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FOURIER COEFFICIENTS OF CONTINUOUS LINEAR
MAPPINGS ON HOMOGENEOUS BANACH SPACES

MILOSLAV DUCHON

Introduction. Let T be the quotient group R/2xZ (R and Z denoting the
additive group of reals, integers, respectively). Let H(T) be a homogeneous
Banach space on T ([6], p. 14) with the norm || ||s. Let X be a quasi-complete
locally convex (Hausdorff) topological vector space and u: H(T)— X a continuous
linear mapping. The Fourier coefficients of the mapping u are, by definition, the
elements of X of the form &i(n) = u(e ™), n € Z. Let (x.) be a two-way sequence of
elements of X. In this paper the necessary and sufficient conditions are given for
(x.) to be the Fourier coefficients of some continuous, weakly compact or compact
linear mapping u:H(T)— X, in particular if H(T)=C(T), to be the
Fourier—Stieltjes coefficients of a regular vector measure on T with values in X
(cf. also [7], [10] and [11]). The results are a generalization of the results of ([6],
p. 34 ff.) proved for a two-way sequence of complex numbers.

1. Recall that H(T) is a linear subspace of the Banach space L'(T) (of all
complex-valued Lebesgue integrable functions on T) having a norm || ||« Z]| |x
under which it is a Banach space having the properties:

(1) If fe H(T) and v €T, then f, e H(T) and ||f, ||s = ||f]|&r-

(fo(®)=f(t—v))
(2) For all fe H(T), v, voeT, lim [If, = fuollu =0.

Examples of homogeneous Banach spaces on T are (cf. [6]): the space C(T) of
all continuous functions, the space C"(T) of all n-times continuously differentiable
functions, the spaces L°(T), 1=p <.

A trigonometric polynomial on T is a function a =a(t) defined on T by

a(t)= ia,- g"’. Denote by p (T) the set of all trigonometric polynomials on T. We
shall n;;d the following theorem ([6], Th. 2.12).
Theorem 1.1. For every f € H(T) we have 0,.(f)— f, n — «, in the H(T) norm.
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Recall that

a.(f, t)=_i,, (1_L) () ",

n+1

where f(j) is the jth Fourier—Lebesgue coefficient of f defined by
1 »
)==—[f(t) e dt.
fi) =5 [1@)e

Let the locally convex topology of the space X be defined by a family 2 = (¢q) of
continuous seminorms. For a continuous seminorm q and for a linear mapping u
from H(T) into X we denote

lulla =sup {q(u(f)):f e H(T), [[flla =1}

Lemma 1.2. Let u: H(T)—> X be a continuous linear mapping. For every

a=Ya; " we have u(a)= >aii(—j) and q(u(a)) = |la||u||ull, for every continu-

ous seminorm q.

Theorem 1.3. (Parseval’s formula) Let f € H(T) and u: H(T)— X be a conti-
nuous linear mapping. Then

wpy=tim > (1-22L) pyacp.

N—x —N

Proof. Since, by theorem 1.1, f =lim 0.(f) in the H(T) norm, it follows from
lemma 1.2 and the continuity of u that the assertion is true.

Theorem 1.4. Let (x;) be a two-way sequence of elements of X. Then the
following two conditions are equivalent:
(a) There is a continuous linear mapping u: H(T)— X, with ||ul||,=C, < for
every continuous seminorm q, such that i(j)=x; for all je Z.
]

(b) For all trigonometric polynomials a = >a; €” and all continuous seminorms q
-l
1]
there holds q (Ea_,x,-) = |la||C,.
=7

Proof. Clearly (a) implies (b). If we assume (b), then the linear mapping u
1]

defined on the space of all a =Yg, e € p (T) by
-1

u(a)= Za-fx,-

satisfies the inequality q(u(a@))=C,l|allx for every q €2, i.e. u is a continuous
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linear mapping on p (T) and hence using theorem 1.1, u admits a unique extension
([2], I1. §3, Th. 6.2) & that is a continuous linear mapping on H(T) with ||i]|, =C,
for all g €?. Since & extends u, we obtain i (j)=x;.

We say that the function F: T— X is integrable if, for every x' € X' (the space of
all continuous linear forms on X), the function t— (F(t), x') is Lebesgue
integrable, and if, for every M € B(T) (Borel sets in T), there exists an element
xm € X such that

(xm,x") =J:w (F(t), x')dt, x'eX'.

