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STABILITY OF STOCHASTIC OPTIMIZATION
PROBLEMS – NONMEASURABLE CASE

Petr Lachout

This paper deals with stability of stochastic optimization problems in a general setting.
Objective function is defined on a metric space and depends on a probability measure which
is unknown, but, estimated from empirical observations. We try to derive stability results
without precise knowledge of problem structure and without measurability assumption.
Moreover, ε-optimal solutions are considered.

The setup is illustrated on consistency of a ε-M -estimator in linear regression model.

Keywords: stability of stochastic optimization problem, weak convergence of probability
measures, estimator consistency, metric spaces
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1. INTRODUCTION

We consider a general scheme of stochastic optimization problem in this paper. Our
task is to derive stability of a given stochastic optimization problem. We work on
a metric space and consider ε-solution of the stochastic optimization problem. We
do not require measurability in this paper. Observed data, approximations and con-
sidered functions are assumed to be maps from probability space to a metric space,
only. Therefore, we become to be out of the standard theory based on measurability
assumption. The theory we employ is nicely explained in [20].

Working without measurability assumption, there are several concepts for con-
vergences almost surely and in probability. These definitions together with relations
between them can be found in [20], Chapter 1.9, pp. 52–56. For convenience, the
reader can find relevant parts of this theory summarized in the Appendix.

We are working with the convergence almost surely. That means that we consider
convergence for every ω ∈ Ω separately. This notion of almost sure convergence
is the weakest one. It can happen that an ε-optimal solution converges almost
surely, although it does not converge in outer probability sense. This concept is
investigated in [17] where the author calls it “sample-path optimization”. We started
this approach to sensitivity of stochastic optimization in [13].

As an illustration of our general result we consider ε-M -estimator in linear re-
gression model. There is a vast literature on the linear regression model, e. g.
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[1, 2, 7, 8, 9, 12, 14, 16, 18], etc. But, the results usually assume unique minimizer,
regressors are supposed i.i.d. or deterministic, errors are i.i.d., errors are indepen-
dent with regressors, estimator must be measurable, etc. Considered ε-M -estimator
is a particular case of Asymptotically Optimal Estimators (AOE) introduced in [22].
Conditions under which the AOEs are consistent in probability are discussed in [22].
We present result on consistency almost surely.

Our paper requires no prescribed structure for observations and errors. We only
assume weak convergence of their common “empirical measure”. Also, we allow
nonuniqness of the estimator and we do not require measurability of the estimator.

The last preliminary note concerns notation. For our purposes we need a bit
stronger notion of the standard weak convergence of probability measures. Therefore
we have to introduce a convenient notation.

Definition 1. Let µ, µn, n ∈ N be Borel probability measures on a metric space
Y and F ⊂ {f : Y → R | f is measurable}. We will say that µn converge F-weakly
to µ iff

∫

Y
f(y)µn(dy)−−−−−→

n→+∞

∫

Y
f(y)µ(dy) for every bounded continuous

function f : Y → R;∫

Y
f(y)µn(dy)−−−−−→

n→+∞

∫

Y
f(y)µ(dy) for every f ∈ F .

We will denote the convergence by

µn
F−w−−−−−→

n→+∞
µ.

Easy observation shows that µn
F−w−−−−−→

n→+∞
µ implies

∫

Y
f(y)µn(dy)−−−−−→

n→+∞

∫

Y
f(y)µ(dy) for every f ∈ F ,

where F denotes closure in supremal norm of linear hull of union F and all bounded
continuous functions.

For empty set of functions F we are receiving the standard weak convergence.
Therefore we will accept notation µn

w−−−−−→
n→+∞

µ instead of µn
∅−w−−−−−→

n→+∞
µ.

Let us note, that this stronger version of the weak convergence takes place very
often. For example, the strong law of large numbers for i.i.d. random variables can
be rewritten as

νn
H−w−−−−−→

n→+∞
ν , where

νn is the empirical measure defined from observations till time n, ν is the common
distribution of observations and H = {h : x ∈ X → |x|}.
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Consequently, this strong law of large numbers can be written as
∫

Y
f(y)µn(dy)−−−−−→

n→+∞

∫

Y
f(y)µ(dy)

for every continuous function f : Y → R fulfilling |f(y)| ≤ A + B|y| for all y ∈ Y
and convenient A,B ∈ R.

2. GENERAL RESULT

We consider an optimization problem written in the form

inf {f (x |µ0) | x ∈ X } , (1)

where µ0 ∈ P. We suppose X to be a metric space, P be a family of probability
measures defined on a metric space Y and f : X × P → R, where R = [−∞, +∞]
denotes the extended real line.

