) 

= P (|_ t_n | |O ( n ) | > 8, Kn |O ( n ) | > 8) + P ( |£ t-n| |Ot
( 

For n > ni(ra) we obtain 

• » ( » ) >8,Kn Q 
(n) <8] 

(k t -n | |O t
( n ) >8,Kn Ot(n)|>*)<P(-^n|Oín)|>í)<* 
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Additionally 

p ( | _ t _ n | | c ( n ) | > „ , i i : n | c ( n ) | < _ ) 

= P (|_t_n| |O
(n) | > 5, Kn |O(n) | < S, |_t_n| > Kn) 

+ P (|_t_n| |O
(n) | > _, Rn |O(n) | < 6, |_t_n| < Kn) . 

It is clear that 

P ( |_ t _ n | | O ( n ) | > 5, Kn |O ( n ) | < 6, \et-n\ <Kn)=0 

and for n > n2(m) we have 

P ( |_ t_n | |O ( n ) | > 5, Kn \c\n)\ < S, |_ t _ w | > ___) < P ( | e t _ n | > Rn) < _ m . 

Thus for n > max{ni(m),n2(m)} we obtain 

P ( |_ t_ n | C ( n ) > <5) < 25 m > 0. 
\ / m—>oo 

The conditions (iv) and (v) ensure a. s. convergence of C t to zero and so we 
/ \ p 

have e\ —» _:t. Assuming that condition (vi) holds we obtain 

- log 
n 

Єt ~ Єt 
- log |c ( n ) | + ilog|_ t_n | 

1 n 1 " 1 
= 7, __ľІ0Є \At-k+i,i\ - - J2ІQS Иt-fc+i,ol + ~ Ьg |є t_ n | 

n fe=i n fe=i n 

- ^ E l o g | A t ) 1 | - E l o g | A t ) 0 | < 0 . 

Thus єt -є 
(n) a .s. 

0. 

In the last step of the proof we show that condition (vii) implies condition (vi). 

Denote p = P (i_|_4tf_| < |_4„fo|). A direct calculation gives 

Elog |A t ) i | - Elog|A t ) 0 | = Elog A i 
Atfi 

<-p\ogR + {\-p)\ogR<0. D 

In the RCMA(l) case it is difficult to find some general necessary and sufficient 
condition for invertibility. In the next section we give some special examples of 
invertible RCMA(l) processes. 
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2.1. Examples 

Simple bilinear R C M A ( l ) model 

Consider a simple bilinear model 

Xt=et + (a + 9Xt-2)et-u (10) 

where et's have zero mean and variance a2 and a, 9 are real valued parameters. It is 
well known (e. g. Granger and Andersen [1]) that the model is stationary iff 62a2 < 1. 
Using formula (6) we obtain 

n—1 j n 
£t = ^(-lyXt-j [J(<* + OXt-x-k) + (-l)net-n ]\(a + 0Xt-x-k). 

j=0 fc=l k=0 

It follows that 
n 

Cln) = (-l)n]J(a + 9Xt-x-k). 
fc=0 

Assuming {Xt} is stationary and ergodic sequence the Lemma 2.1 (vi) gives a suffi­
cient condition for the model invertibility as Elog |a + 0.Kt| < 0. It is very difficult to 
verify this condition as the distribution of Xt is not known. Using Jensen's inequality 

Elog|a + 0 X t |
2 < l o g E | a + 0X,|2 

we obtain weaker sufficient invertibility condition E(a+0Xt)
2 < 1. Calculating expec­

tation in equation (10) we have EXt = 0. Squaring (10) and calculating expectation 
we obtain 

2 aUl + a2) 
t A t " l - f l V f j 

Thus 
1 - a 2 

г< 
2a2 

is a sufficient condition for invertibility. 

The R C M A ( l ) model w i th uniformly d is tr ibuted p a r a m e t e r 

Consider the RCMA(l) model given by formula 

Xt = et + (a + 0Yt-2)et-u (11) 

where a, and 0 > 0 are real valued parameters, {Yt} is stationary and ergodic 
sequence and each variable Yt is Bt-measmab\e with the uniform distribution on the 
interval (—1,1). 

Using notation introduced above we have At$ = 1 and Atii = a+0Yt-2- To verify 
condition (vi) of Lemma 2.1 we calculate Elog|i4 t,i|. Using the fact that At^\ has 
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the uniform distribution on the interval (a — 0, a + 9) we obtain 
j ra+6 

Elog\AtA\ = — J log|x|dx 

= ^[(a + 9)log\a + 9\-(a-9)log\a-9\-29\. (12) 

It follows from Lemma 2.1 that model (11) is invertible if Elog \Ati\\ < 0. We can also 
compare this result with the result which follows from condition (vii) of Lemma 2.1. 
The constant R must be greater or equal to \a\ + 9. If R = \a\ + 9, then 

P( |AU | < R-1) > -
í R-1 > \a\ if9> 

\ 2R~1>9 ií9< 

2 m i n { | a - 0 | , | a + 0|}, 

2 m i n { | a - 0 | , | a + 0|}. 
(13) 

Fig. 1. Parameter regions ensuring invertibility of model (11). The bright-gray region is 
based on formula (12) and represents pairs (a,6) that give negative value of Elog |-4t,i|. 

