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A NOTE ON MAPPINGS OF BAIRE SPACES

TIBOR NEUBRUNN

There are some assertions concerning Baire spaces in the proof of which the
following false statement is used:

(1) If f is a one-to-one, feebly continuous mapping from X onto Y, then f is
almost continuous. (See, e.g. [4] p. 217). '

We shall deal with the following three assertions of the mentioned type.

(2) If f is a one-to-one feebly continuous and feebly open mapping of X onto Y,
then X is a Baire space if and only if Y is a Baire space.

(3) If f is a one-to-one feebly continuous and feebly open mapping of X onto Y,
then X is totally inexhaustible if and only if Y is totally inexhaustible.

(4) If f is a one-to-one feebly continuous and feebly open mapping of a regular
space X onto a totally inexhaustible space Y, then X is a Baire space.

Concerning (2), see [3], Corollary p. 383. As to (3) and (4), see [4], Corollaries
3.6 and 3.7.

We shall prove that (2) is true while (3) and (4) are false. Note that all the results
of [3] are correct. The only place where (1) was used is the assertion (2), which is
also true. Among the corect results of [4], the false corollaries (3) and (4) appear
In their proofs (1) was used.

A topological space X is said to be a Baire space if the intersection of any
sequence {G,};., of dense open sets in X is dense in X. It is said to be
inexhaustible if it is not of the first category (or, in the notations of [1], if it is not
a meagre set) relative to itself.

Hence a space X is inexhaustible if and only if it is not a contable union of closed
nowhere dense sets in X or, which is the same, if the intersection of any countable
sequence {G,}.-, of open dense sets is nonempty.

A topological space X is said to be totally inexhaustible, (totally non-meagre in
the notations of [1]) if any closed subspace of X is inexhaustible.

A mapping from X onto Y is said to be feebly continuous (feebly open) if for any
nonempty openset Ve Y (U c X), thesetint (f~' (V)) (int (f (U)) is nonempty.

A mapping from X onto Y is said to be almost continuous if f' (G) c

cint f' (G) for any open set Gc Y.
Note that the notion “‘almost continuous’’ as defined above is known in literature
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also under different names. We omit various equivalent definitions and different
names of this notion.

Proposition 1. Statement (1) is not true.

For the proof it is sufficient to take X = Y =(— o, o) with the topology of the
real line and to put f(x)=ux, if x#0, x#1, f(0)=1, f(1)=0. Clearly f is
one-to-one feebly continuous moreover it is also feebly open. If G=(-},:)c Y,

then f'(G)=(-)>, O)U(O, ;)u{1}. Hence f'(G)¢int f'(G).
Thus f is not almost continuous.
Now we shall give the proof of (2).

Theorem. If f is a one-to-one feebly continuous and feebly open mapping of
X onto Y, then X is a Baire space if and only if Y is a Baire space.

Proof. Let {G,}.., be a sequence of open sets which are dense in Y. We shall
prove that the setsint 7' (G,), n=1, 2, ... are dense in X. Let x, € X, n arbitrarily
fixed, and U any neighbourhood containing x,. Since f is feebly open, we have
int f (U)# 0. Hence a nonempty open set V exists such that V< f(U). The set
VNG, is a nonempty open set. Since f is also feebly continuous, we have
9+ W=int (f '(VnG,)).

But

Wef'(VnG)cf ' (f(U)=U

Since U was an arbitrary neighbourhood of x, and W is a nonempty open subset

of f'(G,) contained in U, the statement x,eint(f '(G,)) is true. Thus
Z,=int f'(G,) are nonempty open and dense subsets of X. Since X is a Baire

space, the set ﬁ Z, is dense in X. This and the feeble continuity of f imply that

n=1

f(ﬁ Z,) is dense in f(X)=Y

Since ﬂ G, :ﬂ f(Z):f(ﬂ Z,), the set ﬂ G, is dense in Y.

~ The “only if” part follows from the fact that the inverse mapping f ' is also
feebly continuous and feebly open.
Note that the above theorem remains to be true if the words ‘X is a Baire space,
Y is a Baire space” are substituted by words ““X is of the second category, Y is of
the second category’’. For this case the proof is quite analogical. This case is also
included in [2], see Theorem 17, Corollary 17.1, where statement (1) was not used.
In Theorem 18 of [2], (1) was used only indirectly. In fact in 18 only the fact was
used that (2) is true. As we have seen (2) is true, hence Theorem 18 of [2] and its
proof are corect.
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Proposition 2. Statements (3) and (4) are not true.

Proof. Denote successively by Q, R, Z, N the fqllowing subsets of E*: the set
of all (r, 0), where r is rational ; the set of all (x, 0) where x is real; the set of all
(0, y), where y is real; the set of all (0, n), where n is a positive integer. Put
X=E’-R, Y=XuQ. Both X and Y will be considered with the topology given
by the Euclidean metric.

The space X is totally inexhaustible. In fact we may consider X as a subspace of
E’. If F is a nonempty closed substet of X, then the closure F (in E?) is of the form
F=(FnR)UF. The set F is a nonempty and closed subset of E°, hence it is of the
second category in itself. The set FAR is nowhere dense in F as can be
immediately verified. Hence F is of the second category in F. The last implies that
F is of the second category in itself. Thus we have that F is totaly inexhastible.

The space Y is not totally inexhaustible. It is sufficient to take the subspace
Qc Y, which is closed in Y, but it is of the first category.

We shall define now a feebly continuous and feebly open mapping from X onto
Y. First of all let @ be some one-to-one function frome N onto Q. Let 3 be some
one-to-one function from Z — N onto Z.

Define f: X— Y as:

t if teZ
f()= @) if teN
() if teZ—-N.

The function f is a one-to-one, feebly continuous and feebly open mapping of X
onto Y. Thus (3) is not true. The fact that (4) is not true follows immediately if we
consider instead of f the inverse mapping f~' from the regular space Y onto the
totally mexhaustlble space X.
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3AMEYAHHWE Ob OTOBPAXEHHUAX B3POBCKHUX INMPOCTPAHCTB
Tu6op Hoit6pyH
Pesiome
O6pa3 63poBCKOro MPOCTPAHCTBA NP 3HAYHTENBHO 06006LIEHHOM roMeoMopdH3Me TBASACTCH TAKKE
63poBckuM mpocTpaHcTBoM. Ho nmpu ToM Xe romeoMopduime o6pa3 NMpOCTPaHCTBA, Y KOTOPOro
KaX[10€ 3aMKHYTOe MOANMPOCTPAHCTBO BTOPOW KAaTeropu, HeoOA3aTeNbHO TOTO Xe THUMAa. ITHUX ABA

YTBEPXKICHHUSA NMOABJIAIOTCA B pa60Te, MONOJIHAA TEM CaAMbIM HEKOTOPbLIC H3BECTHLIC PE3YAbLTATHI B 3TOM
HanpaBJICHHH.
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