
Mathematica Slovaca

Júlia Volaufová
On the confidence region of a vector parameter

Mathematica Slovaca, Vol. 30 (1980), No. 2, 113--120

Persistent URL: http://dml.cz/dmlcz/136233

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136233
http://project.dml.cz


Moth. Slovaca 30,1980, No. 2,113—120 

ON THE CONFIDENCE REGION 
OF A VECTOR PARAMETER 

JULIA VOLAUFOVÁ 

Introduction 

Throughout this paper we shall consider the following regression model: 

Ee(£) = A0 

with § an n-dimensional random variable. The symbol 0 will denote a A:-dimens
ional vector of unknown parameters and the nXk — type matrix A is assumed to 
be known. The covariance matrix of the vector t; will be denoted by 25. 

The aim of this paper is to find a confidence region of the vector parameter 0 in 
such situations in which there would not have to exist any statistics of the form 
/(JC) = L'§ possessing the property Eo(L'?) = 0 for all 0eRk. The solutions are 
given under the constraints R(25)^n, R(A)^min {n, k} and hence involve also 
singular situations. 

Consequently, there is need for the use of the generalized inverses (g-inverses) as 
introduced in [4] both with their applications (cf. [2]). 

1. Preliminaries 

Let us consider the model of an indirectly observed vector parameter 0. This 
model will be denoted by (£, A0,2 5 ) and ? will be a gaussian vector. 

We shall start with a list of frequently occurring symbols and notations. Given 
a matrix A, the symbol A" will denote its g-inverse defined by means of the 
formula A A" A = A. 

Special cases: 
A~(H) — g-inverse satisfying the relations (Am(H)A)'H = HA~(H)A the so-called 

minimum H-norm (seminorm) g-inverse of A 
A~d) — g-inverse satisfying the relations (AA^))' = AAr(i), the so-called I-least 

squares g-inverse of A; 
Aro).m(£t) — a g-inverse satisfying the relations: 
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(AAi( i ) , m ( i 5 ) ) ' = AAi(D>ni(i8), AAi(i),m(5:.f)A = A , 

2.1 Ai ( I ) ) m(25)AAl(i), m(2:g) = 2 § Ai(i), m(25), 

(Ai(i),m(2:e)A)'-S.i = .SgAi(I)fin(--6)A, 

the so-called minimum 2.=-norm (seminorm), I-least squares g-inverse of A. 
Given a matrix H (of square type and positive semidefinite (p.s.d.)), the symbol 

|| • ||H will denote the norm (seminorm) in the Hilbert space with the scalar product 
(x, y) = x'Hy. Especially if I is a k x fc-type identity matrix, || • 11s is the usual 
Euclidean norm in Rk. 

Let us consider a consistent system Ax=y. For any matrix H of the above 
described type let || • ||H be the norm (seminorm) on the set of all solutions of the 
given system. The solution x0 is said to be the minimum H-norm (seminorm) 

solution provided ||*0||H = min ||x||H = min {||JC||H: Ax=y}. The name for 
{x :Ax=y} 

Am(H) adopted above is justified by the fact that the vector Am(H)y is a minimum 
H-norm (seminorm) solution of the system Ax=y. The family of all minimum 
H-norm (seminorm) g-inverses of the matrix A' is denoted by (r4')m(U). 

Definition 1.1. Letp, 0 be two column vectors with the range in Rk. The linear 
function f(0)=p'd is said to be unbiassedly estimable iff there is a column vector 
LeRn such that Ee(L'£) = p'6 for all 6eRk. 

Lemma 1.1. [2] A function f(0)=p'd is unbiassedly estimable if and only if 
peM(A'), the range of the matrix A'. 

Definition 1.2. Let E0(^) = AS, where £ is an n-dimensional random vector. Let 
2- be its covariance matrix. Any vector M% satisfying the conditions: 

(i) VpeM(A')VOeRk:E0(p'M%) = p'O 
(ii) \/peM(A') [VMi?^M?(Efl(p'Mi§) = p'0)-»(a 2 p'M|^a 2 p'Mi?) l 

is said to be a fictitious jointly effective estimate of 0. Here the symbol a2 is used to 
denote the variance, and M is an arbitrary matrix of type kxn. 

