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ON STATISTICALLY CONVERGENT SEQUENCES
OF REAL NUMBERS

T.SALAT

The notion of the statistical convergence of sequences of real numbers was
introduced in papers [1] and [5]. In the present paper we shall show that the set of
all bounded statistically convergent sequences of real numbers is a nowhere dense
subset of the linear normed space m (with the sup-norm) of all bounded sequences
of real numbers and the set of all statistically convergent sequences of real numbers
is a dense subset of the first Baire category in the Fréchet space s.

1. Introduction
In this part of the paper we shall introduce some definitions, notations and two
auxiliary results.
If AcN={1, 2, ..., n, ...} then we put A(n)= >, 1. If there exists

asn,a€A
A(n)
n

lim
n-—»0

by 8(A). Obviously we have 8(A)=0 provided that A is a finite set of positive
integers.

, it will be called the asymptotic density of the set A and will be denoted

Definition 1.1. The sequence x = {& };-, of real numbers is said to converge
statistically to the real number & (this fact will be denoted by

(1) lim stat & =&

or briefly xTﬁ) if for each ¢ >0 we have 8(A.)=0, where A.={neN;

IEn - S' =¥ } .

In paper [5] instead of (1) the notation D-lim&, =& is used and the statistical
convergence is called the D-convergence.

It is easy to see that if (1) holds, then the number & is determined uniquely.

If ’[im E. =&, then (1) holds, too, since the set A, is in this case finite for each
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€ >0. The converse is not true (see example 1,1). Thus the statistical convergence
is a natural generalization of the usual convergence of sequences.
Let us further observe that the condition 8(A.) = 0 is equivalent to the condition
0(A:)=1, where
Al{={neN;|E -&|<e}(=N-A,).
The sequence which converges statistically need not be bounded. This fact can be

seen from the following
Example 1,1. It is easy to see that the set

A={132,..,n% ..}

has the asymptotic density 0. Since the set of all rational numbers is countable,
there exists such a sequence {7,2};~, that the set of all terms of this sequence

coincides with the set of all rational numbers. Put 7, =;1l- for n+j> (i=1,2,..).

Then :!im stat 7, =0 and simultaneously each real number is a limit point of the

sequence {7 }e-1.

The analysis of the structure of the sequence {1 }«-, from the previous example
suggests the conjecture that the structure of each statistically convergent sequence
is analogous to the structure of this sequence, i.e. if (1) holds, then there exists such

a set K< N that 8(K)=1 and ,[if{} & =& ('!im E. =& means that for each ¢ >0

keK keK
there exists such a k, that for each k >k,, k € K we have |& —&|<¢).
The following lemma is an affirmative solution of the mentioned conjecture.

Lemma 1,1. Statement (1) holds if and only if there exists such a set
K= {k1<k2<...<k,. <...}CN

that 8(K)=1 and lim &, =£.

Proof. 1. If there exists a set with the mentioned properties and ¢ is an arbitrary
given positive number, then we can choose such a number n,€ N that for each
n>n, we have

(2 IEk.._E|<£-
Put A,={neN; |E, —E|=¢}. Then from (2) we get
As cN - {k,.o+1, k,.o...z, ...}

and on the right-hand side there is a set the asymptotic density of which is 0.
Therefore 8(A.)=0, hence (1) holds.

140



2. Let (1) hold. Put
K;={neN;|&-&|<i} (=12, ..).

Then according to definition 1,1 we have 8(K;)=1 (j=1,2,...).
It is evident from the definition of K; (=1, 2, ...) that

3) K, oK,;>..o0K,oK,;>...,
3 8K)=1 (=1,2,..).

" Let us choose an arbitrary number v, € K;. According to (3') there exists such

z()

a v,>v,, v, € K, that for each n =v, we have > Further, according to (3’ )

2°
. - K3(n) 2
there exists such a v;>v,, v;€ K; that for each n =v; we have > a.s.o.

Thus we can construct by induction such a sequence
v1<U2<...<U,' <...
of positive integers that v;eK; (j=1, 2, ...) and

(4) ——K"(")>j;.1—

n J
for each n=v; (j=1,2,...).

Let us construct the set K as follows: Each natural number of the interval
(1, v,) belongs to K, further, any natural number of the interval (v;, v;.,) belongs
to K if and only if it belongs to K; (=1, 2, ...).