If M =T, we write xy= [ F(¢) dt (cf. [7],'p. 6).
Let (x;) be a two-way sequence of elements of X. Denote

N .
on(X, t)=2; (1—%) xe ™ N=1,2,..

and by S~(X) the continuous linear mapping on H(T) defined by
SNO() =37 [fOon(X, Dy dt, feHT, N=1.2,..

If u e L(H(T), X) (the linear space of all continuous linear mappings of H(T)
into X) and if x; = (j), we shall write

o.(X,t)=0on(u,t) and Sn(X)=Sn~(u).
We have
_1 _ g iy 2
SO =5 [fOon(X, 1) dt =3 (1-55) FOx,
' feH(T).

Theorem 1.5. The members of a two-way sequence (x;) in X are the Fourier
coefficients of some u e L(H(T), X), with ||lulls =C, <, for all q € 2, if and only
if |[SN\(XDI.=C,, N=1, 2,...

Proof. The necessity. Let x; =i(j) for some u e L(H(T), X) with ||u|l,=C,,
qe?2. Then Sn(X)=Sn(u), N=1, 2,... Recall that ||on(f)||u=||flle for all
f e H(T). Since, for f e H(T), Sx(u)(f) = u(on(f)), we have

ISn(X)la = lISn () |la =sup {q(Sn(@)()): fe H(D), lIflla=1} =
sup {q(u(on(f))):f € H(T),
Ifll=1}=
Ssup {qu(f)):fe HD), Iflns1}=lull, =C,,

forallge?, N=1, 2,...

!
The sufficiency. Take a =Y a; e*. Then we have
—
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Zx_,a, = lim E (

Now =N

)x_,-a,= lim Sn(X)(a).
N
Thus

]
q (2x-a) = lim q(Sn(X)(a))=lalls lim sup Sn(X)llq = llalluC..

According to theorem 1.4 there exists a u € L(H(T), X) such that x; = 4(j) and
lulls =C, for all g€ 2.
If F: T— X is an integrable function, the element of X of the form

1 —iit
o fe F(¢) dt

is called the Fourier—Lebesgue coefficient of F.

Theorem 1.6. Let F: (T)— X be an integrable function and put
1
w()=5- [[OF@© ar, fec.

The members of a two-way sequence (X;) in X are the Fourier—Lebesgue
coeffzaents of F if and only if lim Snx(X)(f)=u(f) for all f € C(T).
N—ox
Proof. Let x; = F(j), j € Z. Clearly f— u(f) is a continuous linear mapping on
C(T) and thus x; = F(f) =1(j). By Parseval’s formula we have '

lim (X)) = lim Su()() = tim >, (1L 7gac- = e,

for all f e C(T). Conversely we have x_; = lim Sx(X)(e™) = u(e™) = a(—j), ie.
N

poen _ oaren_ L[ i
= F() = a()=5 fe F(t) dt.
For a similar result we quote ([7], Th. 2).
Let now X' be the conjugate of a separable Banach space X. Let x'(-): T—> X"’

be a function such that x’(-)x is measurable for every x € X and vrai sup [Ix' )| =
te

C < o, Then the equality
Wwf)(x)= fx (s)xf(t)dt, feL'(T), xeX

defines a continuous linear mapping u: L'(T)— X' with the norm C ([4], VI. 8. 6).
Hence we may define the jth Fourier—Lebesgue coefficient £'(j) of such a function
x'(-) as the element of X such that

()% =% fx'(z)x e dr, xeX.
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If (x}) is a two-way sequence of elements of X', then if we put

N

for each x € X, the function on(X’, -)x is measurable and bounded on T. Hence
the equation

SN XN =37 [FOo(X", x dt, feL'(m)

defines a continuous linear mapping Snx(X') of L'(T) into X’ whose norm is
llSn (Xl =sup llon (X", )|l ([4], VI. 8. 6).
Theorem 1.7. Let X’ be the conjugate of a separable Banach space X. The

members of a two-way sequence (x}) of elements of X’ are the Fourier—Lebesgue
coefficients of an essentially unique function x'(-):T— X' such that x'(-)x is

measurable and essentially bounded for each x € X, with vrai sup ||x'(¢)|| = C if
teT

and only if
ISN(XDII=C, N=1,2,....
Proof. If x;=x' (j) for some x'(-): T— X' with properties as in the theorem,

then, for fixed €T and x € X, we have

N .
on (X )] = 2 (I_NI]+I 1)"iix e

N

=% U(;(1°N|];L|1)eim_n)x'(s)x dsl=

=[IKnllllx’CHxll =Clix|l,

.=—2_1; UKN(S —t)x'(s)x ds

hence sup |lon(X', 1)||I=SC, N=1, 2, ..., ie. [SN\(X)||=C, N=1, 2,...