Remark 1.1. The term fictitious should emphasize the following fact. In the 
case M(A') = Rk we have E*(M£) = 0 for all 6eRk. However, if M(A')^Rk, 
there is 0O eRk such that E0(M^)^0O, hence M§ is not an unbiassed estimate of 
0O. On the other hand, when substituting the vector M£ for the argument of any 
unbiassedly estimable function f(0) = p'6, one gets an unbiassed estimate. 

Remark 1.2. Let f(6) =p'0 with p eM(A') (i.e. / is estimable, cf. Lemma 1.1). 
An estimate L'% is said to be unbiassed if A'L=p. The variance of such an 
estimate equals L 'XJL. It is natural to conceive an unbiassed estimate / (§) = L '§ to 
be the best if L'll^L is minimal, i.e. if \\L\\^ is minimal. 

Theorem 1.1. [2] The best linear unbiassed estimate of an unbiassedly estimable 
function f(6)=p'6 is given by 

/(£)=p'[(A')- (25)]'?. 
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Remark 1.3. Since the expression in the above theorem is given by means of 
g-inverses, it is not unique. One of the possible choices is the following one 

p'[A'(25 + AA')-A]-A'[(25 + AA') - ] ' | . 

Its variance is given by the formula 

o2(fm =P'[(A'(25 + AA')-AY - I]p 

established in [2]. 

Theorem 1.2. [2] Let us consider the covariance matrix of the form a2H with a2 

an unknown scalar and H a known matrix, respectively. Let & be a fictitious jointly 
effective estimate of 0 (cf. Def. 1.2.). Then the formula 

a2 = (£-A0) 'H-(<f-A0)/s 

gives an unbiassed estimate of a2. Here s = R(H, A) — R(A) and denotes the 
difference of ranks of the hypermatrix (H, A) and of the matrix A. 

Lemma 1.2. [4] Let % be a gaussian vector with a zero mean and the covariance 
matrix 25 = 2. Then the quadratic form ?'2"§ is x2(k)-distributed, independently 
of which 2" was chosen, and k = R(2). 

2. Confidence Region for the Estimable Functions 
of a Vector Parameter 

Let us consider the model E0(^) = A0. We shall consider the functions f(6) = 
P'0 with M(P) = M(A'). It is assumed that 25 = a2H. 

1. a2-known. 

Lemma 2.1. The quadratic form 

[/(£) -f(0)v[n(^x^vH(A%(mvrm) -mvo2 

is a x\k) - variate with Ar = R(P'[(A')-(H)]' H(A%(H)P). 
Proof. Follows immediately from lemma 1.2. 
To calculate the number k in the preceding Lemma, we have to find a simpler 

expression for the rank of the matrix 

P'[(A')1;(„)]'H(A')-(„)P. 

Theorem 2.1. R(P'[(A')"(H)]' H(A')-(H)P) = R(H(H + AA')"A). 
Proof. Since H is p.s.d., there is J such that H = JJ' (cf. [2]). It was pointed out 

above that any minimum H-norm (seminorm) solution x of the system Afx=y has 
theformx = (A')-(H)y.ThuswegetafamilyJV%={(A')-(H)y: (A')~(m e (4')~(m)of 
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solutions. If (A')~(H)y is a particular solution, then M= {(A')m(H)y + k: it e Ker 
A'nKerH}. Consequently M((A'm(H)A') = ^((A') (H)oA') v (Ker A' n KerH), 
where M((A')^(H)oA') v (Ker A' n Ker H) denotes the subspace of Rn generated 
by M((A')~(H)oA') u (Ker A' n Ker H). Thus the dimension of ^(H(A')" (H)A') is 
invariant for any choice of the g-inverse. One possible choice is the matrix 
(H + AA')" A[A'(H + AA')~A]~. Since the matrix H and the matrix AA' are 
p.s.d., we have M(H) c M(H + AA') and M(A) = M(AA') c ^ ( H + AA'), 
respectively. 

