
Kybernetika

Vladimír Kučera
Sixty years of cybernetics: a comparison of approaches to solving the H2 control
problem

Kybernetika, Vol. 44 (2008), No. 3, 328--335

Persistent URL: http://dml.cz/dmlcz/135854

Terms of use:
© Institute of Information Theory and Automation AS CR, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/135854
http://project.dml.cz
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SIXTY YEARS OF CYBERNETICS

A Comparison of Approaches
to Solving the H2 Control Problem

Vladiḿır Kučera

The H2 control problem consists of stabilizing a control system while minimizing the H2

norm of its transfer function. Several solutions to this problem are available. For systems
in state space form, an optimal regulator can be obtained by solving two algebraic Riccati
equations. For systems described by transfer functions, either Wiener–Hopf optimization or
projection results can be applied. The optimal regulator is then obtained using operations
with proper stable rational matrices: inner-outer factorizations and stable projections.

The aim of this paper is to compare the two approaches. It is well understood that the
inner-outer factorization is equivalent to solving an algebraic Riccati equation. However,
why are the stable projections not needed in the state-space approach?

The difference between the two approaches derives from a different construction of
doubly coprime, proper stable matrix fractions used to represent the plant. The transfer-
function approach takes any fixed doubly coprime fractions, while the state-space approach
parameterizes all such representations and those selected then obviate the need for stable
projections.
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AMS Subject Classification: 93C05, 93D15, 49N10

1. INTRODUCTION

The H2 control problem consists of stabilizing a control system while minimizing the
H2 norm of its transfer function. Several solutions to this problem are available. For
systems in state space form, and under the standard regularity assumptions, Doyle
et al. [2] obtained an optimal regulator in observer form by solving two algebraic
Riccati equations. In the absence of the standard regularity assumptions, the H2

control problem for systems in state space form was studied by Stoorvogel [10], who
established a condition for an H2 optimal controller to exist. Chen and Saberi [1]
showed when such a controller is unique. Saberi et al. [9] then parameterized all H2

optimal controllers and identified the fixed modes of the optimal control system.
For systems described by transfer functions, Park and Bongiorno [8] employed

Wiener–Hopf optimization to obtain an optimal regulator transfer function via spec-
tral factorizations and stable projections of rational matrices. Kwakernaak [5] de-
rived an alternative solution in which operations with polynomial matrices replace
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those with rational matrices. Under the standard assumptions, Meinsma [6] applied
projection results rather than Wiener–Hopf optimization to obtain a solution using
operations with proper stable rational matrices: inner-outer factorizations and sta-
ble projections. Kučera [4] relaxed the standard assumptions and derived a general
transfer-function solution in the sense that no assumptions on the system are made
other than those securing the existence of outer factors.

The aim of this paper is to compare the state-space and the transfer-function
approaches. It is well understood that the inner-outer (or spectral) factorization is
equivalent to solving an algebraic Riccati equation. However, why are the stable
projections not needed in the state-space approach?

The answer is complicated by the fact that the above approaches are not equiva-
lent. Due to different mathematical tools applied, the H2 control problem is solved
at different levels of generality under different assumptions. Therefore same as-
sumptions (namely the standard regularity assumptions) and same mathematical
tool (namely the projection approach) are adopted first. Then the interpretation of
the state-space solution presented in [2] in terms of the transfer-function solution
obtained in [4] provides the answer.

2. PRELIMINARIES

The set of all real-rational matrix functions F of the complex variable s that are
strictly proper and analytic on the imaginary axis is denoted by RL2. The symbol
RH2 will be used to denote the set of strictly proper rational matrices that are
analytic in the closed right-half complex plane, while RH⊥2 will denote the set of
strictly proper rational matrices that are analytic in the closed left-half complex
plane. Then RH2 is a subspace of RL2 and RH⊥2 is the orthogonal complement of
RH2 in RL2.

The H2 norm of a function F from RL2 is defined as

‖F‖ :=
(

1
2π

∫ ∞

−∞
trace FT(−jω)F (jω) dω

) 1
2

where FT denotes the transpose of F . In the sequel, we shall use the shorthand
notation

F ∗(s) := FT(−s)

for any rational matrix F .
The symbol RH∞will be used to denote the set of proper rational matrices that

are analytic in the closed right-half complex plane. A matrix F ∈ RH∞ is said to
be inner if F ∗F = I. Left multiplication by an inner matrix preserves H2 norms.
A matrix F ∈ RH∞ is said to be outer if F (s) has full row rank for all s in the
open right-half complex plane. An important result, see Vidyasagar [11], is that any
RH∞ matrix F of full rank can be factored as F = FiFo where Fi is inner and Fo is
outer. A matrix F is said to be co-inner if FT is inner, and co-outer if FT is outer.

A (linear, time-invariant, differential) system in state-space form is a quadruple
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of real matrices (A,B,C,D) such that

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x is the state, u is the input, and y is the output. The transfer function of
the system is T (s) = C(sI −A)−1B +D, which is also denoted by

T :=
[
A B

C D

]
.