teT
Conversely, let ||Sv(X')||=C, N =1, 2,... Then according to theorem 1.5 there
exists a continuous linear mapping u: L'(T)— X' such that &(j) =x} and ||u||=C.
Hence there exists ([4], VI. 8.6) an essentially unique function x’(-): T— X’ such
that x'(-)x is measurable and essentially bounded for each x € X and

@M@ =5 [vOxf @) dt, feL'M, xeX,
llu]] = vrai sup ||x'(s)|]|=C.

Further, x;=x'(j).
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Let rca(T) denote the Banach space of all regular countably additive scalar
measures yu defined on the o-algebra %B(T) of Borel sets in T with the total
variation norm ([4], IV. 2. 17). Let X" be the second dual (the strong bidual) of X
([5]), 8.7). Let m erca(T, X"),i.e. m: B(T)— X" is a set function such that for each
x'€X' the scalar set function mox’=(x', m(-)) belongs to rca(T) and the
mapping x’'—>mox’ of the space X' into rca(T) is continuous in o(X', X) and
a(u, C(T)) topologies on X' and rca(T), respectively. The equation

x'(u(f))=% ff dmox’, feC(T), x'eX’,

defines a continuous linear mapping © on C(T) into X ([4], V1. 7.2 and [12], §3,
3. Th.) for which ||«||; = ||m||,(T), where (the q-semivariation of m on E € %(T))

Imllo@®)=sup q (Zem(E),

the supremum being taken over all finite families of scalars, ||c;|| =1, and over all
finite disjoint families E;, i =1, ..., n, E; € B(T) such that | J E; = E. We take q € ?
i=1

extended to X".
Let (x;) be a two-way sequence of elements of X. We say that x; is the jth
Fourier—Stieltjes coefficient of m e rca(T, X") and we write x; =ri1(j), if

’ 1 —ijt '
X X =EJC ! dm(s)x
for all x' e X'.

Theorem 1.8. The members of a two-way sequence (x;) of elements of X are the
Fourier—Stieltjes coefficients of some m € rca(T, X"), with ||m||,(T)=C,, q €7 if
and only if |[SN(X)|l=C,, qeQ, N=1, 2,...

Proof. If there exists a set function m € rca(T, X”) such that x; = r1(j), then the

. 1 ; . .
equation x’u(f)=Zr- fdmox', feC(T), x' e X', defines a continuous linear

mapping u: C(T)— X with |lu|l,=|lm|.(T)=C,, qe?2 ([4], VI. 7.2, [12], §3.
3. Th.). Thus x; are the Fourier coefficients of u, hence according to theorem 1.5
we have ||SN(X)|.=C,, qe?2, N=1, 2,...

Conversely, if ||SN(X)|ls =C,,q€?,N=1,2, ..., then according to theorem 1.5
there exists a continuous linear mapping u: C(T)— X such that a(j) =x;, ||ul|, =
=C,, q € 2. Hence there exists ([4], VI. 7.2 and [12], §3. 3 Th.) a set function
m erca(T, X") with [|m||,(T)=lulls=C,, qe?. So x;=u(j)=rm(j).
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2. Fourier coefficients of weakly compact mappings.

Let V be a normed vector space. Recall that a linear mapping u: V — X is said to
be weakly compact (compact) if, for a suitable neighborhood U of zero in V, u(U)
is a weakly relatively compact (a relatively compact) subset of X ; equivalently, u
transforms the bounded subsets of V into the weakly relatively compact (relatively
compact) subsets of X.

Theorem 2.1. Let (x;) be a two-way sequence of elements of X. Then the
following two conditions are equivalent:
(a) There is a weakly compact (compact) linear mapping u: H(T)— X with
llulls =C,, q €? such that a(j)=x, for all je Z.
l

(b) For all trigonometric polynomials a = >.a; " and all q €7 there holds
i

]
q (_Zla—;x,-)éllallqu
and the set

1
llalle

l
A= { Za_,-x,-:for allaep (T)}
is contained in a weakly compact (compact) subset of X.

Proof. If (a) holds, then the mapping u is necessarily continuous with
lulls=C,, q€?, and since the set A is the range of u on the set of all
trigonometric polynomials of H-norm one, A is contained in a weakly compact
(compact) subset W of X.

