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ON TRANSFINITE CONVERGENCE AND
GENERALIZED CONTINUITY

ANNA NEUBRUNNOVA

Given a set of functions, which are continuous is some generalized sense, it may
or may not be closed with respect to the transfinite convergence. Various criteria
are given for such sets to be closed (see the papers [7], [8], [9], [10], [12]). This
paper gives some new results in this direction.

Throughout the paper the transfinite sequence means a transfinite sequence of
functions of the type €2, where  is the first uncountable ordinal number. In
general the function will be defined on a set X assuming the values in a first
countable topological space Y. In particular cases X will be supposed to be
a topological space of a suitable type. The notion of transfinite convergence will
mean the pointwise transfinite convergence. It will be a variant of the classical
definition of Sierpinski (see also [4], [6], [12] for some of its modifications).

Definition 1. A transfinite sequence {f:}:<a of functions defined on a set X and
assuming values in a topological space Y is said to be convergent to the function f:
X—Y, if for any x € X there holds limf:(x)f(x). (The last means that given
a neighbourhood V of f(x), there exists an ordinal number §,<Q such that f
(x) € V whenever £ Z&,.)

Two counterexamples

Here we shall prove two theorems which are in fact two counterexamples
concerning the closedness of two types of functions.

It is known (see [8]) that the limit of a transfinite sequence {f:}e<a of
quasicontinuous functions defined on a separable metric space and assuming values
in a metric space is quasicontinuous. The same is true if the quasicontinuity is
substituted by cliquishness or somewhat continuity ([8], [10]). It was also proved
([10]) that in the case of quasicontinuity and cliquishness and also in some other
cases the assumption of separability of X may be substituted by the local
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separability. This is not the case when somewhat continuity is consedered. Recall
first the definition of somewhat continuity.

Definition 2. (see [2]). A mapping f: X— Y, where X, Y are topological spaces,
is said to be somewhat continuous if for any open set G c Y such that f '(G) is
nonempty, the set int f~'(G) is nonempty. (Here int A means interior of the set A).

Theorem 1. There exists a locally separable metric space X and a transfinite
sequence {f:}s<a f:: X— R of real functions coverging to f such that each f: is
somewhat continuous but f is not somewhat continuous.

Proof. For § < let (Xg, 0:) be a metric space such that X: contains exactly the
points (¢, &) where 0=¢t=1 and for x,=(t1, §), x2=(t2, E), 0:(x1, x2) = |[ti —t2].
Put X=|JX: and for x, ye X let

E<Q
1if xeX,,Y y, n#A

Q("’Y)={e§(x‘,y) if x,yeXe, E<Q

The space X is locally separable. Define now a function ¢: X — R as follows:
If x € Xo, where x = (¢, 0), then

(x)—{t if ¢ is rational
@ 1 if ¢ isirrational.

If x € Xe, E¥0and x = (¢t, &), then put @ (x) =t¢. The transfinite sequence {f: }s<a of
the functions f:: X — R will be defined as:

@(x) if xeXo, or xeX,, where n=&

fé(x)={0 if xeX,, where n<§.

Now if x e X and x € Xo we have f:(x)=q@(x) for every & <£2, hence lim f:(x)

E<Q

= @(x). If x ¢ X, then x € X,, where n >0. Thus for & >7n we have f:(x)=0 and

so lim f:(x) = 0. The sequence {f:}z<a is convergent and the limit function f is
E<Q

_[px) if xeXo
f(")_{ 0 if x¢Xo.

Evidently f is not a somewhat continuous function. Each of the functions f;,
1 =E& < Q is somewhat continuous. In fact, let G be open and such that f'(G) # 0.
Then G necessarily contains an open interval (a, b) = (0, 1). By the definition of f
the set fz ' (a, b) contains the set of all (¢, £), where a <t <b, which is an open set
in X. Thus int f/(G) > int f~' (a, b)#@. The theorem is proved.

There is another known fact that the limit of a transfinite sequence of real
continuous functions of a real variable is a continuous function. The last fact was
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proved by Sierpiniskiin [11]. It was generalized by T. Salat in [12] for transfinite
sequences of mappings from X to Y, where X, Y are arbitrary metric spaces. The
separability, even the local separability of X, was not supposed. The extension of
the result of [12] to the case when X is the first countable topological space is
immediate. (It will be seen also from Corollary 2 of Theorem 3). But we shall
prove by means of the continuum hypothesis that it is not possible to extend the
mentioned result to an arbitrary topological space.

