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THE LEAST TRIMMED SQUARES
Part III: Asymptotic Normality

Jan Ámos V́ı̌sek

Asymptotic normality of the least trimmed squares estimator is proved under general con-
ditions. At the end of paper a discussion of applicability of the estimator (including the
discussion of algorithm for its evaluation) is offered.

Keywords: robust regression, the least trimmed squares,
√

n-consistency, asymptotic nor-
mality

AMS Subject Classification: 62J05, 62F35, 62F12

INTRODUCTION AND NOTATION

The paper is a continuation of the paper of the same name, Part I and II. That is why
only brief introduction of notations will be given. For discussion of the definitions
and assumptions see Part I. Conclusions of the results of all three parts of paper are
given at the end of this part.

Let N denote the set of all positive integers, R the real line and Rp the p-
dimensional Euclidean space. Moreover, for any set A let Ao denote the interior of
the set (in the topology implied by Euclidean metric). We shall consider for any
n ∈ N the linear regression model

Yi = xT
i β0 + ei, i = 1, 2, . . . , n (1)

where Yi and xi = (xi1, xi2, . . . , xip)T are values of response and of explanatory
variables for the ith case, respectively. β0 is the vector of regression coefficients and
ei represents random fluctuation (disturbance) of Yi from the mean value EYi. (To
be complete, let us add that of course xT

i β0 =
∑p

j=1 xijβj .)

Throughout the paper we shall assume that the random variables are defined on
a basic probability space (Ω,A, P ) (other assumptions are given below).

Let us recall that we made (in Part I) one exception from the commonly used
notation. Since in what follows we shall use for the description of sets somewhat
complicated expressions containing moreover indices, we shall write (in many cases)
I {property describing the set A} instead of traditional notation I{property describing

the set A}.
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In what follows the definition of the least trimmed squares will be considered in
the form:

Definition 1. For a compact set K such that the vector of the true regression
coefficients β0 ∈ Ko the estimator given as

β̂(LTS,n,h) = argmin
β∈K

h∑

i=1

r2
(i)(β) (2)

will be called the least trimmed squares (LTS).

It is clear that for given i the squared residual appears in the sum on the right
hand side of (2) iff r2

i (β) ≤ r2
(h)(β), so that we can write equivalently

β̂(LTS,n,h) = argmin
β∈K

n∑

i=1

r2
i (β) · I

{
r2
i (β) ≤ r2

(h)(β)
}

= argmin
β∈K

n∑

i=1

(Yi − xT
i β)2 · I

{
r2
i (β) ≤ r2

(h)(β)
}

. (3)

Now, denote G(z) the distribution function of e2
1. For any α ∈ (0, 1), u2

α will be the
upper α-quantile of G(z), i. e.

P (e2
1 > u2

α) = 1−G(u2
α) = α. (4)

Further, denote by [a]int the integer part of a and for any n ∈ N put

hn = [(1− α)n]int. (5)

Moreover, for any a, b ∈ R we shall denote (a, b)ord = (min{a, b},max{a, b}) and the
same will be used for the closed intervals. Finally, put Qn = 1

n

∑n
i=1 xix

T
i and for

an arbitrary α ∈ (0, 1) Qn(α) = 1
n

∑n
i=1 xix

T
i I

{
r2
i (β0) ≤ u2

α

}
.

Prior to continuing the discussion on the least trimmed squares it is useful to give
the assumptions which will be used in the most assertions.

Assumptions A
The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Further, the sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically
distributed random variables. The distribution function F (z) of random fluctuation
e1 is symmetric and absolutely continuous with a bounded density f(z) which is
strictly decreasing on R+. The density is positive on (−∞,∞) and has bounded in
absolute value the first and the second derivative. The second derivative is further
Lipschitz of the first order. Moreover,

n∑

i=1

‖xi‖4 = O(n) and Ee4
1 = κ4 ∈ (0,∞). (6)
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Finally,

lim
n→∞

Qn = Q (7)

where Q is a regular matrix (and convergence is of course assumed coordinatewise).

Alternatively, we shall use the following assumptions (the reasons for it were given
in Part I).

Assumptions B
The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Moreover, (7) holds for some regular matrix Q. Further for any n ∈ N

max
1≤i≤n, 1≤j≤p

|xij | = O(1). (8)

The sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically distributed
random variables with absolutely continuous symmetric distribution function F (z).
There is a neighbourhood of uα in which the distribution F (z) has a bounded density
f(z) which is positive and has bounded in absolute value the first and the second
derivative. The second derivative is further Lipschitz of the first order. Moreover,
the density f(z) is strictly decreasing on R+ and Ee4

1 = κ4 ∈ (0,∞).
We have proved (in Part I) that

β̃(LTS,n,h) = argmin
β∈Rp

h∑

i=1

r2
(i)(β) (9)

can be found among solutions of
n∑

i=1

[
(Yi − xT

i β)xi · I
{

r2
i (β) ≤ r2

(h)(β)
}]

= 0, (10)

i. e. that at the point given as the solution of the extremal problem (9) the relation
(10) holds. Notice please that whenever we prove that the estimator given by (2) is
consistent (i. e. exists and converges in probability to β0), it also solves (10).

Assumptions C
There are distribution functions H(β)(t), t ∈ R, β ∈ Rp such that for any compact
set W ⊂ Rp

sup
β∈W

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{
xT

i (β − β0) ≤ t
}
−H(β)(t)

∣∣∣∣∣ = O(n−
1
2 ). (11)

Remark 1. Recently it was found that when Xi’s are i.i.d. the first supremum in
(11) can be taken over Rp, see Vı́̌sek [31].

In what follows let #B denotes the number of elements of B.
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ASYMPTOTIC NORMALITY
OF THE LEAST TRIMMED SQUARES

Lemma 1. Let {ei}∞i=1 (ei ∈ R) be a sequence of independent and identically dis-
tributed random variables with symmetric absolutely continuous distribution func-
tion F (z). Moreover, let density f(z) be absolutely continuous and let it have
everywhere the derivative bounded in absolute value. Further, let for any M > 0

TM =
{
v ∈ R+, t ∈ Rp, ‖t‖ < M

}
.