The objective function is known up to unknown probability measure µ0. We
assume a procedure producing an estimation of µ0. We suppose to observe zt ∈ Zt at
any time t ∈ N. Let us note, that the setting covers the most typical situation if one
observes a sequence of data w1, w2, . . . , wkt belonging to a metric space W. Hence,
we group observations available at time t ∈ N in a vector zt = (w1, w2, . . . , wkt) and
Zt = Wkt . From observed data we construct probability measure µt (• | zt) on Y.
These measures will play role of estimators for the “true” probability measure µ0.

Let us introduce a denotation of objects of our interest. For a given function
f : X → R we are interested in minimal value, minimal solutions, and ε-minimal
solutions

ϕ (f) = inf {f(x) | x ∈ X } , (2)

Φ (f) = {x ∈ X | f(x) = ϕ (f)} . (3)

Having ϕ (f) ∈ R we can deal with

Ψ (f ; ε) = {x ∈ X | f(x) ≤ ϕ (f) + ε} ∀ ε > 0 . (4)

Now, let us formalize the considered scheme in a list of assumptions.

Assumption A1. X , Y, Zt, t ∈ N are metric spaces.

Assumption A2. P is a nonempty subset of all Borel probability measures on Y
and F ⊂ {f : Y → R | f is Borel measurable}.
(The set F is allowed to be empty.)

Assumption A3. The function f : X × P → R.

Assumption A4. εt > 0 for any t ∈ N and ε̄ = lim supt→+∞ εt < +∞.

Assumption A5. For any t ∈ N, we observe Zt : Ω → Zt.



262 P. LACHOUT

Assumption A6. For any t ∈ N, zt ∈ Zt, µt (• | zt) is a Borel probability measure
on Y.
We denote Pemp = {µt (• | zt) | zt ∈ Zt, t ∈ N}.

Assumption A7. µ0 ∈ P and Pemp ⊂ P.

Assumption A8. ϕ (f (• | ν)) ∈ R for every ν ∈ P.

Assumption A9. Whenever ∀n ∈ N νn ∈ Pemp and νn
F−w−−−−−→

n→+∞
µ0, then there is a

convergent sequence θ̃n ∈ X , n ∈ N such that

lim
n→+∞

θ̃n ∈ Φ(f (• |µ0)) and lim sup
n→+∞

f
(
θ̃n | νn

)
≤ ϕ (f (• |µ0)) .

Assumption A10. There is a compact set K ⊂ X such that

1. lim inf
n→+∞

f (θn | νn) ≥ f (θ |µ0) whenever

∀n ∈ N νn ∈ Pemp and νn
F−w−−−−−→

n→+∞
µ0,

∀n ∈ N θn ∈ X , θn−−−−−→
n→+∞

θ ∈ K.

2. For any sequence of probability measures νn ∈ Pemp,

νn
F−w−−−−−→

n→+∞
µ0 and any open set G ⊃ K we have

lim inf
n→+∞

inf
θ∈X\G

f (θ | νn) > ϕ (f (• |µ0)) + ε̄ .

In Assumption A5, Ω is just a set (of elementary events). Only later on, it will
be considered as a probability space (Ω,A, prob). Assumptions A9 and A10 can be
expressed by means of lower and upper approximations treated in [15]. All of these
assumptions ensure existence of ε-minimal solutions and their consistency.

Lemma 1. Let ω ∈ Ω and assumptions A1 –A8 are fulfilled, then always
Ψ (f (• |µt (• |Zt(ω))) ; εt) 6= ∅ for any t ∈ N.

P r o o f . An ε-minimal solution exists since ϕ (f (• |µt (• |Zt(ω)))) ∈ R, accord-
ingly to Assumption A8. ¤

We have to recall a few from topological terminology.

Definition 2. For a sequence ηn, n ∈ N in a metric space W, we denote the set of
its cluster points by Ls (ηn , n ∈ N), i. e.

Ls (ηn , n ∈ N) =
{

ψ ∈ W
∣∣∣∣ ∃ subsequence s. t. lim

n→+∞
ηkn = ψ

}
.
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Definition 3. We say that a sequence ηn, n ∈ N in a metric space W is compact
if each its subsequence possesses at least one cluster point.

Compact sequence in metric space possesses an equivalent description.

Lemma 2. Let ηn, n ∈ N be a sequence in a metric space W. Then, the following
statements are equivalent:

1. The sequence is compact.

2. There is a compact L ⊂ W such that ηn ∈ L for all n ∈ N.

3. The set {ηn | n ∈ N} ∪ Ls (ηn , n ∈ N) is compact.

Lemma 3. Let ηn, n ∈ N be a sequence in a metric space W and K ⊂ W be a
compact. If for every open set G ⊃ K there is an nG ∈ N such that ηn ∈ G for all
n ∈ N, n ≥ nG, then the sequence is compact and Ls (ηn , n ∈ N) ⊂ K.

Other details and proofs can be found in any monograph on topology, e. g. [11].
These topological notions will be used in proof of following results.