According to (3), (4) for each n, v;=n <v;,, we get

K(m) Ki(n) _j-1
n  n j

From this it is obvious that 8(K)=1.
Let € >0. Choose a j such that 71.< €. Let n=v;, n €e K. Then there exists such

a number ! Zj that v, =n <wv;,,. But then on the basis of the definition of K, n € K,
hence

1

=-

]
Thus |&, — &|<e for each neK, nZ=v, ie. llm_, E =E.

keK

The following result can be obtained (cf. [1], [5]) directly from the definition 1,1.

& - &<

~| =
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Lemma 1,2. If

lim stat & =a, ,!im statm, =b
k—»>© —

and c is a real number, then

() ,!i’E, stat (5, +n)=a+Db,

(ii) 1!1_[1: stat (c- &) =ca.

It follows from lemma 1,2 that the set of all bounded statistically convergent
sequences of real numbers is a linear subspace of the linear normed space m of all

bounded sequences of real numbers (with the norm ||x||= sup |&], x=
k-1,2, ..

{&}iciem).

2. Bounded statistically convergent sequences of real numbers

We denote by m, the set of all bounded statistically convergent sequences of real
numbers.
Theorem 2,1. The set m, is a closed linear subspace of the linear normed space

m.
Proof. Let x™em, (n=1,2, ...), x™—x em. We shall show that x € m,.

According to the assumption for each n there exists such a real number a, that
xP—sa, (n=1,2,..)

stat

ic.ifx“’={§2”} , then

oo
k=1

lim stat EV=a, (n=1,2,..).

We shall prove that
a) the sequence (of real numbers) {a,}.-, converges to a real number a;

b) x——a (i.e. if x ={&}k-1, then El_g: stat & =a).

From a), b) the assertion follows on account of Lemma 1,2.
Proof of a). Since {x}--, is a convergent sequence of elements from m, for
each £ >0 there exists such a no€ N that for each j, n>n, we have

(5) e —x) <5 .
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Further, according to Lemma 1,1 there exist such sets A;, A,, A;, A, <N that
8(A;))=08(A,)=1 and

1 (j) — M
©) o S

keA;

7 lim £ =a,.

keA,

The set A;nA, is infinite since the asymptotic density of this set is equal to 1.
Hence we can choose such a k € A;nA, that we have (see (6), (7)):

®) £ -al<E, [E0-al<E.

According to (5) and (8) we get for each j, n>n,
la; - a. | =|a; — EP| + [EP - E| +

() _ E ELE_
+ | &S a,.|<3+3+3 €.

Since the sequence {a }x-. fulfils the Cauchy condition for convergence, it must
converge to a real number a, hence

) a =lim a.

k—oo

Proof of b). Let n > 0. It suffices to prove that there exists such aset A = N that
8(A)=1 and for each k € A the inequality |§ —a|<n holds (see Lemma 1,1).
Since x”’—x, there exists such a p € N that

(10) Ix” - x[|<3 .

The number p can be chosen in such a way that together with (10) also the
inequality

(11 |a,,—a|<;—1

holds (see (9)).
Since x“”? a,, there exist such a set A =N that 8(A)=1 and for each k€ A

we have
(12) | 60 —a,| <3 .
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Now according to (10), (11), (12) we get for each ke A

& —al=|& - &2+ |8 —a, | +

- n.n,.n_
+|a, a|<3+3+3 n.
Hence b) follows.

Using the previous theorem we can easily prove the following result on the
structure of the set m,.

Theorem 2,2. The set m, is a nowhere dense set in m.

Proof. It is a well-known fact that every closed linear subspace of an arbitrary
linear normed space E, different from E, is a nowhere dense set in E (cf. [2], p. 37,
Exercise 4 ; [3]). Hence on account of Theorem 2,1 it suffices to prove that m,+ m.
But this is evident, since the sequence x = {(—1)* }5-, € m does not belong to m,.

3. Statistically convergent sequences of real numbérs
and the space s

Denote by s, the set of all statistically convergent sequences of real numbers. In
what follows s denotes the Fréchet metric space of all real sequences with the
metric o,

_w 1l |& — 14
Q(x’Y)_kzlzkl+|§k_nkl,

x={&}c-1€s, y={m}c-1€s.

In this part of the paper we shall describe some fundamental properties and the
structure of s, in the space s.

Theorem 3,1. (i) The set s, is dense in the space s.
(i) The set s, is a set of the first Baire category in the space s.