Now for any n ∈ N , any v > 0, τ ∈ ( 1
2 , 3

2 ), positive and finite K define Un(v,K, τ)
so that

P (e2
1 ∈ (v, Un(v,K, τ)) = min

{
n−τK, 1− F (v)

}
. (12)

Now, for any v, t ∈ TM , τ ∈ ( 1
2 , 3

4 ), positive and finite K define

m
(+)
n,U (v, t) = #

{
i∈{1, 2, . . . , n} : ri(β0)>v and ri(β0−n−

1
2 t)≤Un(v,K, τ)

}
,

(13)

m
(−)
n,U (v, t) = #

{
i∈{1, 2, . . . , n} : r2

i (β0)≤v2 and ri(β0−n−
1
2 t)≥Un(v,K, τ)

}
,

(14)

m
(+)
n,L(v, t) = #

{
i∈{1, 2, . . . , n} : ri(β0)<−v and r2

i (β0−n−
1
2 t)≤U2

n(v,K, τ)
}

(15)
and

m
(−)
n,L(v, t) = #

{
i∈{1, 2, . . . , n} : r2

i (β0)≤v2 and ri(β0−n−
1
2 t)<−Un(v,K, τ)

}
.

(16)
Finally, let us put

mn(v, t) = m
(+)
n,U (v, t) + m

(+)
n,L(v, t)−m

(−)
n,U (v, t)−m

(−)
n,L(v, t).

Then for any ε ∈ (0, 1) there is nε ∈ N such that for all n > nε

P

({
ω ∈ Ω : inf

v,t∈TM

mn(v, t) ≥ 0
})

> 1− ε. (17)

Remark 2. Let us denote

B =
{
v ∈ R, min

{
n−τK, 1− F (v)

}
= 1− F (v)

}

Of course, if v ∈ B, then Un(v,K, τ) = ∞. Consequently, any index i for which
r2
i (β0) > v2 appears either in m

(+)
n,U (v, t) or in m

(+)
n,L(v, t). Simultaneously, neither

ri(β0 − n−
1
2 t) ≥ Un(v,K, τ) nor ri(β0 − n−

1
2 t) ≤ −Un(v,K, τ) can be true for

any i, so that m
(−)
n,U (v, t) = 0 as well as m

(−)
n,L(v, t) = 0. It finally means that

P (infv,t∈TM∩B mn(v, t) ≥ 0) = 1 whenever Un(v,K, τ) = ∞. In other words, in the
proof which follows, not restricting generality we may assume that Un(v,K, τ) < ∞.
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P r o o f o f L emma 1. Let us recall that ri(β0) = ei and ri(β0 − n−
1
2 t) =

Yi − xT
i

(
β0 − n−

1
2 t

)
= ei + n−

1
2 xT

i t and hence

{
ri(β0)>v and ri(β0 − n−

1
2 t)≤Un(v,K, τ)

}
⇔

{
v<ei≤Un(v,K, τ)−n−

1
2 xT

i t
}

.

So putting
b
(+)
i (v, t) = I

{
v < ei ≤ Un(v,K, τ)− n−

1
2 xT

i t
}

, (18)

we have

m
(+)
n,U (v, t) =

n∑

i=1

b
(+)
i (v, t). (19)

Similarly
{

r2
i (β0) ≤ v2 and ri(β0 − n−

1
2 t) > Un(v,K, τ)

}

⇒
{

max
{
−v, Un(v,K, τ)− n−

1
2 xT

i t
}

< ei ≤ v
}

.

So putting analogously as in previous

b
(−)
i (v, t) = I

{
Un(v,K, τ)− n−

1
2 xT

i t < ei ≤ v
}

, (20)

we have

m
(−)
n,U (v, t) ≤

n∑

i=1

b
(−)
i (v, t). (21)

Finally, putting

c
(+)
i (v, t) = I

{
−Un(v,K, τ)− n−

1
2 xT

i t ≤ ei < −v
}

(22)

and
c
(−)
i (v, t) = I

{
−v ≤ ei < −Un(v,K, τ)− n−

1
2 xT

i t
}

, (23)

we have

mn(v, t) ≥
n∑

i=1

[
b
(+)
i (v, t)− b

(−)
i (v, t) + c

(+)
i (v, t)− c

(−)
i (v, t)

]
.

Firstly, previous to continuing, let us realize when b
(+)
i (v, t), b

(−)
i (v, t), c

(+)
i (v, t) or

c
(−)
i (v, t) have chance to be equal to one. Since

b
(+)
i (v, t) = 1 ⇔ ei ∈

(
v, Un(v,K, τ)− n−

1
2 xT

i t
]
,

b
(+)
i (v, t) can be equal to one only if v < Un(v,K, τ)−n−

1
2 xT

i t. Let us denote the case
when it holds by B

(+)
n,i . Similarly, let us denote successively by B

(−)
n,i , C

(+)
n,i and C

(−)
n,i

the situations when Un(v,K, τ) − n−
1
2 xT

i t < v, −Un(v,K, τ) − n−
1
2 xT

i t < −v and
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−v < −Un(v,K, τ)−n−
1
2 xT

i t. In other words, B
(+)
n,i , B

(−)
n,i , C

(+)
n,i and C

(−)
n,i denotes the

cases when n−
1
2 xT

i t < Un(v,K, τ)− v, Un(v,K, τ)− v < n−
1
2 xT

i t, v −Un(v,K, τ) <

n−
1
2 xT

i t and n−
1
2 xT

i t < v − Un(v,K, τ). It implies that if

v − Un(v,K, τ) < n−
1
2 xT

i t < Un(v,K, τ)− v ⇒ b
(−)
i (v, t) = 0 and c

(−)
i (v, t) = 0,

but b
(+)
i (v, t) and c

(+)
i (v, t) can be equal to one. It implies that only for B

(+)
n,i ∩C

(−)
n,i =

C
(−)
n,i both b

(+)
i (v, t) and c

(−)
i (v, t) can be positive. Similarly only for B

(−)
n,i ∩C

(+)
n,i =

B
(−)
n,i both b

(−)
i (v, t) and c

(+)
i (v, t) can be positive. So, we found that

mn(v, t) ≥
n∑

i=1

(
I
C

(−)
n,i

+ I
B

(−)
n,i

) [
b
(+)
i (v, t)− b

(−)
i (v, t) + c

(+)
i (v, t)− c

(−)
i (v, t)

]
(24)

(notice again that only one of the indicators I
C

(−)
n,i

and I
B

(−)
n,i

can be nonzero). So, if

we prove an analogy of (17) taking into account instead of mn(v, t) the right hand side
of (24), (17) will be verified. Hence let us denote the set of indices for which either
n−