Theorem 2. There exists (under the continuum hypothesis) a topological space
X and a transfinite sequence {f:}s<a of real continuous functions defined on
X converging to f such that f is not continuous.

Proof. Consider the space X = (— o, ) with the density topology (see [3]). Let
{fs}s<a be a sequence of approximately continuous functions such that the
transfinite limit f of {f:}s<e is not approximately continuous. Such a sequence
exists under the assumption of the continuum hypothesis according to a result of
J. S. Lipinski [6]. Since in the density topology a function is continuous precisely if
it is approximately continuous (see [3]), we have that {f:}:<e is a sequence of
continuous functions on X, the limit of which is not continuous. The theorem is
proved.

Weak continuity and transfinite convergence

Weak continuity is defined in the following way (see [S]).

Definition 2. A mapping f: X—Y (X, Y are topological spaces) is said to be
weakly continuous at the point x € X if for any open neighbourhood V of f(x) there
exists a neighbourhood U of x such that f(U) <= V (A denotes the closure of the set
A). If f is weakly continuous at any x € X, then it is said to be wekly continuous.

The fact that any continuous function is weakly continuous is evident. If we
consider only the function with the values in regular topological spaces, then it can
be easily seen that the notions of weak continuity and continuity coincide. In this
case the question whether the limit of a transfinite sequences of weakly continuous
functions is weakly continuous reduces to the problem of a transfinite limit of
continuous functions. But in general this is not the case, and so the question
whether the transfinite limit of weakly continuous functions is weakly continuous
has its own meaning. If the space where a function takes its values is not regular,
then there may exist a weakly continuous function which is not continuous. This
may occur even in the case when the space Y is first countable. We shall give such
an example. (The example may be found in another context in [1]).

Example. Let X=(0, 1) with its ordinary topology. Let Y=(0, 1) with
a topology defined by the following system of neighbourhoods. If x # 0, then the
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neighbourhoods of x are the ordinary neighbourhoods. The neighbourhoods of
x =0 will be the sets (0, t)—{%, %—, ooy %, }, 0<t<1. The identical mapping

from X onto Y is weakly continuous but not continuous.

Theorem 3. Let X, Y be topological spaces satisfying the first countability axiom.
Let Y be a Hausdorff space. Let {f:}:<a be a transfinite sequence of weakly
continuous functions on X with values in Y, converging to f. Then f is a weakly
continuous function.

To prove the theorem we shall use the following lemma.

Lemma. If {f:}:<q is a transfinite sequence of functions defined on X with values
in Y, where Y is the first countable Hausdorff topological space and S <X a
countable set such that {f:(x)} converges to f(x) for any x € S, then there exists
such a &, that for EZ &, we have f:|S =f|S.

Proof. We may suppose with no loss of generality that S is a set of values of
a sequence {x,}n-1. For n fixed choose a base {Vi}r-1 of neighbourdhoods of

f(x.). Since Y is Hausdorff we have [ =f{(x.)}. It follows from the convergence
k=1

of {fs(xn)}s<a to f(x.) that to any V. there exists & such that if E=&., then
fe(x») € Vi. Choosing an ordinal number 7, such that n, =& for k=1, 2, ... and
n.<$2, we have fe(x.)e Vi for every E=7. and any k=1,2,... Hence
fe(x) eV =f(x.) for EZE,. This being true for any n =1, 2, ... we choose &,
such that §o6>n, forn =1, 2, ... and &, <. Thus for § =&, we have f:(x.)=f(x.)
for n=1, 2, ... The lemma is proved.

Proof of theorem 3. Suppose f not to be weakly continuous at a point xo€ X.
Then there exists a neighbourhood V of f(xo) such that for any neighbourhood U
of x, there exists x € U with f(x) & V. Since X satisfies the first countability axiom
we may choose a base of neighbourhoods {U., }.-: at x, with a point x, € U, and
f(x.) & V. According to the Lemma there exists £, < such that fe(x,)=f(x.) for
E=E,n=0,1,2, ... Hence feo(x.)=f(x.) for n =0, 1, 2, ... We obtain from the
weak continuity of fg, at xo the existence of a neighbourhood U of x, with f,
(U)c V. Since {U.}a-1 is a base at x,, there exists no such that U,,= U, hence
f(xn,) € V. This is a contradiction.