Conversely, let the set A be contained in a weakly compact (compact) subset W

of X. The closed absolutely convex hull Q(W) of the set W is a closed convex
"bounded and so complete subset of X because X is quasi-complete and hence

E:_(;(W) is a weakly compact (compact) subset of X ([8], p. 244 and 328).

Therefore the closed absolutely convex hull aco(A) of the set A is a weakly
compact (compact) subset of X. Since p (T) is dense in H(T), the continuous linear
mapping u: H(T) — X, existing according to theorem 1.4, maps every bounded set
in H(T) into a relatively weakly compact (relatively compact) subset of X. Since
H(T) is a Banach space, we obtain that u is a weakly compact (compact) linear
mapping such that 2(j)=x; and ||ul||,=C;, q € 2.

Theorem 2.2. The members of a two-way sequence (x;) in X are the Fourier
coefficients of some weakly compact (compact) mapping u € L(H(T), X) if and
only if there exists a weakly compact (compact) subset W of X such that
Sn(X)(f)e W for all fe H(T), lIfll«=1 and for N=1, 2,...
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Proof. The necessity. If x;=a(j) for some weakly compact (compact)
u € L(H(T), X), then there exists a weakly compact (compact) subset W of X such
that

S\ =3 (1~ 1) G-

=u (; (1 —%)f(i) e")=u(on(f))eWw, N=1,2,..

for all fe H(T), [Ifllu=1, because |[on(f)|lx=1.
1]
The sufficiency. For every trigonometrical polynomial a = Za,- e” we have
=1

N

TR S S SR | EE
Tl 2% = Tallw 2%~ ol 2 "R+ Jaix-i =
= lim 5400 ()< W

I3
and for some positive C,, g € 7, q (Z’a_,x,)é lla||«C,. It follows from t’heorem 2.1

that there exists a weakly compact (compact) linear mapping u: H(T)— X such
that x; =ua(j).
Close to the preceding theorem is the following.

Theorem 2.3. The members of a two-way sequence (x;) in X are the Fourier
coefficients of a some weakly compact (compact) linear mapping u € L(H(T), X),
with ||u|l,=C, for all q € 2, if and only if ||SN(X)||,=C,<», N=1, 2,... and
there exists a weakly compact (compact) subset W of X such that Sx(X)(f)e W,
N=1,2,... for all fe H(T), |Ifllx=1.

Proof. Similarly as in theorem 2.2.

Theorem 2.4. Let X be a Banach space and (x;) a two-way sequence of elements
of X. The elements x; are the Fourier—Lebesgue coefficients of some measurable
weakly compact valued (compact valued) function g: T— X, i.e. g(T) is a weakly
relatively compact (relatively compact) subset of X, if and only if there exists
a weakly compact (compact) subset W of X such that Sn(X)(f)e WforN=1,2,...
and all feL'(T), |Ifll.=1.

Proof. The necessity. If x,»=é(j)=% e "g(t) dt with g weakly compact

valued (compact valued), then the relation
w(f)=5- [fadt. fer'm
Tog )9k IE
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defines a weakly compact (compact) linear mapping u: L'(T)— X ([5], 9.4.7 and
9.4.8). Then x; = (j) and according to theorem 2.3 there exists a weakly compact
(compact) subset W of X such that Sx(X)(f) = Sn(u)(f)e W,N=1,2, ... and all
feL'(D), |Iflh=1. ’

The sufficiency. If

Sv(X)(f)eW, N=1,2,... andall feL'(T), |Ifl.=1,

for some weakly compact (compact) subset W of X, then according to theorem 2.3
there exists a weakly compact (compact) linear mapping u: L'(T)— X such that
a(j)=x;. Hence ([5], 9.4.7 and 9.4.8; [4], VI. 8.10 and VI. 8.11) there exists
a measurable weakly compact valued (compact valued) function g : T— X such that

u(f)=%ffg de, feL'(T).
So x;=4(j). -

Theorem 2.5. Given a two-way sequence (x;) of elements of X, there exists
a regular vector measure m: B(T)— X with ||m||,(T)=C,, q € 2 such that x; are
the Fourier—Stieltjes coefficients of m if and only if ||Sn(X)|l=C,,q€?2,N=1,
2,... and there exists a weakly compact subset W of X such that