Theorem 1. Let ω ∈ Ω be such that

µt (• |Zt(ω)) F−w−−−−→
t→+∞

µ0

and Assumptions A1 –A10 be fulfilled. Then, Φ (f (• |µ0)) ∩ K 6= ∅.
If θ̂t ∈ Ψ(f (• |µt (• |Zt(ω))) ; εt) for any t ∈ N then the sequence θ̂t(ω), t ∈ N is

compact and

∅ 6= Ls
(
θ̂t(ω) , t ∈ N

)
⊂ Ψ(f (• |µ0) ; ε̄) ∩ K . (5)

P r o o f .

1. Assumption A9 implies existence of a sequence θ̃t ∈ X , t ∈ N such that

lim
t→+∞

θ̃t ∈ Φ(f (• |µ0)) ,

lim sup
t→+∞

f
(
θ̃t |µt (• |Zt(ω))

)
≤ ϕ (f (• |µ0)) .

2. Assumption A10 implies that for every open set G ⊃ K we have

lim sup
t→+∞

f
(
θ̃t |µt (• |Zt(ω))

)
≤ ϕ (f (• |µ0)) ≤ ϕ (f (• |µ0)) + ε̄

< lim inf
t→+∞

inf
θ∈X\G

f (θ |µt (• |Zt(ω))) .

Therefore, θ̃t ∈ G for all t ∈ N sufficiently large.
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Hence according to Lemma 3,

lim
t→+∞

θ̃t ∈ K .

We have found a point in K ∩ Φ(f (• |µ0)).

3. Assumptions A4, A9, A10 imply that for every open set G ⊃ K we have

lim sup
t→+∞

f
(
θ̂t(ω) |µt (• |Zt(ω))

)

≤ lim sup
t→+∞

[
f
(
θ̃t |µt (• |Zt(ω))

)
+ εt

]

= ϕ (f (• |µ0)) + ε̄ < lim inf
t→+∞

inf
θ∈X\G

f (θ |µt (• |Zt(ω))) .

Therefore, θ̂t(ω) ∈ G for all t ∈ N sufficiently large.

Hence according to Lemma 3 the sequence θ̂t(ω), t ∈ N is compact and

∅ 6= Ls
(
θ̂t(ω) , t ∈ N

)
⊂ K.

4. Let η ∈ K be a cluster point of the sequence θ̂t(ω), t ∈ N and take a subnet
with limn→+∞ θ̂tn(ω) = η. According to Assumptions A4, A8, A9, A10, we
receive

f (η |µ0) ≤ lim inf
n→+∞

f
(
θ̂tn(ω) |µtn (• | ztn(ω))

)

≤ lim sup
n→+∞

f
(
θ̂tn(ω) |µtn (• | ztn(ω))

)

≤ lim sup
n→+∞

[
f
(
θ̃tn |µtn (• | ztn(ω))

)
+ εtn

]

≤ ϕ (f (• |µ0)) + ε̄ .

Hence,

η ∈ Ψ(f (• |µ0) ; ε̄) . ¤

Consider in addition Ω to be a probability space (Ω,A, prob). Then, if the weak
convergence take place for almost all ω ∈ Ω we have a convergence in almost sure
sense.

Theorem 2. Let Ω0 ⊂ Ω be such that prob∗ (Ω0) = 1 and for all ω ∈ Ω0

µt (• |Zt(ω)) F−w−−−−→
t→+∞

µ0
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and Assumptions A1 –A10 be fulfilled. If θ̂t ∈ Ψ (f (• |µt (• |Zt(ω))) ; εt) for any
t ∈ N then

ρ
(
θ̂t , Ψ (f (• |µ0) ; ε̄) ∩ K

)
a s−−−−→

t→+∞
0 , (6)

where ρ is the metric of the metric space X .

P r o o f . For (6) it is sufficient to show

lim
t→+∞

ρ
(
θ̂t(ω), Ψ(f (• |µ0) ; ε̄) ∩ K

)
= 0 , for any ω ∈ Ω0.

Let us assume ω ∈ Ω0 and ∆ > 0 such that

lim sup
t→+∞

ρ
(
θ̂t(ω), Ψ(f (• |µ0) ; ε̄) ∩ K

)
> ∆ .

Therefore, there is a subnet such that

ρ
(
θ̂tn

(ω), Ψ(f (• |µ0) ; ε̄) ∩ K
)

> ∆ for all n ∈ N .

According to Theorem 1 the sequence θ̂tn(ω), n ∈ N is compact and, hence, its
subsequence possesses a cluster point in Ψ (f (• |µ0) ; ε̄) ∩ K. Any such cluster point
η must fulfill ρ (η, Ψ(f (• |µ0) ; ε̄) ∩ K) ≥ ∆ .

Consequently, η 6∈ Ψ(f (• |µ0) ; ε̄) ∩ K which contradicts our assumption.