1
2 xT

i t < v − Un(v,K, τ) or n−
1
2 xT

i t > Un(v,K, τ)− v by I and restrict ourselves
only on them in what follows. As v − Un(v,K, τ) < 0 and Un(v,K, τ) − v > 0, we
can, e. g. when considering integral in (27), simplify the discussion assuming that

n−
1
2 xT

i t < 0. (25)

Denoting successively

ξ
(+)
i (v, t) = b

(+)
i (v, t)− Eb

(+)
i (v, t),

ξ
(−)
i (v, t) = b

(−)
i (v, t)− Eb

(−)
i (v, t),

ζ
(+)
i (v, t) = c

(+)
i (v, t)− Ec

(+)
i (v, t)

and
ζ
(−)
i (v, t) = c

(−)
i (v, t)− Ec

(−)
i (v, t),

we have

inf
v,t∈TM

mn(v, t) ≥ inf
v,t∈TM

∑

i∈I
ξ
(+)
i (v, t)− sup

v,t∈TM

∑

i∈I
ξ
(−)
i (v, t)

+ inf
v,t∈TM

∑

i∈I
ζ
(+)
i (v, t)− sup

v,t∈TM

∑

i∈I
ζ
(−)
i (v, t)

+ inf
v,t∈TM

∑

i∈I
E

(
b
(+)
i (v, t)− b

(−)
i (v, t)+c

(+)
i (v, t)−c

(−)
i (v, t)

)
. (26)

Denoting
πi,n(v, t) = Eb

(+)
i (v, t),

we have
P

{
ξ
(+)
i (v, t) = 1− πi,n(v, t)

}
= πi,n(v, t)
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and
P

{
ξ
(+)
i (v, t) = −πi,n(v, t)

}
= 1− πi,n(v, t).

Now, we are going to employ Lemma A.1 and principle of invariance (see [3] Theo-
rem 13.12). Let us recall that due to the definition of ξ

(+)
i (v, t)’s, they are indepen-

dent. Similarly as in Part I of this paper let us denote by W (s) the Wiener process
and let us define τ

(+)
i (v, t) to be the time for the Wiener process to exit interval

(−πi,n(v, t), 1− πi,n(v, t)). Then ξ
(+)
i (v, t) =D W (τ (+)

i (v, t)) and hence

n−
1
4

∑

i∈I
ξ
(+)
i (v, t) =D n−

1
4

∑

i∈I
W (τ (+)

i (v, t)) =D W

(
n−

1
2

∑

i∈I
τ

(+)
i (v, t)

)
.

Now we need to estimate Eb
(+)
i (v, t). Having denoted the upper and the lower bounds

of the derivative f ′(z) by Uf ′ and Lf ′ , respectively, taking into account the remark
above (25) and expanding the density as

f(v) = f(y) + f ′(ηi)(v − y)

for an appropriate ηi ∈ (y, v)ord, we have (for i ∈ I), we have

Eb
(+)
i (v, t) = πi,n(v, t) (27)

= P
(
v < ei ≤ Un(v,K, τ)− n−

1
2 xT

i t
)
≤ I

n−
1
2 xT

i t<0

ff
∫ Un(v,K,τ)−n−

1
2 xT

i t

v

f(z)dz

= I{
n−

1
2 xT

i t<0

}
∫ Un(v,K,τ)

v

f(z)dz + I
n−

1
2 xT

i t<0

ff
∫ Un(v,K,τ)−n−

1
2 xT

i t

Un(v,K,τ)

f(z)dz

≤ I
n−

1
2 xT

i t<0

ff
[
n−τ ·K − n−

1
2 xT

i tf(v)
]

+ Uf ′

{
1
2
n−1

[
xT

i t
]2

+ n−2τK

}

and also

πi,n(v, t) ≥ I
n−

1
2 xT

i t<v−Un(v,K,τ)

ff
[
n−τ ·K − n−

1
2 xT

i tf(v)
]

+Lf ′

{
1
2
n−1

[
xT

i t
]2

+ n−2τK

}
.

It gives

πi,n(v, t) = I
n−

1
2 xT

i t<v−Un(v,K,τ)

ff
[
n−τ ·K − n−

1
2 xT

i tf(v)
]

+ Ri(v, t) (28)

where, due to the fact that v, t ∈ TM , there is K(1) < ∞ so that

sup
u,t∈TM

|Ri(v, t)| < K(1)
[
n−1 + 2n−2τK

]
· ‖xi‖2. (29)



210 J. Á. VÍŠEK

So, denoting the upper bound of the density f(z) by Uf , we have

sup
u,t∈TM

πi,n(v, t) ≤ n−
1
2 p

1
2 Uf‖xi‖M + n−τK(2) + n−1‖xi‖2K(3)

where K(2) and K(3) are positive finite constants. Now, let Vi be the time for the
Wiener process to exit the interval (−n−

1
2 p

1
2 Uf‖xi‖M+n−τK(2)+n−1‖xi‖2K(3), 1).

Then
1√
n

∑

i∈I
τ

(+)
i (v, t) ≤ 1√

n

∑

i∈I
Vi

and hence – by invariance principle (see [3], the proof of Proposition 13.15)

n−
1
4 sup

u,t∈TM

∣∣∣∣∣
∑

i∈I
ξ
(+)
i (v, t)

∣∣∣∣∣ =D sup
u,t∈TM

∣∣∣∣∣W
(

1√
n

∑

i∈I
τ

(+)
i (v, t)

)∣∣∣∣∣

≤ sup

{
|W (s)| : 0 ≤ s ≤ 1√

n

∑

i∈I
Vi

}
. (30)

Moreover, employing Lemma A.1 once again we arrive at

E

{
1√
n

∑

i∈I
Vi

}
≤

(
n−1p

1
2 UfM + n−

3
2 K(3)

) ∑

i∈I

[
‖xi‖+ ‖xi‖2

]
+ K(4) = O(1)

(where K(4) was selected so that n1− 1
2−τK(2) < K(4); remember that τ ∈

(
1
2 , 3

4

)
).

