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NOTE ON LINEAR ARBORICITY 

PAVEL TOMASTA 

It is possible to define many variations of packing and covering invariants for 
graphs which involve paths or cycles, as one can see from [1], which is especially 
devoted to this problem. 

A concept which will be of value to us in what follows is the linear arboricity. It 
was defined at first by H a r a r y in [2] and independently, as a path chromatic index, 
by H i l t o n [3]. 

A linear forest is a graph in which each component is a path. The linear arboricity 
E(G) of a graph G is the minimum number of linear forests whose union is G. The 
linear arboricity of the complete graph coincides with its path number which was 
determined in [4]. It is not easy to determine the value of linear arboricity for 
general graphs. Thus it is investigated for specific families of graphs. In [1] there 
was expressed a conjecture (an analogous conjecture is given also in [3]): 

Conjecture. The linear arboricity of an r-regular graph G is \ —— \. 

This conjecture was proved there for r = 2,3. For the case r = 4 the authors 
mentioned that they verified this conjecture, too. But they do not know whether it 
holds for r > 5 . Our aim is to prove it for the case of r = 6. 

Prior to prove it some facts are needed. 

Theorem 1. Lef G be a graph with degree sequence {4, 3, 3, ..., 3}. Then 
~(G) = 2. 

Proof. Delete any edge e incident with the vertex of degree four from G. 
Although the resulting graph is not regular, it can be easily supplemented to 
a regular one. Since for r = 3 [1] the conjecture holds, consider a decomposition of 
G — e into two linear forests H and H2, say blue and red, respectively. 

Denote the vertex of degree two in G — ebyx and the second vertex of the edge 
e by y. Let neither H + e nor H2+ e be linear forests. 

Only two cases are possible (see Fig. 1.): 
* (i) one blue edge is incident to x in G — e 
(ii) two blue edges are incident to x in G — e. 

* Remark: stright ine — blue, waveline — red 
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In case (i) the vertices x and y lie on some red path and in both cases some of the 
vertices p, q may coincide with some of the vertices a, h, c. 

First investigate case (i): Once again two cases are possible — see Fig. 2. 
In both cases after a suitable interchange of colours one may add the edge e to 

the red linear forest. 
Now look at case (ii): A path in G — e is said to be alternating if the colours of its 

edges alternate. First we notice that: 
There exists a non alternating path of a length at least two inG — e beginning in 

the vertex x. 

OQ òb Ьc 

(Ł) 
Fie 1 

Fig 2 

Let us prove it. Let, on the contrary, each path from x be alternate. Take the 
longest one. Such a path exists because G — e is finite. Let t be the last vertex of this 
path. The vertex / has degree three and thus two edges e\, e2 not contained in this 
longest path are incident with t. Without loss of generality we can assume the last 
edge of this path to be blue. Furthermore, let e, be also blue (analogously for e2). 
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The second end vertex of et lies on this path (otherwise there is a nonalternating 
path in G — e). But in that case one can easily find a non-alternating path, too. 
Thus e\ and e2 are red and their end vertices lie on the longest path. But also in this 
case it is not so hard to find a non-alternating path in G — e from x. This is 
a contradiction. Hence the result. 

Let us continue in the analysis of case (ii): Assume that x and y lie on a blue path 
meeting q (analogously for p) — see Fig. 3. 

ofter 

interchange 

Ч ц ч 

Fig. 3 

After a suitable interchange of colours (see Fig. 3.) one can add the edge e to the 
blue linear forest. 

In the next we can assume that no blue path joins x and y. As we notice above 
there exists in G — e a non-alternating path from x. Take the shortest one. Without 
loss of generality we can assume the last two edges of it to be red. Excepting the last 
edge interchange the colours of this path. We assert that neither H nor H2 contains 
a cycle. In fact, if such a cycle exists, then one can easily find a shorter 
non-alternating path from x, which is a contradiction with the assumption. 
Moreover, neither H nor H2 can contain a vertex of degree three, thus they remain 
linear forests. 

After this interchange of the colours the vertex x is incident with the blue and red 
edges. Since no blue path joins x and y, one may add the edge e to the blue linear 
forest. In the case y incident with two blue edges (after the interchange) one can 
proceed as in case (i). The theorem is proved. 

And now we are able to prove 

Theorem 2. Let G be a finite connected 6-regular graph. Then 

~(G) = 4. 

Proof. I. Let the number of edges of G be even. Consider an Eulerian trail in 
G. Colour the edges of this trail alternately blue and red. We obtain two cubic 
factors. Each of them has (by [1]) the linear arboricity equal to two. Hence 
="(G) = 4. 

II. Let the number of edges of G be odd. Once again consider an Eulerian trail in 
G. Colour the edges of this trail alternately blue and red. We obtain a decomposi-
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tion of G into two factors. The blue one has degree sequence {4, 3, 3, ..., 3} and 
the red one {2, 3, ..., 3}. Applying Theorem 1 we obtain the assertion of 
Theorem 2. 

R e m a r k . An interesting open problem is to determine the maximal number of 
(r+ l)'s in a degree sequence (of a given length) 

{r+l, r+\, ..., r+\, r, r, ..., r} 

of a graph G with the linear arboricity to be 

fflì E(G)= - ~ - forodd r > 3 . 

Added in proof: B. Paroche (On partition of graphs into linear forests and 
dissections, Rapport de recherche; Centre National de la recherche scientifique) 
proved the Conjecture for r = 5, 6. 
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ЗАМЕЧАНИЕ К ЛИНЕЙНОЙ ДРЕВЕСНОСТИ 

Павел Т о м а с т а 

Р е з ю м е 

Линейная древесность Б(О) графа С это минимальное число линейных лесов, соединение 

которых равно О. В работах [1] и [3] независимо была высказана гипотеза, что линейная 

древесность г-правипьного графа равна 

! " ' } • 
В работе [1] она была доказана для г - 2 , 3 . Целью этого замечания доказать ее для г 6. 
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