The dark-gray region represents pairs (a, 6) that satisfy condition (13). 

Especially if a = 0 substituting to equation (12) we get 

Elog |i4 t |1 | = log9 - 1 , 

and thus the model is invertible if 9 < e. Substituting a = 0 to formula (13) we see 

that the constant R must be greater or equal to 9 and R"1 must be greater than 

9/2. It follows that 

and thus the model is invertible if 9 < y/2. The regions of invertibility of the 
model (11) are illustrated in Figure 1. 
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The R C M A ( l ) model with Gaussian distribution of parameter 

Consider RCMA(l) model given by formula (11) where Yt ~ N(0,1). In this case we 
have Atii ~ N(a,02) and 

Elog | A U | = / _ ~ - ^ e x p { - ^ } log |x| dx. 

Using substitution x = 9y + a we obtain 

E log \At%11 = J^ -j= exp I - V— I log 16y + a\ dy 

= log0 + ^ - ^ e x p | - | - | l o g | y + ^ | d y . (14) 

The region of invertibility of the model (11) with Yt ~ N(0,1) is illustrated in 
Figure 2. 

Fig. 2. Parameter region ensuring invertibility of model (11) with Yt ~ N(0,1). The gray 
region is based on formula (14) and represents pairs (a,0) that give negative value of 

Elog|.4t,i|. 

Simple non-linear moving average RCMA(l ) model 

Consider non-linear moving average model 

Xt = (a + 0et-i)et + aet-i, • (15) 
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where a ^ 0, a ^ 0, and 0 > 0 are real valued parameters. This model has 
been mentioned by Tong [8] and Robinson [5]. The invertibility of model (15) is 
investigated in Marek [3]. Additionally we assume that the \et\ < 1 almost surely. 
Using (15) we get formula 

Xt -aet-i 
€t= a + Oet-i' ( 1 6 ) 

Thus for each t we construct sequence {et }£_o> s u c n that et = 0, and for n > 1 

Y ,«.(«-1) 
(n) _ A t - Q g f . . 

a + fefe" • 

Each variable st is measurable w.r.t. £>t. Thus provided et > et the model (15) 
is invertible. Denote d\ ' (n) 

4 ' - єt 

a ľ » -

Using formula (16) we obtain 

laa + eXtld^ 

|a + 0e t - i | la + OelT^ 

Using formula (15) we express 

(n-l) 
din) = | a + fetlCT (17) 

Iterating (17) we obtain 

Лn) 
n - 1 

kt-nl П 
| a + öєt-fc| 

— — I i _ (n—k—1) 

k=0 p + ^ t .- f c _i 

If inequality \a + 0£t-k\ < a + 0e[_k_1 ' holds then the {dt '} sequence decreases. 

We get 

a + ^ " 7 1 } > |a.| — o . ( n - 1 ) 
H-l — Єt-1 +Єt-1 > \a\ - 20 

and 
\a + Oet\<\a\ + 0\et\<\a\ + 0. 

Thus using more restrictive inequality 

| a | - 2 0 > \a\+6 

we obtain a sufficient invertibility condition in the form 

H < | a | and B< | a | ~ | a | . (18) 
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Note tha t condition (18) also ensures tha t the singular point of transformation (16) 
is outside of the interval (—1,1). 

Granger and Andersen [2] give the example of similar fashioned non-linear moving 
average model given by equation 

Xt = et + 0et-2£t-i-

The authors suggest tha t this model is never invertible with respect to value of 
parameter 6^0. 

3. CONCLUSIONS 

We proposed the RCMA model as a special non-linear generalization of linear moving 
average process with similar autocovariance structure. This class of models includes 
many well known time series models as well as models which have not been investi­
gated yet. In linear moving average case the invertibility condition is used to select 
one of many alternative models which have the same autocovariances. The invert­
ibility condition can play the similar role also in RCMA models case. However, the 
importance of the invertibility is also tha t a non-invertible models cannot be used 
to forecast because of it is often necessary to estimate white noise terms using the 
finite number of observations Xt and some initial constants only. Generally, to find 
an invertibility condition of RCMA( l ) model is very difficult. While some RCMA 
models (e. g. ARCH) are always invertible or always non-invertible (e. g. see Granger 
and Andersen [2]) and while there had been found sufficient invertibility condition in 
some special cases like bilinear models, many unexplored time series models remain. 
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