Thus, (6) is proved. ¤

Our proof treats any trajectory separately. Therefore, we do not need measura-
bility of µt (• | zt) with respect to zt ∈ Zt. Also, selection of the εt-minimal solution
does not require measurability. Thus, it can naturally happen that the considered
objects are not random variables.

Theorem 3. Let Ω0 ⊂ Ω be such that prob∗ (Ω0) = 1 and for all ω ∈ Ω0

µt (• |Zt(ω)) F−w−−−−→
t→+∞

µ0

and Assumptions A1 –A10 be fulfilled. If θ̂t ∈ Ψ (f (• |µt (• |Zt(ω))) ; εt) for any
t ∈ N is asymptotically measurable then

ρ
(
θ̂t, Ψ(f (• |µ0) ; ε̄) ∩ K

)
prob∗−−−−→

t→+∞
0 . (7)

P r o o f . Proof follows immediately from previous Theorem 2 and Lemma 9, in
Appendix, since the limit is deterministic. ¤
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Theorem 4. Let Ω0 ⊂ Ω be such that prob∗ (Ω0) = 1 and for all ω ∈ Ω0

µt (• |Zt(ω)) F−w−−−−→
t→+∞

µ0

and Assumptions A1 –A10 be fulfilled. If θ̂t ∈ Ψ (f (• |µt (• |Zt(ω))) ; εt) for any
t ∈ N is strongly asymptotically measurable then

ρ
(
θ̂t, Ψ(f (• |µ0) ; ε̄) ∩ K

)
a s∗−−−−→

t→+∞
0 , (8)

ρ
(
θ̂t, Ψ(f (• |µ0) ; ε̄) ∩ K

)
prob∗−−−−→

t→+∞
0 . (9)

P r o o f . Proof follows immediately from previous Theorem 2 and Lemmas 7, 8,
in Appendix, since the limit is deterministic. ¤

3. LINEAR REGRESSION

As an example illustrating the theory presented in the previous section we offer a
linear regression model. Where, unknown regression coefficients are estimated by an
εt-M-estimator.

We suppose to observe couples (Y1, X1), (Y2, X2), . . . , (Yt, Xt) connected by a lin-
ear regression model

Yi = X>
i β0 + ei ∀ i = 1, 2, . . . , t. (10)

Where Yi : Ω → R, Xi : Ω → Rd are mappings, ei : Ω → R are unobserved mappings
and β0 ∈ Θ ⊂ Rd is deterministic but unknown parameter.

Parameter set Θ expresses our a prior information about parameters. From the
problem setting, we can know that some functions of parameters are nonnegative or
having precise value, e. g. some parameters are nonnegative or bounded by a value,
some linear combinations of parameters are nonnegative or having precise value, etc.

As probability measures required in Assumption A6 we will employ empirical
probability measure defined from observations. Let us define denotation of an em-
pirical probability measure in a general case. Let W 6= ∅ and w1, w2, . . . , wt ∈ W.
Then, the empirical probability measure is defined for any A ⊂ W as the relative
number of observations hitting the set A, i. e. by the formula

Et (A |w1, w2, . . . , wt) =
1
t

t∑

i=1

I[wi ∈ A]. (11)

Let us recall that ifW is a metric space then empirical probability measure restricted
to Borel σ-algebra of W is a Borel probability measure.

Unknown regression coefficients are estimated by an εt-M-estimator based on a
loss function defined by the formula

f (β |µ) =
∫

ρ(y − x>β)µ(dy, dx). (12)
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Especially, for empirical distribution of observations we receive

f (β | Et (• | (y1, x1), (y2, x2), . . . , (yt, xt)))

=
∫

ρ(y − x>β) Et (dy, dx | (y1, x1), (y2, x2), . . . , (yt, xt))

=
1
t

t∑

i=1

ρ(yi − x>i β).

An εt-M-estimator is any β̂t ∈ Θ fulfilling for all β ∈ Θ

f
(
β̂t | Et (• | (Y1, X1), (Y2, X2), . . . , (Yt, Xt))

)
: (13)

≤ f (β | Et (• | (Y1, X1), (Y2, X2), . . . , (Yt, Xt))) + εt.

Now, the studied situation is fully described and we are proceeding to assump-
tions. We introduce the following list of assumptions:

Assumption R1. Θ ⊂ Rd is a closed subset.

Assumption R2. εt > 0 for any t ∈ N and lim supn→+∞ εt = ε̄.

Assumption R3. There are a Borel measure ν defined on Rd+1 and Ω1 ⊂ Ω such
that prob∗ (Ω1) = 1 and for all ω ∈ Ω1

Et (• | (X1(ω), e1(ω)), (X2(ω), e2(ω)), . . . , (Xt(ω), et(ω))) w−−−−−→
n→+∞

ν .

Assumption R4. For any β ∈ Θ
∫

ρ(e) ν (dx,de) ≤
∫

ρ(e + x>(β0 − β)) ν (dx,de) .

Assumption R5. Function ρ : R → R is nonnegative and continuous.