Corollary. The set s—s, (of all real sequences which are not statistically
convergent) is a residual set (of the second Baire category) in the space s.
For the proof of Theorem 3,1*) we shall use the following

Lemma 3,1. Let g, (k=1, 2, ...) be complex valued continuous functions on
R =(—o, + ). Let us suppose that there are two distinct complex numbers c,, c,
such that for each sufficiently large k we have c,, c; € g« (R).

*) The author is indebted to Professor M. Novotny for his suggestion, which led to an improvement
of the original version of the proof of this theorem.
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Let (a.) be a triangular matrix with the following properties :

(P:) For each fixed k we have lim g, =0;
(P;) lim Y a, =1.
n—=® p=1
Then the set s, of all such x ={&, }x-1€s for which there exists a (finite) limit

lim > axg« (&) is a set of the first Baire category in s.
n=® k=1

Proof. For x = {& }c-1 €5, we put

f0)= Sawge(®) (1=1,2,..), f@)=lim £,(2)

We shall prove that

a) f, (n=1, 2, ...) is a continuous function on s, ;

b) f is discontinuous at each point of s;.

a) Leta={o}r €8, xP={EP}r_ €5, (=1, 2,..), x?—>a. Since from the
convergence in the space s the convergence by coordinates” follows, for each

fixed k we have lim £’ = a,. But then on account of the continuity of functions g

j—o

(k=1,2,..) we get
lim £, (x?) =1lim > a.g: () =
== 1= k=1

= e lim 04 (E) = S g (@) = o @)

Thus f, (n=1, 2, ...) is continuous on ;.

b) Let b = {fi }r-1€s:. Denote by v such a number ¢; (i =1 or 2) that differs
from f(b). It suffices to prove that in each sphere S(b, §) = {x€s,; 0(b, x)<d}
(6 >0) there exists such an element x = {& }¢-; that f(x)=v.

Let 6 >0. Choose a natural number m such that > 27*<§. According to

k=m+1
the assumption there exists such an /'’ that for each k >m’ there exists such 1. € R
that g, (m:) =v. Put my=max {m, m'} and define the sequence x = {&}«-, in the
following way: & = f; for k =m, and & =, for k >m,. Then x = {& }«-, €s and
by choice of m, we get o(b, x) <. Further for n >m, we have

fn (x) = k;ank (gk (ﬁk) - U)) + vkzla,.k .
Now from the properties (P,), (P2) it follows at once that f(x)= lim f, (x)=v.
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According to previous considerations the function f is in the first Baire class and
is discontinuous at each point of s,. But it is a well-known fact that the set of
discontinuity points of an arbitrary function of the first Baire class is a set of the
first Baire category (cf. [6], p. 185). Hence s, is a set of the first Baire category in s,
and so a set of the first Baire category in s, too. The proof is finished.

Remark. Every regular triangular matrix (a,. ) has the properties (P,), (P,) from
Lemma 3,1 (cf. [4], p. 8). The converse is not true. Putting e.g.

1 1 1 1
an1=%, an2=_ﬁ,..., ann—Z__\/_;, ann—l=—7;a ann=l

for n odd and

-1 1 1 1
anlzﬁy anzz_ﬁa-'-’ ann—3=%, ann—2=_ﬁy
1
Apn—1 = Qnn =§

for n even we get the triangular matrix with the properties (P,), (P,), for which
2 || = + o(n— ).
k=1

Hence this matrix is not regular.

Proof of Theorem 3,1. (i) If x = {& }c-, € so and the sequence y = {9, }%-, of
real numbers differs from x only in a finite number of terms, then evidently y € so,
too. From this statement (i) follows at once on the basis of the definition of the
metric in s.

(ii) For the proof of (ii) we shall use the following result from [5] (Theorem 4).

Theorem A. Statement (1) holds if and only if for each real number t we have

1N, 4
lim — > e" =™,
n—w N &4

Denote by s; the set of all such x = {&, }x-, €s for which the finite lim % et
n— k=1

exists. Putting in Lemma 3,1
g()=e"(k=1,2, .), ank=%(k=1,2,...,n;n=1,2,...)

we see that s; is a set of the first Baire category in s. According to Theorem A we
have s, s}, hence s,°is a set of the first Baire category in s, too. The proof is
finished.
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In what follows denote by s* the set of all such x = {& }c-1€s for which the
sequence

(7 21

is bounded. The set s* will be considered as a subspace of the space s. For £ e R

oo
n=1

denote by s *(£) the set of all such x = {&, }-; € s for which ’!l_rg stat & =&. We shall
show that s""(E) is a set of the second Borel class in the space s*.