The pair (A,B) is said to be stabilizable if there exists a matrix L such that A+BL
has all eigenvalues with negative real parts and the pair (A,C) is said to be detectable
if there exists a matrix K such that A +KC has all eigenvalues with negative real
parts.

3. PROBLEM FORMULATION

To fix ideas, the H2 control problem in the “textbook” form [12] is considered. Given
a state-space description of the system S, hereafter called the plant,

ẋ = Ax+B1v +B2u

z = C1x+D11v +D12u

y = C2x+D21v +D22u

find a system R, called the controller, that stabilizes S and minimizes the H2 norm
of the transfer function T from v to z in the standard control system configuration
shown in Figure. In this figure, u is the control input, v is the external input, y is
the measured output, and z is the controlled output. Stability means that the states
of S and R go to zero from any initial state.

yu

zv

S

R

Fig. Standard control system.

It is assumed that the pair (A, B2) is stabilizable, the pair (A, C2) is detectable,
the matrix [

A− jωI B2

C1 D12

]

has full column rank for all finite ω, the matrix
[
A− jωI B1

C2 D21

]
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has full row rank for all finite ω, and

D11 = 0, DT
12D12 = I, D21D

T
21 = I, D22 = 0 .

Under these conditions, a unique optimal controller exists.

4. TRANSFER FUNCTION SOLUTION

Firstly the transfer function of the plant, partitioned conformably with Figure,

S =
[
S11 S12

S21 S22

]
: =



A B1 B2

C1 0 D12

C2 D12 0


 ,

is represented in terms of doubly (left and right) coprime matrix fractions over RH∞

S = M−1N = N̄M̄−1,

with the denominator matrices block triangular

M =
[
I M12

0 M22

]
, N =

[
N11 N12

N21 N22

]

and

N̄ =
[
N̄11 N̄12

N̄21 N̄22

]
, M̄ =

[
I 0
M̄21 M̄22

]
.

Then all controllers RS that stabilize the plant S are parameterized as [3, 11, 12]

RS(W ) := (X +WN22)−1(Y +WM22) = (Ȳ + M̄22W )(X̄ + N̄22W )−1

where X,Y and X̄, Ȳ are RH∞ matrices that satisfy the Bézout identity
[

X −Y
−N22 M22

] [
M̄22 Ȳ
N̄22 X̄

]
=

[
I 0
0 I

]

and where W is a parameter that ranges over RH∞.

Finally, two dual projection results will be used:

(1) Let F and G be matrices with equally many rows, with F in RH2 and G in
RH∞. Suppose that G is inner and G∗F is in RH⊥2 . Then for any RH2 matrix H,

‖F −GH ‖2 = ‖F ‖2 + ‖H ‖2 .

(2) Let F and G be matrices with equally many columns, with F in RH2 and G in
RH∞. Suppose that G is co-inner and FG∗is in RH⊥2 . Then for any RH2 matrix H,

‖F −HG ‖2 = ‖F ‖2 + ‖H ‖2 .
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The strategy to find an optimal controller is to use doubly coprime matrix frac-
tional representations for S and express the transfer function T of the stable closed-
loop system as an affine function of the parameter W . This expression is then ma-
nipulated so that the two projection results may be applied to minimize the norm
of T .

One obtains

T = S11 + S12RS(I − S22RS)S21 = N11 − V N21

where
V : = M12(X̄ + N̄22W )−N12(Ȳ + M̄22W )

embodies the dependence of T on W . Write N21 = U Ñ21, where Ñ21 is co-inner
and U is co-outer. Then

TÑ∗21 = N11Ñ
∗
21 − V U .

Let P denote the projection of N11 Ñ
∗
21 on RH2. Then

T = T1 − V1Ñ21

with T1 := N11 − PN21 in RH2 and T1 Ñ
∗
21 in RH⊥2 . Therefore, applying the dual

projection result, one has

‖T ‖2 = ‖T1‖2 + ‖V1‖2

where only V1 depends on W .
Now

V1 = V U − P = N̄11K − N̄12W2

where
N̄11K : = (M12X̄ −N12Ȳ )U − P , W2 := WU.

Write N̄12 = Ñ12Ū , where Ñ12 is inner and Ū is outer. Then

Ñ∗12 V1 = Ñ∗12 N̄11K − Ū W2 .

Denote P̄ the projection of Ñ∗12N̄11K on RH2. Then

V1 = T̄2 − Ñ12V̄

where T̄2 := N̄11K − Ñ12P̄ is in RH2 and Ñ∗12T̄2 is in RH⊥2 . Then the primal
projection result can be applied and

‖V1‖2 =
∥∥ T̄2

∥∥2 +
∥∥ V̄

∥∥2

where only V̄ depends on W .
To summarize,

‖T ‖2 = ‖T1‖2 +
∥∥ T̄2

∥∥2 +
∥∥ V̄

∥∥2

provided V̄ = ŪWU − P̄ is strictly proper.
The optimal controller R0 corresponds to V̄ = 0, hence

R0 = RS(Ū−1P̄U−1).

