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Math. Slovaca, 27,1977, No. 2,173—176 

A NOTE ON MAPPINGS OF BAIRE SPACES 

TIBOR NEUBRUNN 

There are some assertions concerning Baire spaces in the proof of which the 
following false statement is used: 

(1) If f is a one-to-one, feebly continuous mapping from X onto Y, then f is 
almost continuous. (See, e.g. [4] p. 217). 

We shall deal with the following three assertions of the mentioned type. 
(2) Iffis a one-to-one feebly continuous and feebly open mapping of X onto Y, 

then X is a Baire space if and only if Y is a Baire space. 
(3) Iffis a one-to-one feebly continuous and feebly open mapping of X onto Y, 

then X is totally inexhaustible if and only if Y is totally inexhaustible. 
(4) If f is a one-to-one feebly continuous and feebly open mapping of a regular 

space X onto a totally inexhaustible space Y, then X is a Baire space. 
Concerning (2), see [3], Corollary p. 383. As to (3) and (4), see [4], Corollaries 

3.6 and 3.7. 
We shall prove that (2) is true while (3) and (4) are false. Note that all the results 

of [3] are correct. The only place where (1) was used is the assertion (2), which is 
also true. Among the corect results of [4], the false corollaries (3) and (4) appear. 
In their proofs (1) was used. 

A topological space X is said to be a Baire space if the intersection of any 
sequence {Grt},7=i of dense open sets in X is dense in X. It is said to be 
inexhaustible if it is not of the first category (or, in the notations of [1], if it is not 
a meagre set) relative to itself. 

Hence a space X is inexhaustible if and only if it is not a contable union of closed 
nowhere dense sets in X or, which is the same, if the intersection of any countable 
sequence {Gn}~-X of open dense sets is nonempty. 

A topological space X is said to be totally inexhaustible, (totally non-meagre in 
the notations of [1]) if any closed subspace of X is inexhaustible. 

A mapping from X onto Y is said to be feebly continuous (feebly open) if for any 
nonempty open set V c= Y ( U c X), the set int (fl ( VO) (int (/ (U)) is nonempty. 

A mapping from X onto Y is said to be almost continuous if f~l (G) cz 

cint f~x (G) for any open set GcY. 
Note that the notion "almost continuous" as defined above is known in literature 
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also under different names. We omit various equivalent definitions and different 
names of this notion. 

Proposition 1. Statement (\) is not true. 
For the proof it is sufficient to take X= Y=( — &, °°) with the topology of the 

real line and to put f(x) = x, if JC^O, x±\, f(0)=\, /(1) = 0. Clearly / is 
one-to-one feebly continuous moreover it is also feebly open. If G = ( — 1, l2) ~~ Y, 

t h e n r , ( G ) = ( - i ,0 )u(0 ,^ )u{ l} . Hence f~\G)(tint f'\G). 
Thus / is not almost continuous. 

Now we shall give the proof of (2). 

Theorem. If f is a one-to-one feebly continuous and feebly open mapping of 
X onto Y, then X is a Bake space if and only if Y is a Bake space. 

Proof. Let {Gn}n=l be a sequence of open sets which are dense in Y. We shall 
prove that the sets int f~l (Gn), n = 1, 2, ... are dense in X. Let JC„G X, n arbitrarily 
fixed, and U any neighbourhood containing xl}. Since / is feebly open, we have 
i n t / ( f / ) ^ 0 . Hence a nonempty open set V exists such that Vczf(U). The set 
VnGn is a nonempty open set. Since / is also feebly continuous, we have 
0=£ W=int(rl(VnGn)). 

But 

VJczrl(VnGn)<-:rl(f(U))=U. 

Since U was an arbitrary neighbourhood of jti, and W is a nonempty open subset 
of f~x(Gn) contained in U, the statement xi)e'mt(f~l(Gn)) is true. Thus 
Zn =int f~\Gn) are nonempty open and dense subsets of X. Since AT is a Baire 

space, the set p | Zn is dense in X. This and the feeble continuity of / imply that 
n = l 

/ ( f l Z„) is dense in f(X)= Y. 
n = \ 

Since f] Gn ZD f] f(Zn)z>f(f] Zn), the set f] Gn is dense in Y. 
n=\ n = l n = l n = l 

The "only if" part follows from the fact that the inverse mapping f~l is also 
feebly continuous and feebly open. 

Note that the above theorem remains to be true if the words "X is a Baire space, 
Y is a Baire space" are substituted by words "X is of the second category, Y is of 
the second category". For this case the proof is quite analogical. This case is also 
included in [2], see Theorem 17, Corollary 17.1, where statement (1) was not used. 

In Theorem 18 of [2], (1) was used only indirectly. In fact in 18 only the fact was 
used that (2) is true. As we have seen (2) is true, hence Theorem 18 of [2] and its 
proof are corect. 
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Proposition 2. Statements (3) and (4) are not true. 
Proof. Denote successively by Q, R, Z, N the following subsets of E2: the set 

of all (r, 0), where r is rational; the set of all (x, 0) where x is real; the set of all 
(0, y), where y is real; the set of all (0, n), where n is a positive integer. Put 
X = E2- R, Y = XuQ. Both X and Y will be considered with the topology given 
by the Euclidean metric. 

The space X is totally inexhaustible. In fact we may consider X as a subspace of 
E2. If F is a nonempty closed substet of X, then the closure F (in E2) is of the form 
F = (Fn/?)uF. The set F is a nonempty and closed subset of E2, hence it is of the 
second category in itself. The set FnR is nowhere dense in F as can be 
immediately verified. Hence F is of the second category in F The last implies that 
F is of the second category in itself. Thus we have that F is totaly inexhastible. 

The space Y is not totally inexhaustible. It is sufficient to take the subspace 
Q <= Y, which is closed in Y, but it is of the first category. 

We shall define now a feebly continuous and feebly open mapping from X onto 
Y. First of all let q) be some one-to-one function frome IV onto Q. Let ip be some 
one-to-one function from Z — N onto Z. 

Define /: X-> Y as: 

/ if tiZ 
f(t)= cp(t) if teIV 

tp(t) if teZ-N. 

The function / is a one-to-one, feebly continuous and feebly open mapping of X 
onto Y. Thus (3) is not true. The fact that (4) is not true follows immediately if we 
consider instead of / the inverse mapping f~l from the regular space Y onto the 
totally inexhaustible space X. 
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ЗAMEЧAHИE OБ OTOБPAЖEHИЯX БЭPOBCKИX ПPOCTPAHCTB 

Tибop Hoйбpyн 

Peзюмe 

Oбpaз бэpoвcкoro пpocтpaнcтвa пpи знaчитeльнo oбoбщeннoм roмeoмopфизмe ЯЂЛЯЄTCЯ тaкжe 
бэpoвcким пpocтpaнcтвoм. Ho пpи тoм жe roмeoмopфизмe oбpaз пpocтpaнcтвa, y кoтoporo 
кaждoe зaмкнyтoe пoдпpocтpaнcтвo втopoй кaтeropии, нeoбязaтeльнo тoro жe типa. Этиx двa 
yтвepждeния пoявляютcя в paбoтe, пoпoлняя тeм caмым нeкoтopыe извecтныe peзyльтaты в этoм 
нaпpaвлeнии. 
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