It was assumed that .v^(P) = ^ ( A ' ) . Therefore there is a nonsingular matrix Q 
with P = A'Q. Substitute for P. Then 

R(P'[(A')-(H)]'H(A')m(H)P) = R(Q'A[(A')-(H)]'H(A')m(H)A'Q) = 
= R(A[(A')m(H)]'A[(A')-(H)]'H) = R(A[(A')m(H)]'H), 

using the idempotence of the matrix A[(A')m(H)]' together with its property 
A[(A')m(H)]' H = H(A')"(H)A' (cf. [4] for a more detailed discussion). Using the 
equivalences 

M(A)^M(H + AA')o3C: A = (H + AA')C 
.7^(H)c^(H + A A ' ) o 3 E : H = (H + AA')E = E'(H + AA') 

one obtains the relations 

R(A[(A')m(H)]'H) = R(H(A')"(H)A') = R(E'(H + AA')(A')"(H)C'(H + AA')) . 

In the latter relation, let us substitute for (A')m(H) the choice (H + AA')"x 
XA[A'(H + AA')"A]". Then 

R(H(A')m(H)A') = R(E'(H + AA')C(C'(H + AA')C)"C'(H + AA')) . 

The proof is finished by establishing the relations 

R(H(A')"(H)A') = R(E'(H + AA')C) = R(E'A) = R(HC) = R(H(H + AA')"A), 

which are an immediate consequences of the properties of g-inverses, 

Q.E.D. 

Remark 2.1. If M(A)aM(H), then it follows easily that 

R(H(H + AA')"A) = R(A). 
Theorem 2.2. Let § be an n-dimensional gaussian vector with the expectation 

AS and the covariance matrix o2H, respectively. Let 0 be an unknown vector 
parameter. Consider the function f(6) = P'0 with M(P) = M(A'). Then the true 
value of P'O lies in the set 

^={y :(y-/(?)) '[P'[(A ')-<„,] 'H(A')- ( H )P]-(>'-/(^) /a 2^c 2}n 
n{ / (?) + ^(P'[(A')- (H)]'H(A'); (H,P)} 
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with the probability 

Prob{x2(r)^c2}. 

Here r = R(P'[(A'),;(„)]'H(A')I;(H)P andf(%) is the best unbiassed estimate of P'0. 
Proof. By Theorem 1.1., /(£) = P'[(A')-(H)]'f. According to Lemma 1.2 and 

Theorem 2.1. 

Prob {(P'0-/(l))'[P'[(A')- (H)]'H(A')- (H)P]-(P'0-/(|))/a2«c2} = 
= Prob {P'0e {y: (y - / ( f ))'[P'[(A')-(H)]'H(A')-(H)P]-(y -/(S))/<x2*= 

sSc2}}=Prob(x2(r)s=c2). 

On the other hand 

Prob {/(£) e {^(P'[(A');(„)]'H(A')-(H)P) + Ee/(?)}} = 1 

and hence 

Prob {P'0 e {y: (y -/(?))'[P'[(A')-(H)]'H(A').;(„)P]-(y -f(S))lo2< 
^c 2}n{/( | ) + ̂ (P'[(A')-(H)]'H(A')-(H)P)} = Prob (*2(r)^c2). 

Q.E.D. 
2. a2-unknown. 

Lemma 2.2. Letf(O) = P'0, M(P) = M(A') within the regression model (£, Ad, 
a2H). Let v = A[(A')"(H)]'£ - £ (tAe vector v is said to be the correction vector). 
The random variable v'VTv is a a2%2(R(H, A)-R(A))-variate. 

Lemma 2.3. The vectors v and P'[(A')"(H)]'§ are stochastically independent. 
In the proof cf. [1] and [2]. 

Theorem 2.3. Let £ be an n-dimensional gaussian vector with E0(^) = A0, 
2£ = a2H. Letf(0) = P'6 be unbiassedly estimable and M(P) = M(A'). Then the 
true value of P'0 lies in the set 

W= {y: . ^ ) / B ^ c 2 } n { / ( ^ 

with the probability 

Prob (F(r, R(H, A)-R(A))^c2) . 
Here 

Ay) = (y -/(|))'[P'[(A')-(H)]'H(A')-(H)P]-(y - / ( | ) ) / r 
B = t>'H't>/(R(H, A) -R (A ) ) 

f R(H(H + AA'YA) (Theorem 2.1) 
r lR(A) if M(A)<=M(H) (Remark 2.1). 

To prove the Theorem let us note that the Fisher random variable is the ratio of 
two stochastically independent (Lemma 2.3) %2 — variates (Lemma 1.2), each 
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divided by the corresponding degrees of freedom (cf. Lemma 1.2, Theorem 2.1, 
Remark 2.1). Otherwise, the proof is similar to the proof of Theorem 2.2. 