Assumption R6. There are a function ψ : R+ → R+ which is nondecreasing con-
tinuous and Ω2 ⊂ Ω, prob∗ (Ω2) = 1 fulfilling:

1. For all t ∈ R ρ(t) ≤ ψ(|t|).
2. For all t > 0

∫
ψ(|e|+ t‖x‖)ν (dx,de) < +∞.

3. For all t > 0, ω ∈ Ω2
1
t

∑t
i=1 ψ(|ei(ω)|+ t‖Xi(ω)‖)−−−−−→

n→+∞

∫
ψ(|e|+ t‖x‖)ν (dx,de).

Assumption R7. Denoting

Hρ = lim inf
∆→+∞

inf {ρ(t) | |t| > ∆, t ∈ R} ,

M = inf
{
ν

({
(x, e) ∈ Rd+1

∣∣ x>γ 6= 0
}) ∣∣ ‖γ‖ = 1, γ ∈ Rd

}
,
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we require M > 0 and a balance

HρM >

∫
ρ(e) ν (dx,de) + ε̄.

Lemma 4. For any ∆ > 0 we have

lim
κ→+∞

inf
‖γ‖=1

ν
({

(x, e)
∣∣ κ

∣∣x>γ
∣∣ ≥ ∆ + |e|

})
= M . (14)

P r o o f . Let ∆ > 0.

1. Let γ ∈ Rd and k ∈ N, then
{
(x, e)

∣∣ k
∣∣x>γ

∣∣ ≥ ∆ + |e|
}
⊂

{
(x, e)

∣∣ x>γ 6= 0
}

.

Consequently,

lim sup
κ→+∞

inf
‖γ‖=1

ν
({

(x, e)
∣∣ κ

∣∣x>γ
∣∣ ≥ ∆ + |e|

})
≤ M .

2. Consider a sequence γk ∈ Rd, ‖γk‖ = 1 for all k ∈ N such that

ν
({

(x, e)
∣∣ k

∣∣x>γk

∣∣ ≥ ∆ + |e|
})

< inf
‖γ‖=1

ν
({

(x, e)
∣∣ k

∣∣x>γ
∣∣ ≥ ∆ + |e|

})
+

1
k

.

The sequence belongs to a compact, therefore, it contains a subsequence
γkj , j ∈ N and γ̂ ∈ Rd, ‖γ̂‖ = 1 such that

lim
j→+∞

γkj = γ̂,

lim
j→+∞

ν
({

(x, e)
∣∣ kj

∣∣x>γkj

∣∣ ≥ ∆ + |e|
})

= lim inf
k→+∞

ν
({

(x, e)
∣∣ k

∣∣x>γk

∣∣ ≥ ∆ + |e|
})

.

Hence, we have inclusion
{
(x, e)

∣∣ x>γ̂ 6= 0
}

=
+∞∪

J=1

+∞∩

j=J

{
(x, e)

∣∣∣∣
∣∣x>γkj

∣∣ ≥
∣∣x>(γ̂ − γkj )

∣∣ +
1
kj

(∆ + |e|)
}

⊂
+∞∪

J=1

+∞∩

j=J

{
(x, e)

∣∣ kj

∣∣x>γkj

∣∣ ≥ ∆ + |e|
}

.

Because of σ-additivity of the measure ν, we have

lim inf
κ→+∞

inf
‖γ‖=1

ν
({

(x, e)
∣∣ κ

∣∣x>γ
∣∣ ≥ ∆ + |e|

})
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= lim inf
k→+∞

ν
({

(x, e)
∣∣ k

∣∣x>γk

∣∣ ≥ ∆ + |e|
})

= lim
j→+∞

ν
({

(x, e)
∣∣ kj

∣∣x>γkj

∣∣ ≥ ∆ + |e|
})

≥ ν




+∞∪

J=1

+∞∩

j=J

{
(x, e)

∣∣ kj

∣∣x>γkj

∣∣ ≥ ∆ + |e|
}



≥ ν
({

(x, e)
∣∣ x>γ̂ 6= 0

})
≥ M . ¤

Theorem 5. Let Assumptions R1 –R7 be fulfilled and set

g(β) =
∫

ρ(e + x>(β0 − β)) ν (dx,de) ∀β ∈ Θ . (15)

Then, β0 ∈ Φ(g) and an estimator β̂t(ω) exists for every t ∈ N, ω ∈ Ω. For every
ω ∈ Ω0 = Ω1 ∩ Ω2 the sequence β̂t(ω), t ∈ N is compact and

∅ 6= Ls
(
θ̂t(ω) , t ∈ N

)
⊂ Ψ(g; ε̄) . (16)

If, moreover, the sequence β̂t, t ∈ N is asymptotically measurable then

d
(
β̂t, Ψ(g ; ε̄)

)
prob∗−−−−→

t→+∞
0 . (17)