Let us fix an ε > 0. As all Vi’s are nonnegative

P

(
1√
n

∑

i∈I
Vi > L

)
<

1
L

E

{
1√
n

∑

i∈I
Vi

}

and hence there is a constant K(5) such that for all n ∈ N we have

P

(
1√
n

∑

i∈I
Vi > K(5)

)
< ε. (31)

Now, from the character of the Wiener process it follows that there is a constant
K(6) such that

P
(
sup

{
|W (s)| : 0 ≤ s ≤ K(5)

}
> K(6)

)
≤ ε. (32)

Finally, utilizing (30), (31) and (32), we obtain

P

(
n−

1
4 sup

u,t∈TM

∣∣∣∣∣
∑

i∈I
ξ
(+)
i (v, t)

∣∣∣∣∣ > K(6)

)
< 2ε. (33)
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Along similar lines we can show that, for an appropriate K(7)

P

(
n−

1
4 sup

u,t∈TM

∣∣∣∣∣
∑

i∈I
ξ
(−)
i (v, t)

∣∣∣∣∣ > K(7)

)
< 2ε (34)

etc. for
∑

i∈I ζ
(+)
i (v, t) and

∑
i∈I ζ

(−)
i (v, t). In other words, the first four terms on

the right hand side of (26) are Op(n
1
4 ). On the other hand, we can derive similarly

as in (28) and (29) that there is a positive and finite constant K(8) such that

Eb
(+)
i (v, t) · I

B
(+)
n,i ∩C

(−)
n,i

=
[
n−τ ·K − n−

1
2 xT

i tf(v)
]
· I

B
(+)
n,i ∩C

(−)
n,i

+ Ri,b(+)(v, t), (35)

Eb
(−)
i (v, t) · I

B
(−)
n,i ∩C

(+)
n,i

=
[
−n−τ ·K − n−

1
2 xT

i tf(v)
]
· I

B
(−)
n,i ∩C

(+)
n,i

+ Ri,b(−)(v, t), (36)

Ec
(+)
i (v, t) · I

B
(−)
n,i ∩C

(+)
n,i

=
[
n−τ ·K − n−

1
2 xT

i tf(v)
]
· I

B
(−)
n,i ∩C

(+)
n,i

+ Ri,c(+)(v, t) (37)

and

Ec
(−)
i (v, t) · I

B
(+)
n,i ∩C

(−)
n,i

=
[
−n−τ ·K − n−

1
2 xT

i tf(v)
]
· I

B
(+)
n,i ∩C

(−)
n,i

+Ri,c(−)(v, t) (38)

with

sup
u,t∈TM

[
|Ri,b(+)(v, t)|+ |Ri,b(−)(v, t)|+ |Ri,c(+)(v, t)|+ |Ri,c(−)(v, t)|

]

< n−1K(8)
[
‖xi‖+ ‖xi‖2

]
. (39)

Now utilizing (26), the fact that the first four terms on the right hand side of (26)
are Op(n

1
4 ), (35) – (39) and (6), we can find K(9), K(10) ∈ (0,∞) and nε ∈ N , so

that for all n > nε

P

(
inf

u,t∈TM

mn(v, t) ≥ −n
1
4 ·K(9) + n1−τ ·K(10) +O(1)

)
> 1− 8ε. (40)

Since 1 − τ > 1
4 , the expression −n

1
4 ·K(9) + n1−τ ·K(10) + O(1) converges to ∞.

That concludes the proof. ¤

Corollary 1. Let the assumptions of Lemma 1 hold and 1 ≤ ` ≤ n. Then for
any ε > 0, any τ ∈ ( 1

2 , 3
4 ) and K ∈ (0,∞) there is an nε,K,τ ∈ N so that for any

n > nε,K,τ there a set is Bn ⊂ Ω such that P (Bn) > 1− ε and

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn

)
≤ n−τK. (41)

P r o o f . According to Lemma 1 we can for any positive ε, any τ ∈ ( 1
2 , 3

4 ) and any
positive and finite K find nε so that for any n > nε

Bn =
{

ω ∈ Ω : inf
v,t∈TM

mn(v, t) ≥ 0
}
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is such that P (Bn) > 1− ε and

sup
v∈R

P (e2
1 ∈ (v, Un(v,K, τ)) ≤ n−τK.

Now we may write

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn

)

= P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩ {
{

e2
1 = r2

(`)(β
0)

})

+P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 6= r2

(`)(β
0)

})
.

Assertion 1 of Part II then implies that

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 = r2

(`)(β
0)

})
≤ 1

n
.

For any v ∈ R+ let us denote by C(v) =
{

r2
(`)(β

0) = v
}

. Then

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 6= r2

(`)(β
0)

})

= EC(v)

{
P

(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 6= r2

(`)(β
0)

}
| C(v)

)}

= EC(v)

{
P

(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 6= r2

(`)(β
0)

}
| r2

(`)(β
0) = v

)}
.

Considerations similar to those we made in the proof of Lemma 2 of Part II hint that
e1 is on the set {e2

1 6= r2
(`)(β

0)} independent from r2
(`)(β

0) (an alternative way how
to see it is to consider the ` − 1th order statistic among e2

2, e
2
3, . . . , e

2
n for the case

when e2
1 < r2

(`)(β
0) and the `th order statistic among e2

2, e
2
3, . . . , e

2
n for the case when

e2
1 > r2

(`)(β
0)). Now, let us realize once again that mn(v, t) represents the lower

bound for the difference between the number of squared residuals r2
i (β0 − n−1

2 t)’s
which are smaller than Un(v,K, τ) and number of squared residuals r2

i (β0)’s which
are smaller than v. Since we assume that r2

(`)(β
0) = v (i. e. number of squared

residuals r2
i (β0)’s which are smaller than v is equal to `), (17) implies that

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e2
1 6= r2

(`)(β
0)

}
| r2

(`)(β
0) = v

)

≤ P (e2
1 ∈ (v, Un(v,K, τ)) ≤ n−τK.

Taking the mean value over C(v) we arrive at

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn ∩
{

e1 6= r2
(`)(β

0)
})

≤ n−τK

and the proof follows. ¤
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Remark 3. Notice that the upper bound given in the previous corollary does not
depend on `. So we can claim that even

sup
`=1,2,...,n

P
(
e2
1 ∈

(
r2
(`)(β

0), r2
(`)(β

0 − n−
1
2 t)

)
ord

∩Bn

)
≤ n−τK

but we shall not need it.

Lemma 2. Let {ei}∞i=1 (ei ∈ R) be a sequence of independent and identically dis-
tributed random variables with symmetric absolutely continuous distribution func-
tion F (z). Moreover, let density f(z) be absolutely continuous and bounded. Let
α ∈

[
0, 1

2

]
and u2

α be the corresponding upper quantile of the distribution G(z).
Further, let for any M > 0

TM =
{

u, v, τ ∈ R, t ∈ Rp, |u| < M, |v| < M, τ ∈
(

1
2
,
3
4

)
, ‖t‖ < M

}
.