3 . Generalization 

Let us again consider the regression model (£, AS, a2H) with 0 an unknown 
parameter. Now let us suppose that there is at least one column, say eiy of the 
identity matrix I such that ek ^M(A'). 

The columns of the identity matrix will be projected onto the manifold M(A'); 
the projections being considered in the Euclidean norm. The obtained vectors 
result in a matrix, say P0. Any vector et can be decomposed in the form 

et = (pi)0 + h, where (p,)0eM(A') and kt e Ker A. 

Note that Ker A denotes as usually the set of all solutions of the homogeneous 
system AJC = 0. The matrix consisting of the vectors k( will be denoted by K. Let 

0- = ? ^ , i/2 = K'0. 

Let us note that P'0 = A'(AA')"A. 

Lemma 3.1. E0(A) = O for $2 = K'[(A');(1),m(H)]'%. 
The Lemma follows if we use the definition of I-least square g-inverse. 
R e m a r k 3.1. The only possible projection operator Pl

M(A) projecting the 
columns of the matrix I onto the manifold M(A') is the following one: 

P W > = A ' ( A A T A . 

Thus tf^A'tAATAfl and #2 = ( I - A ' ( A A ' ) " A ) 0 . 

Lemma 3.2. Let i/j = A'(AA')"A0. Then the random vector #! given by the 
relation 

^=A'(AArA[(A')-(H)]'^ 

has the following property 
(i) E(Vl) = #1 

(ii) if&, eM(A') such that E(§,) = #, then ||t?,||x{ - | |# . |U > ° -

Theorem 3.1. Let § be a gaussian vector with E8(§) = AG, Es = a H. Let a as 
well as H be known. Then the true value of the parameter d lies in the set 5£ with 
the probability Prob (x2(r) =S c2). Here £ = {x + y: xeX, ye Ker A}, where 

X= {y: (y-P;[(A')- ( H )] '§) '[P:[(A')- („,] 'H(A')- ( H )P< ,]-x 
x(3,-P;[(A')-<H)]'£)/<72^c2}n 

n{^(P;[(A')- („ )] 'H(A')- („ )P„) + P;[(A')- („ )]'§} 
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and 
r = R(H(H + A A T A ) . 

Theorem 3.2. Let % be a gaussian vector with Eo(%) = A0 , Z t = a2H. Let a2 be 
an unknown parameter and H be a known matrix, respectively. Then the true value 
of the parameter 6 lies in the set 

W={x + y:xef{,yeKerA} 
with the probablity 

Prob (F(r, R(H, A ) - R ( A ) ) ^ c 2 ) . 
Here 

<X={y: / (y ) /B^c 2 }n{^(P; [ (A ' ) - ( H ) ] 'H(A ' ) - ( „ ) PJ + P;[(A')- („ )]'§ 
i(y) = (y - P : [ ( A ' ) - ( H ) ] ' ? ) ' [ P : [ ( A ' ) - ( H ) ] ' H ( A ' ) - ( „ ) P 0 ] - X 

x ( y - P ; [ ( A % ( H ) ] ' £ ) / r , 
B = v'H_t?/(R(H, A) - R(A)), r = R(H(H + AA')~A). 

The proofs of Theorems 3.1 and 3.2 follow from Section 2. It suffices to consider 
the confidence region for the projection #i of the parameter 6 because of the fact 
that E($2) = 0. 

It is easy to see that the sets i£, resp. W, from the Theorems above consist of two 
parts. The first part 3T (resp. JC) is the set where lies the projection #i of 0, which is 
an unbiassedly estimable parameter, with Prob (# 2 (r )^c 2 ) (resp. Prob (F(r, 
R ( H , A ) - R ( A ) ) ^ c 2 ) ) . 
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ДОВЕРИТЕЛЬНАЯ ОБЛАСТЬ ВЕКТОРНОГО ПАРАМЕТРА 

Юлия Волауфова 

Резюме 

В рамках регрессионной модели (§, А0, а2Н) решается проблема доверительной области как 
для несмещенно оцениваемой функции векторного параметра, так и для несмещенно 
неоцениваемого векторного параметра в. Предполагается, что матрицы Н и А известны, а а2 

может быть известный или неизвестный параметр. 
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