Sn(X)(f)eW, N=1,2,.., feC(D), lfll-=1.
Proof. If there exists a regular vector measure m: B(T)— X with ||m]|,=C,,
q €7, such that x; =ﬁl(j)=-21;"e’i"' dm(t), then the equation u(f)=% If dm,

f € C(T), defines a weakly compact linear mapping on C(T) into X ([7], Prop-
osition 1, [9], Theorem 3.1) with |[u|l, =||m||.(T)=C,, q € 2, ([3], Theorem 12).
Thus x; are the Fourier coefficients of u, hence according to theorem 2.3 there
exists a weakly compact subset W of X such that S\(X)(f)e W, N=1, 2, ...,
feC(), |fll-=1, and we have ||Sx[[=C,, qe?2, N=1, 2,...

Conversely, if ||Sx|le=C;, g €2, N=1, 2,... and there exists such a weakly
compact subset W of X that Sn(X)(f)e W, N=1, 2, ..., ||f|l-=1, then according
to theorem 2.3 there exists a weakly compact linear mapping u: C(T)— X such
that 2(j)=x; with ||ulls =C,, q € 2. Hence there exists ([7], Proposition 1, [3],
Theorem 12) a regular vector measure m: B(T)— X such that

w) =5 [fam. fecm, lml@=llul.SC,. qeo.

So x; =a()=m().

Note. We have obtained the last theorem as a consequence of theorem 2.3. For
another approach cf. ([10], Theorem 2, [11], Theorem 2). A similar theorem in
case of any locally compact abelian group is proved in ([7], Theorem 1).

329



Corollary. Let X be a semi-reflexive locally convex space. The elements of the
two-way sequence (x;) in X are the Fourier—Stieltjes coefficients of some regular
vector measure m: B(T)— X, ||m||.(T)=C,, q €2 if and only if

ISNX).=C,y, N=1,2,..., qe?.

Proof. A locally convex space X is semi-reflexive if and only if every bounded
subset of X is weakly relatively compact ([5], 8.4.2, [8], §23, 3(1)). Every
semi-reflexive space is quasi-complete ([8], §23, 3(2), [13], IV. 5.5). Now it
suffices to use theorem 2.5.

The corollary is applicable, for example, to all quasi-complete nuclear spaces
([13], IV. 5. 5).
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KO3®dULIMEHThI ®YPHLE HEMNPEPBIBHBIX IMHENHBIX OTOBPAXEHUN
HA OOHOPOOHBLIX IMPOCTPAHCTBAX BAHAXA

Munocnas IyxoHb
Pe3iome

IMycts T — onHomepHslit Top. Ilycts H(T) — ogHopoaHoe npocTpaHcTBO BaHaxa, T.€. moampoc-
TpaHcTBO npoctpaHcTBa Banaxa L'(T) Bcex KOMIUIEKCHBIX MHTerpupyeMbix mo JleGery cyHKumin
onpenenennbix Ha T, umeromee HopMy || || =] ||;, co cBOlcTBaMM WHBapHaHTHOCTHM TpPH COBUrE
M HEMpepbIBHOCTH CABHIa.

ITyctb X — KBa3sMMOJNHOE JIOKAJBHO BbIMYKJIOE TOMOJOTHYECKOE BEKTOPHOE MNPOCTPAHCTBO
u u: H(T)—> X — HenpepbIBHOe nHHeliHOe oToOpaxenne. Koadduumuenramn ®ypbe 0ToOpaxeHus u
HasbiBatoTca 3neMeHThl X Bupa i (j) =u (e™™), j — uenoe uucno. B paGoTe [oKa3bIBatoTCH pe3ynbTa-
ThbI CIAEAYIOIIEro THMA.

ITycts (x;) — GeckoHeyHass B 06€ CTOPOHBI MOCHENOBAaTENbHOCTL 3JIEMEHTOB NMPOCTPAHCTBA X.
Onementsl x; aBasiorcs Koddduuuentamn Gypbe HEKOTOPOrO HENMPEPLIBHOTO (CNabo KOMMAKTHOrO

WM KOMMNAKTHOTO) JKHelHOro oto6paxenus u: H(T)—- X, ||ull,=C,, q € 7, Torna u TonsKO TOrNA,
Koraa

ISN(X).=C,, qe?, N=1,2,..
(1 cymecTByeT cnabo KOMNAKTHOE WM KOMNAKTHOE nogMHoxectso W B X Takoe, 4To

Sh(X)(f)eWw, N=1,2,..., feH(T), |flla=1).
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