If the sequence β̂t, t ∈ N is strongly asymptotically measurable then

d
(
β̂t, Ψ(g ; ε̄)

)
a s∗−−−−→

t→+∞
0 , (18)

d
(
β̂t, Ψ(g ; ε̄)

)
prob∗−−−−→

t→+∞
0 . (19)

P r o o f . We will show that this theorem is a particular case of Theorem 2.
We set X = Y = Rd+1,

µ0 (A) =
∫

I[(e + x>β0, x) ∈ A] ν (dx,de) ∀A Borel subset of Rd+1 ,

Pemp =
{
Et (• | (y1, x1), . . . , (yt, xt))

∣∣ y1, . . . , yt ∈ R, x1, . . . , xt ∈ Rd, n ∈ N
}

,

P = Pemp ∪ {µ0} ,

F =
{
(y, x) 7→ ψ(|y − x>β0|+ t‖x‖) | t > 0

}
.

We will show that Assumptions A1 –A6 are fulfilled.

1. Loss function is nonnegative, since ρ is nonnegative by Assumption R5, real
and defined on Θ× P. Particularly for β ∈ Θ and µ ∈ Pemp

f (β |µ) =
1
K

K∑

i=1

ρ(yi − x>i β) ∈ R
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and for β ∈ Θ,

f (β |µ0) =
∫

ρ(e + x>(γ − β)) ν (dx,de) ∈ R

because of Assumption R6 we have

f (β |µ0) ≤
∫

ψ(|e|+ ‖γ − β‖‖x‖) ν (dx,de) < +∞.

Thus, Assumptions A3 and A8 are valid.

2. Let νn ∈ Pemp.

The measures possess an expression

νn = Ekn

(
• | (y(n)

1 , x
(n)
1 ), (y(n)

2 , x
(n)
2 ), . . . , (y(n)

kn
, x

(n)
kn

)
)

.

Let us denote

H = {(x, e) 7→ ψ(e|+ t‖x‖) | t > 0} ,

e(n)
i = y

(n)
i − sx

(n)
i

>
sβ0 for all i = 1, 2, . . . , kn,

ξn = Ekn

(
• | (x(n)

1 , e(n)
1 ), (x(n)

2 , e(n)
2 ), . . . , (x(n)

kn
, e(n)

kn
)
)

.

Then for functions f, g, we have
∫

f(x, e)ξn(dx,de) =
∫

f(x, y − x>β0)νn(dy, dx) ,

∫
f(x, e)ν (dx,de) =

∫
f(x, y − x>β0)µ0 (dy, dx) ,

∫
g(y, x)νn(dy, dx) =

∫
g(x>β0 + e, x)ξn(dx,de) ,

∫
g(y, x)µ0 (dy, dx) =

∫
g(x>β0 + e, x)ν (dx, de) ,

whenever the integral exist. Therefore, we have the equivalence

νn
F−w−−−−−→

n→+∞
µ0 ⇐⇒ ξn

H−w−−−−−→
n→+∞

ν .

3. Let νn ∈ Pemp, β, βn ∈ Θ, νn
F−w−−−−−→

n→+∞
µ0 and βn−−−−−→

n→+∞
β.

Let us fix ε > 0.

Then, there exist T,Q and a compact K̄ ⊂ Rd+1 such that

‖βn − β0‖ ≤ T for all n ∈ N,∫

ψ(|e|+T‖x‖)>Q

(ψ(|e|+ T‖x‖)−Q) ν (dx,de) < ε,

νn(Rd+1 \ K̄) <
ε

Q
for all n ∈ N.
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Now, we are able to derive a convergence.

f (βn | νn) =
∫

ρ(y − x>βn)νn(dy, dx)

=
∫

min{Q, ρ(y − x>β)}νn(dy, dx)

+
∫

min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx)

+
∫

ρ(y−x>βn)>Q

(
ρ(y − x>βn)−Q

)
νn(dy, dx).

(a) The function min{Q, ρ} is bounded and continuous. Therefore,
∫

min{Q, ρ(y − x>β)}νn(dy, dx)−−−−−→
n→+∞∫

min{Q, ρ(y − x>β)}µ0 (dy, dx) .

(b) The second term fulfills
∣∣∣∣
∫

min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx)
∣∣∣∣

< 2ε +
∣∣∣∣
∫

K̄

min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx)
∣∣∣∣

≤ 2ε + sup
(z,x)∈K̄

∣∣min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}
∣∣

−−−−−→
n→+∞

2ε

because ρ is continuous, according to Assumption R5, and, hence, uni-
formly continuous on each compact set.

