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ADDITTVITY OF THE G A U G E 

LADISLAV MlSlK 

In his book Lectures on Analysis, Volume I, p. 359 G. Choquet presents 
Problem 19.5 under the title Additivity of the Gauge. In this problem he asserts the 
following: Let X be a convex cone in a Hausdorff topological vector space E and 
f: X-» (0, oo) a positive homogeneous map. Let Xf = {JC eX: /(JC).-S 1}. Then Xf 

is a closed convex set in X with convex complement iff f is lower semi-continuous 
and additive. 

The following example shows that the assertion in Problem 19.5 is wrong. Let E 
be the real euclidean space R2 and X = {(x,y)eR2: JCISO, y=0}. Let / : 
X—>(0, oo) be a function for which /((JC, y)) = 0 for all (JC, y)eX satisfying the 
inequality O^y^jc and /((JC, y)) = °° for all (JC, y)eX satisfying the inequality 
JC <y. The function / is a positive homogeneous map. The sets Xf = {(JC, y) eX: 
O^y^-x} and X-Xf = {(JC, y)eX: x<y) are convex and the set Xf is closed 
in X. The function/is not additive as/((1,1)) = 0 =£ oo = /((0,1)) + /((1,0)). 

The exact formulation of Problem 19.5 should be as follows: LetXbe a convex 
cone in a Hausdorff topological vector space E and f: X—»(0, oo) a positive 
homogeneous map. Let Xf = {xe X: f(x) ^ 1\. Then Xf is a closed convex set in 
X with convex complement iff f is lower semi-continuous, subadditive and /(JC + y ) 
= /(*) +f(y) for all JC, yeXfor which x+yeXand f(x)>0 and f(y)>0. 

Proof. First we prove the necessity. The lower semi-continuity of / is 
a consequence of the equations X = {JCEX: /(JC)>CX} for all a < 0 , {jceX: 

/ ( J C ) > 0 } = \J{xeX: / ( * ) > - ) and {jceX: /(jc)>a} = X-crJQ for all a > 0 

and of closeness of Xf in X. 
Let x, y, x+yeX. The inequality f(x+y) ^ /0O+/O0 is evident if 

JC 
f(x) + f(y) = ™. Let 0<min (f(x),f(y)) ž max(f(x), / ( y ) )<» . Then 

/ (*)* 
v x + y f(x) x 

•jf-reXf. From the convexity of X, we have e, , , ', . = ., 'Kt ' . T T T + 
f(y) J f(x)+f(y) f(x)+f(y)f(x) 

+ f(J)l)(y)](^) e X<- Th e r e f o r e f(x+y) -- f(x) + f(y). Let f(x) = 0 and 

0 < / ( y ) < 0 ° - Then cue, T r r e X , for all a > 0 . From the convexity of Xf we have 
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JC + ( l ) y 

\ n/ = L - ^ - + ( l - i ) - f - e X f f o r n = l , 2 , 3 , . . . . But disclosed in X. 
f(y) nf(y) \ n) f(y) 

Therefore jrreXf and / (x+y) ^f(x)+f(y). The case 0</ (*)<°° , /(y) = 0 is 

now obvious. Let f(x) = 0 and /(y) = 0. Then 2nx, 2nyeXf for n = l ,2 , 3, .... 

Therefore n(x + y) = -(2nx + 2ny)eXf andf(x+ y) g - f o rn = 1 , 2 , 3 , ....This 
.£ ft 

shows that f(x+y) = 0 = f(x) + f(y). The subadditivity of / is proved. 
Let now x, y, x + y e X and f(x) > 0 and f(y) > 0. To prove the equation 

f(x+y) = f(x) + f(y) it suffices to prove f(x + y) ^f(x) + f(y). But this 
holds as f(x) + f(y) = sup {a: 0 < a < f(x)} + sup {|3: 0 < p < f(y)} = 
= sup {a + P: 0 < a < / ( x ) , 0<p</ (y )} ^ f(x+y). The last inequality follows 

JC + V a j c B V J C 

from the convexity of X - Xf and from the relations £ = - H ^ ~, - , 
J r a + (3 a + (3a a + (3 p a 

^eX-Xf, which hold for all 0<a</(jc) and 0<(3</(y). 
Let now / be lower semi-continuous, subadditive and f(x +y) =f(x)+f(y) for 

all JC, y for which JC, y, x +y eX and / ( J C ) > 0 , / (y )>0. The closeness of Xf in X 
follows from the lower semi-continuity of /. The convexity of Xf is a consequence 
of the subadditivity and positive homogeneity of / . We get the convexity of X — Xf 

as follows: Let JC, yeX-Xf, a > 0 , (3>0 and a + (3=l. Then / ( x ) > l and 
/ ( y ) > l , and so we have /(cuc)>0 and /((3y)>0. Therefore /(cuc + Py) = 
= /(ojc)+/(py) = a/(jc) + P/(y)>l . Then cue + py eX-Xf. 
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Резюме 

В этой работе дана верная формулировка вопроса 19.5 из книгы С. Окх^е*, Еес1иге8 оп 
Апа1у515, Уо1ите I. 
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