Now, for any u, v, τ, t ∈ TM , define

S(u, v, τ, t) =
1√
n

n∑

i=1

{
xi ·

[ ∣∣∣∣I
{

r2
i (β0 − n−

1
2 t) ≤

(
uα + n−

1
2 u + n−τv

)2
}

−I

{
r2
i (β0) ≤

(
uα + n−

1
2 u

)2
}∣∣∣∣

−E

∣∣∣∣I
{

r2
i (β0 − n−

1
2 t) ≤

(
uα + n−

1
2 u + n−τv

)2
}

−I

{
r2
i (β0) ≤

(
uα + n−

1
2 u

)2
}∣∣∣∣

]}
. (42)

Then
sup

u,v,τ,t∈TM

‖S(u, v, t, τ)‖ = op(1). (43)

P r o o f . Recalling that ri(β0 − n−
1
2 t) = ei + n−

1
2 xT

i t, we can verify that

ζin(u, v, τ, t) =
∣∣∣I

{
r2
i (β0 − n−

1
2 t) ≤ (uα + n−

1
2 u + n−τv)2

}

−I
{

r2
i (β0) ≤ (uα + n−

1
2 u)2

}∣∣∣ = 1

if either −uα − n−
1
2 u− n−τv − n−

1
2 xT

i t ≤ ei < −uα − n−
1
2 u

or
uα + n−

1
2 u < ei ≤ uα + n−

1
2 u + n−τv + n−

1
2 xT

i t

or −uα − n−
1
2 u ≤ ei < −uα − n−

1
2 u− n−τv − n−

1
2 xT

i t

or
uα + n−

1
2 u + n−τv + n−

1
2 xT

i t < ei≤uα + n−
1
2 u.



214 J. Á. VÍŠEK

So, denoting

P
(∣∣∣I

{
r2
i (β0 − n−

1
2 t) ≤ uα + n−

1
2 u + n−τv

}

−I
{

r2
i (β0) ≤ uα + n−

1
2 u

}∣∣∣ = 1
)

= πin(u, v, τ, t)

and by Uf = supz∈R f(z), we find that

πin(u, v, τ, t) ≤
(
n−τ + n−

1
2 ‖xi‖

)
UfM

and hence

sup
u,v,τ,t∈TM

πin(u, v, τ, t) ≤
(
n−τ + n−

1
2 ‖xi‖

)
UfM < n−

1
2 (1 + ‖xi‖) UfM. (44)

We have of course
Eζin(u, v, τ, t) = πin(u, v, τ, t).

Let us fix j0 ∈ {1, 2, . . . , p} and put

ξin(u, v, τ, t) = |xij0 | (ζin(u, v, τ, t)− Eζin(u, v, τ, t))

and consider

n−
1
4

n∑

i=1

ξin(u, v, τ, t).

We observe that ξin(u, v, τ, t) attains value |xij0 | (1 − πin(u, v, τ, t)) with probabil-
ity πin(u, v, τ, t) and value − |xij0 |πin(u, v, τ, t) with probability 1 − πin(u, v, τ, t).
Similarly as in previous let us denote by {Wi(s)}∞i=1 the sequence of Wiener process
and let us define τin(u, v, τ, t) to be the time for the Wiener process to exit interval
(− |xij0 |πi,n(u, v, τ, t), |xij0 | (1− πin(u, v, τ, t))). Then
ξin(u, v, τ, t) =D Wi(τin(u, v, τ, t)(u, t)). Moreover,

n−
1
4

n∑

i=1

ξin(u, v, τ, t) =D n−
1
4

n∑

i=1

Wi(τin(u, v, τ, t)(u, t))

=D Wn

(
n−

1
2

n∑

i=1

τin(u, v, τ, t)(u, t)

)
.

Employing (44), let us define Vi be the time for the Wiener process Wito exit the
interval

(−n−
1
2 |xij0 | (1 + ‖xi‖)UfM, |xij0 |).

Then
1√
n

n∑

i=1

τin(u, v, τ, t)(u, t) ≤ 1√
n

n∑

i=1

Vi

and hence (using invariance principle – see also [3] the proof of Proposition 13.15)

n−
1
4 sup

u,v,τ,t∈TM

∣∣∣∣∣
n∑

i=1

ξin(u, v, τ, t)

∣∣∣∣∣ =D sup
u,v,τ,t∈TM

∣∣∣∣∣Wn

(
1√
n

∑

i=1

nτin(u, v, τ, t)(u, t)

)∣∣∣∣∣
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≤ sup

{
|W (s)| : 0 ≤ s ≤ 1√

n

n∑

i=1

Vi

}
. (45)

Moreover, employing Lemma A.1 once again we arrive at

E

{
1√
n

n∑

i=1

Vi

}
≤ n−1

n∑

i=1

x2
ij0 (1 + ‖xi‖) UfM = O(1).

Let us fix an ε > 0. As all Vi’s are nonnegative

P

(
1√
n

n∑

i=1

Vi > L

)
<

1
L

E

{
1√
n

n∑

i=1

Vi

}

and hence there is a constant K(5) such that for all n ∈ N we have

P

(
1√
n

n∑

i=1

Vi > K(1)

)
< ε. (46)

Now, from the character of the Wiener process it follows that there is a constant
K(2) < ∞ such that

P
(
sup

{
|W (s)| : 0 ≤ s ≤ K(1)

}
> K(2)

)
≤ ε. (47)

Finally, utilizing (45), (46) and (47), we obtain

P

(
n−

1
4 sup

u,v,τ,t∈TM

∣∣∣∣∣
n∑

i=1

ξin(u, v, τ, t)

∣∣∣∣∣ > K(2)

)
< 2ε.

and the proof follows. ¤

Theorem 1. Let Assumptions A or B and C be fulfilled. Moreover, let K ⊂ Rp

be compact and β0 ∈ K. Then

√
n

(
β̂(LTS,n,h) − β0

)
= n−

1
2 Q−1

n [(1− α)− 2 · uαf(uα)]−1 ×

×
n∑

i=1

(
Yi − xT

i β0
)
xi · I

{
e2
i ≤ u2

α

}
+ op(1)

and β̂(LTS,n,h) is asymptotically normal with mean value equal to β0 and covariance
matrix

V (F, α) = Q−1 [(1− α)− 2 · uαf(uα)]−2
∫ uα

−uα

z2dF (z),

i. e.
L

(√
n

(
β̂(LTS,n,hn) − β0

))
→ N (0, V (F, α)) as n →∞
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where hn = [(1− α)n]int (see (7) of Part I).