(c) The third term is smaller than ε since

0 ≤
∫

ρ(y−x>βn)>Q

(
ρ(y − x>βn)−Q

)
νn(dy, dx)

≤
∫

ψ(|y−x>β0|+T‖x‖)>Q

(
ψ(|y − x>β0|+ T‖x‖)−Q

)
νn(dy, dx)

=
∫

ψ(|y − x>β0|+ T‖x‖)νn(dy, dx)

−
∫

min{Q,ψ(|y − x>β0|+ T‖x‖)}νn(dy, dx)

−−−−−→
n→+∞∫

ψ(|y−x>β0|+T‖x‖)>Q

(
ψ(|y − x>β0|+ T‖x‖)−Q

)
µ0 (dy, dx)

=
∫

ψ(|e|+T‖x‖)>Q

(ψ(|e|+ T‖x‖)−Q) ν (dx,de) < ε.
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Thus, we proved

lim
n→+∞

f (βn | νn) =
∫

ρ(y − x>β)µ0 (dy, dx) = f (β |µ0) .

Thus, Assumption A9 and the first part of Assumption A10 are verified. Ac-
tually, we proved more. We have proved continuity of the loss function at
Θ× {µ0}.

4. The second part of Assumption A10 remained to be shown.

Let νn ∈ Pemp, νn
w−−−−−→

n→+∞
µ0.

Then according to Assumption R7, there is a number ∆ > 0 such that

inf
|t|>∆

ρ(t) ·M > f (β0 |µ0) + ε̄ .

Hence according to Lemma 4, we are able to find Γ such that

inf
|t|>∆

ρ(t) · inf
‖γ‖=1

ν
({

(x, e)
∣∣ Γ

∣∣x>γ
∣∣ ≥ ∆ + |e|

})
> f (β0 |µ0) + ε̄ .

Then, we define the required compact as

K = {β ∈ Θ | ‖β − β0‖ ≤ Γ} .

For β ∈ Θ, ‖β − β0‖ > Γ we receive following chain of inequalities:

f (β | νn) =
∫

ρ(y − x>β)νn(dy, dx)

≥
∫

|y−x>β|>∆

ρ(y − x>β)νn(dy, dx)

≥ inf
|t|>∆

ρ(t) · νn

({
(y, x)

∣∣ |y − x>β| > ∆
})

≥ inf
|t|>∆

ρ(t) · νn

({
(y, x)

∣∣ |x>(β − β0)| > ∆ + |y − x>β0|
})

≥ inf
|t|>∆

ρ(t) · νn

({
(y, x)

∣∣∣∣ Γ
∣∣∣∣x>

β − β0

‖β − β0‖

∣∣∣∣ > ∆ + |y − x>β0|
})

.

For any δ > 0, properly chosen sequence of γn, ‖γn‖ = 1 and its cluster point
γ̂, we have

lim inf
n→+∞

inf
β /∈K

f (β | νn)

≥ inf
|t|>∆

ρ(t) · lim inf
n→+∞

inf
{
νn

({
(y, x)

∣∣ Γ
∣∣x>γ

∣∣ > ∆ + |y − x>β0|
})

| ‖γ‖ = 1
}

≥ inf
|t|>∆

ρ(t) · lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>γn

∣∣ > ∆ + |y − x>β0|
})

≥ inf
|t|>∆

ρ(t) · lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>γ̂

∣∣ > ∆ + |y − x>β0|+ Γ
∣∣x>(γn − γ̂)

∣∣})
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≥ inf
|t|>∆

ρ(t) · lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>γ̂

∣∣ > (1 + δ)∆ + |y − x>β0|
})

≥ inf
|t|>∆

ρ(t) · µ0

({
(y, x)

∣∣ Γ
∣∣x>γ̂

∣∣ > (1 + δ)∆ + |y − x>β0|
})

= inf
|t|>∆

ρ(t) · ν
({

(x, e)
∣∣ Γ

∣∣x>γ̂
∣∣ > (1 + δ)∆ + |e|

})
.

Letting δ vanish we have

lim inf
n→+∞

inf
β /∈K

f (β | νn) ≥ inf
|t|>∆

ρ(t) · ν
({

(x, e)
∣∣ Γ

∣∣x>γ̂
∣∣ ≥ ∆ + |e|

})

> f (β0 |µ0) + ε̄ .

Thus, the rest of Assumption A10 is verified.

Assumptions A1 –A10 are verified.
Assumptions R3 and R6 give us Ω0 = Ω1 ∩ Ω2 with prob∗ (Ω0) = 1 such that for

every ω ∈ Ω0

Et (• | (X1(ω), e1(ω)), (X2(ω), e2(ω)), . . . , (Xt(ω), et(ω))) F−w−−−−−→
n→+∞

ν .

All assumptions of Theorem 2 are valid, therefore, its assertion is also valid and that
coincides with assertion of this theorem.

Additional results follow immediately from Theorems 3 and 4. ¤

Let us note that this setup covers both linear regression with random covariate
X and, also, with covariate X lead by a deterministic design.

Considered ε-M -estimator is a particular case of Asymptotically Optimal Esti-
mators (AOE). Definition of AOE together with a discussion on their consistency in
probability is published in [22].