Indeed, the optimal controller depends on the outer factor U , on the co-outer factor
Ū , and on the projection P̄ (which in turn depends on P ).
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5. STATE SPACE SOLUTION

The state-space approach is based on expressing the doubly coprime matrix fractions
of S and R in terms of stabilizing state feedback and output injection gains. Let
K and L be matrices such that A + B2L and A + KC2 have all eigenvalues with
negative real parts; then

M :=



A+KC2 0 K

C1 I 0
C2 0 I


 , N :=



A+KC2 B1 +KD21 B2

C1 0 D12

C2 D21 0




N̄ :=



A+B2L B1 B2

C1 +D12L 0 D12

C2 D21 0


 , M̄ :=



A+B2L B1 B2

0 I 0
L 0 I




and

X :=
[
A+KC2 −B2

L I

]
, Y :=

[
A+KC2 −K
L 0

]

Ȳ :=
[
A+B2L −K
L 0

]
, X̄ :=

[
A+B2L −K
C2 I

]
.

The strategy is then to take specific gains K and L that will make the optimizing
choice of W obvious. In particular, take

K = −(B1D
T
21 +QKC

T
2 )

where QK is the largest symmetric non-negative definite solution of the algebraic
Riccati equation

AQK +QKA
T +B1B

T
1 = (B1D

T
21 +QKC

T
2 ) (B1D

T
21 +QKC

T
2 )T.

Then N21 is co-inner and N11N
∗
21 belongs to RH⊥2 so that the dual projection result

is readily applicable. Further take

L = −(BT
2 QL +DT

12C1)

where QL is the largest symmetric non-negative definite solution of the algebraic
Riccati equation

ATQL +QLA+ CT
1 C1 = (BT

2 QL +DT
12C1)T(BT

2 QL +DT
12C1).

Then N̄12 is inner and N̄∗12N̄11 belongs to RH⊥2 . Since N̄11K can be obtained from
N̄11 by replacing B1 with K, then N̄∗12N̄11K belongs to RH⊥2 as well and the primal
projection result is readily applicable.

It follows that
‖ T ‖2 = ‖N11‖2 +

∥∥ N̄11K

∥∥2 + ‖W‖2

for any W in RH2. The minimum of the norm is achieved for W = 0, and

R0 = RS(0) = X−1Y = Ȳ X̄−1 :=
[
A+B2L+KC2 −K
L 0

]
.

Therefore, the optimal controller is in observer form and depends on the stabilizing
gains K and L.
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6. COMPARISON

The difference between the two approaches derives from a different construction and
use of doubly coprime fractional representations. The transfer-function approach
takes any fixed doubly coprime fractions of S, while the state-space approach pa-
rameterizes all such fractions in terms of K and L. This difference shows in full
when the transfer function T is manipulated so that the projection results may be
applied. While the transfer-function approach simply extracts the inner factor from
N̄12 and the co-inner factor from N21, the state-space approach shapes the two dou-
bly coprime fractions so as to make them inner/co-inner by appropriately selecting
K and L. This is achieved by solving two algebraic Riccati equations.

Now it is seen why no stable projection is needed in the state-space approach.
The process of shaping N̄12 and N21 results in trivial outer and co-outer factors,
Ū = I and U = I. Consequently, the inner N̄12 and the co-inner N21 cancel all
the stable dynamics when forming N11N

∗
21 and N̄∗12N̄11K . That is why P = 0 and

P̄ = 0.

7. CONCLUSION

The state-space model implies that the state vector x of the plant is available for
feedback and output injection. Following Nett et al. [7], all doubly coprime frac-
tional representations of the plant can be parameterized in terms of stabilizing state
feedback gain K and stabilizing output injection gain L. The norm minimization
procedure then makes use of the design parameters K and L so as to select the
inner-outer factors that obviate the need for stable projections.

It is further noted that the design parameters K and L in the doubly coprime
fractional representation of the plant directly define the optimal controller R0. Con-
sequently, the doubly coprime fractions need not be explicitly calculated.

This advantage is not available in the transfer-function approach, where one has
no clue as to which doubly coprime fractional representation to take. Having no
control over the shape of the resulting inner-outer factors, one has to apply proper
stable projections.

In addition to the conceptual advantages, the state-space approach is also superior
in computational terms. The critical part of the transfer-function algorithm is the
final substitution of the optimal W into KS to obtain K0. This operation generically
results in common factors that must be cancelled to obtain K0 in reduced form.
Another difficulty is related to degree control. When operations with proper stable
rational matrices are implemented using polynomial matrix operations, polynomials
may result whose leading coefficients are small and care must be taken when setting
them to zero.

In general, the computational complexity of the state space synthesis depends
largely on the size of the state vector x whereas the transfer-function algorithm
depends critically on the number of the control inputs u and the measurement out-
puts y. That is why the latter algorithm is most useful in the single-input single-
output case.
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