P r o o f . We are going to employ (see the proof of Theorem 1 of Part II)

1√
n

n∑

i=1

[
(Yi − xT

i β0)xi · I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]

=
1√
n

n∑

i=1

xix
T
i

(
β̂(LTS,n,h) − β0

)
I
{

r2
i (β0) ≤ r2

(h)(β
0)

}

− 1√
n

n∑

i=1

(
Yi − xT

i β̂(LTS,n,h)
)

xi

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤r2

(h)(β
0)

}]

=
1
n

n∑

i=1

xix
T
i

[
I
{
e2
i ≤ u2

α

}]
· √n

(
β̂(LTS,n,h) − β0

)
(48)

+
1
n

n∑

i=1

xix
T
i

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]√
n

(
β̂(LTS,n,h) − β0

)

+
1
n

n∑

i=1

xix
T
i

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]
· √n

(
β̂(LTS,n,h) − β0

)

− 1√
n

n∑

i=1

eixi

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}]
.

The analysis of the left hand side as well as of the first three terms of right hand
side can be the same as in the proof of Theorem 1 of Part II. The only difference
will be in the analysis of the last term of the right hand side, namely of

I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}
. (49)

First of all, let us fix an ε ∈ (0, 1) and employ Lemma 1 of Part I, Theorem 1 of
Part II and Corollary 1 in order to find K(1) < ∞ and n1 ∈ N so that for all n > n1

there is a set Bn such that P (Bn) > 1− ε and for any ω ∈ Bn
∣∣∣
√

e2
(hn) − uα

∣∣∣ < n−
1
2 K(1),

√
n

∥∥∥β̂(LTS,n,h) − β0
∥∥∥ < K(1) (50)

and moreover for any i = 1, 2, . . . , n

P
(
e2
i ∈

(
r2
(hn)(β

0), r2
(hn)(β̂

(LTS,n,h))
)

ord
∩Bn

)
≤ n−τ ·K(1) (51)

with τ ∈
(

1
2 , 3

4

)
. In what follows (up to the end of the proof) let us restrict ourselves,

without repeating it, in all considerations on the set Bn. It means that we shall
analyze e. g. instead of (49)

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}]
IBn ,
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etc. Let us recall that the difference in (49) is equal to one if either

−
√

r2
(hn)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
≤ ei < −

√
r2
(hn)(β

0) (52)

or √
r2
(hn)(β

0) < ei ≤
√

r2
(hn)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
(53)

and is equal to minus one if

−
√

r2
(hn)(β

0) ≤ ei < −
√

r2
(hn)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
(54)

or √
r2
(hn)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
< ei ≤

√
r2
(hn)(β

0). (55)

Now, let us observe that from (51) it follows that whenever xT
i (β̂(LTS,n,h) − β0) ≥ 0

the probability of the event in (52) as well as of event in (55) is not larger than
n−τ · K(1) (please, keep in mind that in fact we speak about the event given by
(52) intersected with Bn as well as about the event given by (55) intersected with
Bn). Similarly, when xT

i (β̂(LTS,n,h) − β0) < 0 the same is true about the events in
(53) and in (54). Let us denote the event when ω ∈ Bn, xT

i (β̂(LTS,n,h) − β0) ≥ 0,
ei falls into one of the intervals (53) or (54) by C

(+)
in and similarly when ω ∈ Bn,

xT
i (β̂(LTS,n,h) − β0) < 0, ei falls in one of the intervals (52) or (55) by C

(−)
in and

finally when ω ∈ Bn and either xT
i (β̂(LTS,n,h) − β0) ≥ 0 and ei falls in one of the

intervals (52) or (55), or xT
i (β̂(LTS,n,h) − β0) < 0 and ei falls in one of (53) or (54)

by Din (i. e. Din = Bn \ (C(+)
in ∪ C

(−)
in )). Let us recall that we have assumed

that there is a finite upper bound of density and that we have shown in the proof
of Theorem 1 of Part II that β̂(LTS,n,h) − β0 is symmetrically distributed, i. e.
P (xT

i (β̂(LTS,n,h) − β0) ≥ 0) = P (xT
i (β̂(LTS,n,h) − β0) < 0) = 1

2 . Then we conclude
that there is a constant K(2) ∈ (K(1),∞) so that for all n > n1 (for n1 see the
beginning of the proof)

P (Din) < n−τ ·K(2), (56)

P
(
C

(+)
in

)
= f(uα) · xT

i

(
β̂(LTS,n,h) − β0

)
+ ν

(1)
i + η

(1)
i (57)

and
P

(
C

(−)
in

)
= −f(uα) · xT

i

(
β̂(LTS,n,h) − β0

)
+ ν

(2)
i + η

(2)
i (58)

(remember that xT
i

(
β̂(LTS,n,h) − β0

)
< 0 on C

(−)
in ) where

|ν(j)
i | < n−τ ·K(2) and |η(j)

i | < n−1 ·K(2)
(
1 + ‖xi‖2

)
for j = 1, 2. (59)

The consequence of (56) is that

E
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ IDin < n−τ ·K(2).

(60)
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Now, let us write the last term of (??) as

1√
n

n∑

i=1

{
eixi

[
I
{

r2
i (β̂(LTS,n,h))≤r2

(h)(β̂
(LTS,n,h))

}
−I

{
r2
i (β0)≤r2

(h)(β
0)

}]
IDin

}

(61)

+
1√
n

n∑

i=1

{
eixi

[
I
{

r2
i (β̂(LTS,n,h))≤r2

(h)(β̂
(LTS,n,h))

}
−I

{
r2
i (β0)≤r2

(h)(β
0)

}]
I
C

(+)
in

}

(62)

+
1√
n

n∑

i=1

{
eixi

[
I
{

r2
i (β̂(LTS,n,h))≤r2

(h)(β̂
(LTS,n,h))

}
−I

{
r2
i (β0)≤r2

(h)(β
0)

}]
I
C

(−)
in

}
.

(63)
Prior to continuing, let us realize that whenever ω ∈ Bn ∩ Din, we have e2

i ∈
(r2

(h)(β
0), r2

(h)(β̂
(LTS,n,h)))ord. Then we can show – utilizing both inequalities in (50)

– that there is a constant K(3) ∈ (1,∞) so that for n > n1

|ei| ≤ K(3).