Theorem 3,2. The set s*(&) is an F,s-set in s*.
For the proof of the theorem we shall use the following lemma.

Lemma 3,2. The sequence x ={&.}c-1€s™ converges statistically to the real
number § if and only if for each rational number t we have

(13) lim L Det=e",

noo B &

Proof. 1) If (1) is true, then according to Theorem A (cf. [5]) the equality (13)
holds for each real ¢ and so for each rational number ¢.

2) Let (13) hold for each rational number ¢. Let ¢, be an arbitrary real number.
We shall prove that

1 &S i
(14) lim = Y et = e™f,
n—w B4

From this statement (1) follows according to Theorem A.
For te R put

1 & 1 &
An(th t) =; kZIeutOEk _;l_ kzleu&_

Since e™* =cos vE +i sin v€ (v eR), we get

1 n
|A.(to, 1) é; S V(cos tok, — cost&. )’ + (sinto&, —sintE, ).
k=1
Using the mean value theorem we get
V2 "
(15) | An(to, t)lg—n" |t —to] >|Ec].
k=1

By the assumption x = {&, },-; € s*. Hence there exists such a K > 0 that for each
n=1,2, ... we have

(16) 2 SIE|=K.
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It follows from (15), (16) that
(17) |A.(to, DS V2 K|t —t].
Further, we have

(18) LSt =L St a,(t,1)
n g1 n &=

From this we get

+

1 n 1 n
= Zeirogk _ eirOE § ’_ zeirsk _eixg
n g=1 n =1

19
(19) + |e" — e | + | A, (to, t)].

Let £ >0. According to the continuity of the function 4 (x) =€ (x e R) and (17)
we can choose a rational number ¢ such that

(20) le™ —e"’°§l<£ ,
4
(20") |A.(to, t)|<§ (n=1,2,..).

By our assumption there exists such an n, that for each n > n, the first summand on

the right-hand side of (19) is less than g Then with respect to (20) and (20') we get
from (19)

1 n
; ZeiroEk — et <p
k=1

for each n>n,. Hence (14) is valid.
Proof of Theorem 3,2. Denote by Q the set of all rational numbers. From

Lemma 3,2 we get

o

1) s®=NNU A Hewj),

teQ j=1p

where

gl}.
]

It can be easily checked that the set H(n, j) (for each n, j) is closed in s *. But then
the assertion of the theorem follows at once from (21).

H(n’j)= {x: {Ek}:=16s’“; 'nl Eei!§k __eitE
k=1
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Problems. From the definition of the set s* it follows that
(22) s*=0 s¥,
j=1

where

si=fx=(&)ess v Slalsi) G=1.2,..).

It can be easily checked that s¥ (j =1, 2, ...) is a closed set in 5. This is a simple
consequence of the fact that the convergence in the space s is equivalent to the
convergence ‘‘by coordinates”. Hence according to (22) the set s* is an F,-set in s.
Since the set s*(§) is an F,s-set in s* and s* is an F,-set in s, the set s*(§) is an
F,s-set in s. In connection with the foregoing fact the question arises whether the

set s(&) of all such x = {& }¢-, €5, for which lim stat & =& is an F,;-set in s, too.

Further, the following question remains open: Is the set so = s a Borel setin s and if
the answer is affirmative, in which Borel class is the set so?
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O CTATHUCTHYECKH CXOOAINXCS MOCIEJOBATEJIBHOCTAX
JEVICTBUTEJIbHBIX YWCEJ

T. Wanar
Pesiome

MocnenoBaTenbHOCTh {d, }n-, REACTBUTENBHBIX YHMCEN HA3BIBAETCS CTATHCTHYECKM CXOASLIAACS
K YHCIy @, ecliM s Kaxporo £ >0 acumnToTHyecKas [UIOTHOCTh MHOXecTBa {n; |a, —a|Z¢)
paBHseTcs Hymo. B pa6GoTe mOKa3aHO, YTO MHOXECTBO BCEX CTATMCTHYECKM CXOOALIMXCS IOC-
JIENOBAaTENBHOCTEH NPOCTPAHCTBA BCEX OIPAaHWYEHHBIX NOCIENOBATENLHOCTEH HMIAE He IUIOTHO,
MHOXECTBO BCEX CTATHCTHYECKH CXOMSIIMXCS OCNIENOBATENLHOCTEN NPOCTPAHCTBA Ppellie § ABNAETCAS
MHOXECTBOM NEpBOi KaTeropuu bapa.
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