In connection with the weak continuity let us mention the notion of ®-continuity
defined by Fomin in [1].

Definition 3. A function f: X—Y (X, Y are topological spaces) is said to be
O-continuous at xo€ X if for any neighbourhood V of f(xo) there exists
a neighbourhood U of x, such that f(U)c V. If f is @-continuous at any x c X,
then it is said to be ©@-continuous.

It is evident from the definition that @-continuity implies the weak continuity.
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Since f~'(V)<f~'(V) for any continuous f (see [14] p. 80), we obtain that the
continuity implies @-continuity. The function in the above example is an example
of a @-continuous function with values in a first countable space, which is not
continuous. If X is a regular space, the ®@-continuity and the weak continuity
coincide. From the last fact and from Theorem 3 the following result follows.

Corollary 1. Let X, Y be first countable topological spaces. Moreover, let X be
regular and Y Hausdorff. Then the limit of any transfinite sequence of @-continu-
ous function defined on X and taking values in Y is ©-continuous.

Since for the regular space Y the weak continuity and @-continuity coincide with
the notion of continuity, we obtain another result generalizing the mentioned result
of [12].

Corollary 2. Let X, Y be first countable topological spaces and moreover, let
Y be a regular Hausdorff space. Then the limit of any transfinite sequence of
continuous functions defined on X, with values in Y is continuous.

There is a question, whether there exists a weakly continuous function which is
not @-continuous. We found in the literature notes that such a function exists (see
[13]) but we did not find any example of such a function. The following example is
due to T. Salit.

Example. Let X={a,b,c,d} and I ={0, X, {b}, {c}, {b,c}, {a,b},
{a,b,c}, {b,c,d}}. Define f: X— X as follows

x | a | b | c | d
fey I c I d [ b | a
We prove that f is weakly continuous. Since f is continuous at b, c, (b, ¢ are

isolated) it is sufficient to verify the weak continuity at a, d.
The point a. Each neighbourhood V(f(a)) = V(c) of the point f(a) contains {c},

hence V(f(a))Dm = {c, d}. Take U(a)={a, b} as a neighbourhood of a. Then

f(U(a)) = V(f(a)), since f(U(a)) = f({a,b}) = {c,d}.
The point d. Each neighbourhood V(f(d))= V(a) of the point f(d) contains

{a,b}, and so V(f(d))={a,b} = {a,b,d}. We can take {b,c,d} as

a neighbourhood U(d) of the pointd. Then f({b, ¢, d}) = {a, b,d} = V(f(d)).
Now we prove that f is not ©@-continuous at the point a. Choose V(f(a))

= V(c)={c}. Then V(f(a))=m= {c, d}. Each neighbourhood of the point a
contains {a, b}, therefore U(a)>{a,b} = {a,b,d}. But f(d)=a é{c,d}, and

so f(U(a)) ¢ V((f)a).
Added in proofs. While in proofs the author proved Theorem 2 without
continuum hypothesis.
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O TPAHC®UHHUTHOUN CXOJUMOCTHU Y OBOBIMIEHHOW HEIPEPBIBHOCTHU
A. Hey6pyHHoBa
Pe3ome

Pe3ynbTaThl, KacarolIMECs BOMPOCA COXPAaHEHM KAKOTO-TO THNA HENMPEPBLIBHOCTH NMPH TPAHCHUHHT-
HOM CXOIMMOCTH MOCJIEfOBaTeNbHOCTEd ObUiM M3ydeHbl B [6-12]. B paGote uccienyetcs (Kpome
JIPYTHX) 3TOT BONPOC 151 c/1a00 HenpepbIBHbIX PyHKUMIA U PYHKUMIA @ HenpephIBHbIX, ONPeJeIEHHbIX
®omunbiM B [1]. TTokasbiBaeTcs, YTO B cliydae cj1abo HenmpepbIBHbIX (PYHKLMIA, ONpeAeIeHHbIX Ha
TOMNOJIOrHYECKOM NPOCTPAHCTBE X M NMPUHUMAIOLLMX 3HAYEHHE B TOMOJIOTMYECKOM npocTpaHcTse Y (X,
Y oGnapgaeT nepBoi akCHMOMOM CYETHOCTH) cabast HENPEPLIBHOCTh COXPAHAETCS.
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