Let us find n2 ∈ N so that for all n > n2 we have n−( 1
2+τ) ·K(2) ·K(3) ·∑n

i=1 ‖xi‖ < ε2

(please keep in mind that τ ∈
(

1
2 , 3

4

)
). Then (60) immediately implies that

P

(
1√
n

∥∥∥∥∥
n∑

i=1

{
eixi

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]
IDin

}∥∥∥ > ε
)

≤ P

(
1√
n

n∑

i=1

‖xi‖ |ei| ·
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ IDin > ε
)

≤ 1√
n

ε−1
n∑

i=1

‖xi‖K(3) · E
{∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ IDin

}

≤ 2n−( 1
2+τ)ε−1 ·K(2) ·K(3) ·

n∑

i=1

‖xi‖ < ε. (64)

So it suffices to study (62) and (63). Let us start with (62). Notice that if ei falls
into the interval in (53), the difference of the indicators is equal to one and ei ≥ 0
and vice versa, if ei falls into the interval in (54), the difference of the indicators is
equal to minus one and ei < 0. It means that (62) can be written as

1√
n

n∑

i=1

{
|ei|·xi ·

∣∣∣I
{

r2
i (β̂(LTS,n,h))≤r2

(h)(β̂
(LTS,n,h))

}
−I

{
r2
i (β0)≤r2

(h)(β
0)

}∣∣∣ I
C

(+)
n

}
.
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Moreover, recalling once again that e2
(hn) = r2

(hn)(β
0), we observe that whenever

I
C

(+)
n

= 1 and n > n1, (50) and (51) imply that

||ei| − uα| <
(
n−

1
2 + n−τ

)
·K(1) ≤ 2 · n− 1

2 ·K(1)

and hence, due to (57) and (58),

P

(
1√
n

n∑

i=1

{
||ei| − uα| · ‖xi‖ ·

∣∣∣I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ I
{

C(+)
n

}}
> ε

)

≤ ε−1 1√
n

n∑

i=1

E
{
||ei| − uα| · ‖xi‖ ·

∣∣∣I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ I
{

C(+)
n

} }

≤ 2ε−1 ·n−1 ·K(1)
n∑

i=1

‖xi‖·
{

f(uα)·
[
xT

i

(
β̂(LTS,n,h)−β0

)
+ν

(1)
i

]
+η

(1)
i

}
. (65)

Employing now (50) and (59), we find the upper bound of (65) as

8ε−1 · n− 3
2 · f(uα) ·

[
K(1)

]2 n∑

i=1

‖xi‖2
(
1 + ‖xi‖2

)
.

So we can consider instead of (62) the sum

uα√
n

n∑

i=1

{
xi ·

[ ∣∣∣I
{

r2
i (β̂(LTS,n,h))≤r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0)≤r2

(h)(β
0)

}∣∣∣ I
{

C(+)
n

}

−E
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{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
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{

C(+)
n

}]}
(66)

+
uα√

n

n∑

i=1

{
xi · E

∣∣∣I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ I
{

C(+)
n

}}
. (67)

We are going to utilize Lemma 2. Due to (50) and (51) we can put u = r2
(hn)(β

0)−uα,

for a τ ∈ ( 1
2 , 3

4 ), v = nτ (r2
(hn)(β̂

(LTS,n,h))− r2
(hn)(β

0)) and t = n
1
2 (β̂(LTS,n,h) − β0).

Plugging these values into (42), we obtain from (43) that (66) is op(1). Let us turn
to (67). In a similar way as we derived (57) we obtain

xi · E
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ I
{

C(+)
n

}
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= f(uα) · xi · xT
i

(
β̂(LTS,n,h) − β0

)
+ o(n−τ ).

Since (63) may be treated along similar lines we finally arrive at

1√
n

n∑

i=1

[
eixi · I

{
e2
i ≤ u2

α

}]

= {Qn · [(1− α)− 2 · uαf(uα)]} · √n
(
β̂(LTS,n,h) − β0

)
+ op(1).

It concludes the proof. ¤

CONCLUSIONS

The paper, in Parts I, II and III, offers proofs of consistency and asymptotic normal-
ity of β̂(LTS,n,h). It also gives the asymptotic representation of the estimator1. Due
to the already enormous length of paper it was not possible to include the result on
the sensitivity of β̂(LTS,n,h) (in the sense of finding asymptotic representation for the
difference β̂(LTS,n,h)−β̂(LTS,n−1,h,`) or β̂(LTS,n,h)−β̂(LTS,n−1,Ikn ) where β̂(LTS,n−1,h,`)

denote the estimate for the data from which the `th observation was deleted and
similarly β̂(LTS,n−1,Ikn ) denote the estimate for data from which the group of obser-
vations – given by a set of indices Ik – was again deleted, see Vı́̌sek [21] or [28]; the
representation of β̂(LTS,n,h) − β̂(LTS,n−1,h,`) can be found in [32]; for an extensive
discussion see also Chatterjee and Hadi [4] or Zvára [33]). The result describing
sensitivity of β̂(LTS,n,h) with respect to deletion of an observation, in the framework
with random carriers, can be found in Vı́̌sek [23]. It indicates that the difference
β̂(LTS,n,h) − β̂(LTS,n−1,h,`) can be large. A proposal removing this disadvantage was
given in Vı́̌sek [27]. It was called there the least weighted squares and defined as

β̂(LWS,n,w) = argmin
β∈Rp

n∑

i=1

wir
2
(i)(β) (68)

(later it appeared under different name e. g. in Č́ıžek [5]). The consistency, asymp-
totic normality and Bahadur representation for the framework with random carriers
(which appeared to be easier to deal with than the framework with deterministic
carriers) can be found in Vı́̌sek [29, 30].

As we have seen the proofs of the
√

n-consistency and asymptotic normality of
β̂(LTS,n,h) are not short and easy. On the other hand, the estimator is (highly) non-
linear and hence we cannot expect the proofs to be very short. Nevertheless, the
proofs consist of (sometimes rather long) chains of simple steps. May be that the
Skorohod embedding into Wiener process and the application of invariance princi-
ple can be assumed as an exception from it. However, the embedding of binary
random variables into Wiener process is already becoming to belong among basic

1 There was of course a proof of consistency and asymptotic normality of β̂(LTS,n,h) by
Rousseeuw and Leroy [16] for one dimensional case, i. e. for estimating location parameter. They
gave also a hint of proof for general regression model, referring to paper by Maronna and Yohai
[13]. This paper however seems to be applicable for estimators of the type as M -estimators.
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proving technique due to its transparency, constructive character and ability to cope
with situations when we need to reach uniformity over some set of parameters, (see
Portnoy [15], Jurečková and Sen [7] or Vı́̌sek [21, 22], see also [3], Proof of Propo-
sition 13.15). Although some alternative techniques can sometimes serve for the
(same) purposes as well, see e. g. Hampel et al. [8], Huber [11], Liese and Vajda [12]
or Pollard [14], the papers by Vı́̌sek [21] and [28] demonstrated that this technique
can offer something more, namely it is able to carry out the sensitivity studies of
the estimator in question.