APPENDIX

This auxiliary section contains all necessary theory on nonmeasurable mappings.
Definitions and relations are taken from [20], Chapter 1.9, pp. 52–56. All proofs can
be found in [20], also.

Definition 4. For a set B ⊂ Ω its outer probability is defined as

prob∗ (B) = inf {prob (A) | B ⊂ A ,A ∈ A} (A.1)

and the inner probability is

prob∗ (B) = 1− prob∗ (Ω \B) . (A.2)

Definition 5. For a mapping T : Ω → R the outer integral is defined as

E∗ [T ] = inf
{
E [U ]

∣∣ U ≥ T ,U : Ω → R measurable and E [U ] exists
}

(A.3)

and the inner integral is

E∗ [T ] = −E∗ [−T ] . (A.4)
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Lemma 5. For any mapping T : Ω → R there exists a measurable function T ∗ :
Ω → R with

1. T ∗ ≥ T ;

2. T ∗ ≤ U a s for every measurable U : Ω → R with U ≥ T .

The function T ∗ is called a minimal measurable majorant of T and is not uniquely
defined.
The function T∗ = −(−T )∗ is called a maximal measurable minorant of T .

Lemma 6. For any T : Ω → R

1. E∗ [T ] = E [T ∗] if one of these integral exists;

2. E∗ [T ] = E [T∗] if one of these integral exists.

Definition 6. Let X be a metric space with metric d and Xn, X : Ω → X , n ∈ N
be arbitrary maps.

• Xn, n ∈ N converges in outer probability to X if for every ε > 0

prob∗ (d (Xn, X) > ε) → 0. We use notation Xn
prob∗−−−−−→

n→+∞
X.

• Xn, n ∈ N converges almost uniformly to X if for every ε > 0 there exists a
measurable set Aε ⊂ Ω with prob (Aε) ≥ 1− ε and
d (Xn, X) −→ 0 uniformly on Aε, i. e. supω∈Aε

d (Xn(ω), X(ω)) −→ 0. We use
notation Xn

a u−−−−−→
n→+∞

X.

• Xn, n ∈ N converges outer almost surely to X if
d (Xn, X)∗ −→ 0 almost surely for some versions of d (Xn, X)∗. We use nota-

tion Xn
a s∗−−−−−→

n→+∞
X.

• Xn, n ∈ N converges almost surely to X if
prob∗ (limn→+∞ d (Xn, X) = 0) = 1. We use notation Xn

a s−−−−−→
n→+∞

X.

Definition 7. Let X be a metric space. The sequence Xn : Ω → X , n ∈ N of
arbitrary maps is called asymptotically measurable if

E∗ [f (Xn)]− E∗ [f (Xn)]−−−−−→
n→+∞

0 (A.5)

for every bounded continuous function f : X → R.

Definition 8. Xn : Ω → X , n ∈ N of arbitrary maps is called strongly asymptoti-
cally measurable if

f (Xn)∗ − f (Xn)∗
a s−−−−−→

n→+∞
0 (A.6)

for every bounded continuous function f : X → R.
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Lemma 7. Let X be a metric space, X : Ω → X be Borel measurable and Xn :
Ω → X , n ∈ N be a sequence of arbitrary maps. Then,

• Xn
a s∗−−−−−→

n→+∞
X implies Xn

prob∗−−−−−→
n→+∞

X;

• Xn
a s∗−−−−−→

n→+∞
X if and only if Xn

a u−−−−−→
n→+∞

X.

Lemma 8. Let X be a metric space, X : Ω → X be Borel measurable and separa-
ble, and Xn : Ω → X , n ∈ N be a sequence of arbitrary maps. Then, Xn

a s∗−−−−−→
n→+∞

X

if and only if Xn
a s−−−−−→

n→+∞
X and Xn, n ∈ N is strongly asymptotically measurable.

Lemma 9. Let X be a metric space, X : Ω → X be Borel measurable and separa-
ble, and Xn : Ω → X , n ∈ N be a sequence of arbitrary maps, which is asymptotically

measurable. Then, Xn
a s−−−−−→

n→+∞
X implies Xn

prob∗−−−−−→
n→+∞

X.
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[9] J. Jurečková and P.K. Sen: Robust Statistical Procedures. Wiley, New York 1996.

[10] A. J. King and T. Rockafellar: Asymptotic theory for solutions in statistical estimation
and stochastic programming. Math. Oper. Res. 18 (1993), 148–162.

[11] J. L. Kelley: General Topology. D. van Nostrand, New York 1955.
[12] K. Knight: Limiting distributions for L1-regression estimators under general condi-

tions. Ann. Statist. 26 (1998), 2, 755–770.



276 P. LACHOUT

[13] P. Lachout: Stochastic optimization sensitivity without measurability. In: Proc.
15th Internat. Conference on Mathematical Methods in Economics and Industry (K.
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