The least trimmed squares are utilized not only as the estimator of regression
coefficients (or “preliminary” estimator) but also as an efficient diagnostic tool, es-
pecially with h near to the assumed level of contamination (see Rubio and Vı́̌sek
[17]). In fact, if we star with h =

[
n
2

]
+

[
p+1
2

]
– see Rousseeuw and Leroy [16] – and

increase in every step h by one, it may happen (and it frequently does happen) that
we arrive into an interval of h’s for which corresponding subpopulations of “original”
data are nested, the estimates of regression coefficients are stable and the estimate of
variance of disturbances increases only slowly. When we however “overcome” some
size of subpopulation, we notice that the estimate of regression model changes a lot
and the estimate of variance of disturbances jumpes up. It is easy to imagine in
such a case that the data probably consist of two (or more), hopefully homogeneous,
subpolulations. For an example of economic application leading to a decomposition
of data on two subpopulations, each of them allowing a reasonable modeling see
Benáček et al. [1] or Vı́̌sek [24]. In these papers the determinants of the export of
goods produced by the Czech economy and of the foreigner direct investments into
the Czech republic were studied. The results discovered that there are already some
industries of economy which behave as industries in market economies, namely that
they follow Cobb–Douglas production function. Unfortunately (in 1994), a large
part of the Czech economy still behaved like centrally planned economy. From the
economic point of view, it may seem completely strange but the (normed) labor
and the (normed) capital are in direct linear dependence in this part of the Czech
economy (although we are used that in market oriented economy they are, at least
partially, substitutable).

In the past there were objections that the estimators of this type, as the least
trimmed squares, require extensive computation. Moreover, we typically obtain
“only” an approximation to the value of estimate and what is even worse, we are
not able directly to verify, how good approximation we obtained. So it is claimed
that these estimators are automatically disqualified for any practical goals. It is
not already true, at least not for the least trimmed squares. There is a simple
algorithm which can be characterized as an improved algorithm of repeated selection
of subsamples. Although a simple version of the repeated selection of subsamples
appeared to be unreliable (see Hettmansperger and Sheather [10] together with [19]),
the improved form appeared to be reliable and gives very good approximation to the
estimate (see Vı́̌sek [20] and [26]). The reliability of the algorithm was confirmed by
mutual comparison with the results of an algorithm for the least median of squares
β̂(LMS,n,h) which is due to Boček and Lachout [2]. In Vı́̌sek [20] and [26] we used
data of such size that inspection of all subsets of required size was possible and
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hence β̂(LTS,n,h) was evaluated precisely. Nevertheless, even then the algorithm by
Boček and Lachout gave smaller hth order statistics among the squared residuals
than β̂(LTS,n,h) (while the latter gave of course smaller sum of h smallest squared
residuals than β̂(LMS,n,h)). Then we used both algorithms on several (nowadays
already) “classical” data sets. For all of them β̂(LTS,n,h) gave smaller sum of h
smallest squared residuals than the sum of the h smallest squared residuals in model
estimated by β̂(LMS,n,h) appeared to be. On the other hand, in all cases, i. e. for
all models estimated by β̂(LMS,n,h), the hth order statistic among squared residuals
was smaller than hth order statistic in the models estimated by β̂(LTS,n,h). We
may say that the estimates were “mutually consistent”. The implementation of just
described algorithm is available from author on request. Another implementation,
in MATLAB is also available from Libor Maš́ıček – on the same address as present
author, and finally there is commertially available implementation in XPLORE, see
Č́ıžek and Vı́̌sek [5]. A similar algorithm appeared recently in Hawkins and Olive [9].

Moreover, this algorithm allows to make an idea about the complexity of the
structure of data. If the approximation is evaluated either in a reasonable time
or the most of the evaluated models with small values of sum of squared residuals
are similar, we may suppose that the structure of data is (relatively) simple. In
an opposite case the data may have rather complicated structure or even they do
not allow, for any reasonably large subpopulation, a linear regression model at all.
In other words, in the former case there is e. g. a “main cloud” of data (which we
may consider as proper data) and a rest which is clearly separated from that “main
cloud”. The rest may be then assumed to be a contamination.

APPENDIX

([18], page 420, VII.2.8) Let a and b be positive numbers. Further let ξ be a random
variable such that P (ξ = −a) = π and P (ξ = b) = 1 − π (for a π ∈ (0, 1)) and
Eξ = 0. Moreover let τ be the time for the Wiener process W (s) to exit the interval
(−a, b).Then

ξ =D W (τ)

where “=D” denotes the equality of distributions of the corresponding random vari-
ables. Moreover, Eτ = a · b = var ξ.

Remark A.1. Since the book of Štěpán [18] is in Czech language we refer also
to Breiman [3] where however this simple assertion is not isolated. Nevertheless,
the assertion can be found directly in the first lines of the proof of Proposition 13.7
(page 277) of Breiman’s book. (See also Theorem 13.6, page 276.)

Assertion A1. Let ζ1 and ζ2 be (mutually) independent random variables and
u > 0. Then ζ1 · I {|ζ1| < u} and ζ2I {|ζ2| < u} are again independent random
variables.

P r o o f is a straightforward computation. Let a1 and a2 be real numbers. Then

P (ζ1 · I {|ζ1| < u} ≤ a1, ζ2 · I {|ζ2| < u} ≤ a2)
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= P (−u ≤ ζ1 ≤ min {a1, u} ,−u ≤ ζ2 ≤ min {a2, u})
= P (−u ≤ ζ1· ≤ min {a1, u}) · P (−u ≤ ζ2· ≤ min {a2, u})
= P (ζ1 · I {|ζ1| < u} ≤ a1) · P (ζ2 · I {|ζ2| < u} ≤ a2). ¤
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[25] J. Á. Vı́̌sek: The robust regression and the experiences from its application on estima-
tion of parameters in a dual economy. In: Proc. Macromodels’99, Rydzyna 1999,pp.
424–445.
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[27] J. Á. Vı́̌sek: Regression with high breakdown point. In: Robust 2000 (J. Antoch and
G. Dohnal, eds.), Union of the Czechoslovak Mathematicians and Physicists, Prague
2001, 324–356.
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