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THE MOST GENERAL TRANSFORMATION
OF HOMOGENEOUS RETARDED LINEAR DIFFERENTIAL
EQUATIONS OF THE n-TH ORDER

VACLAV TRYHUK

On an interval I=(a, b), a= —o, b= we shall consider an equation of the
form

n—1 m
YO+ 3, [ @y + 2bix)y (5 () | =0 M
(y”(s) =d'y(s)/ds’) with bounded or unbounded delays
pi(x)=x—5(x)>0
on I, 1=j=m, m=1 and n=2 being integers.

Let us suppose that a;, by, § € C°(I), E(x)—>b- as x—>b_, &+ if k+jon I,
b,#0 on I for some r and s, 0=i, r=n—1; 1=k, j, s=m.

A continuous function y is said to be a solution of (1) if there exists c € I such
that y satisfies (1) for all x €[c, b). In this case we say that y is a solution of (1) on
[c, b). ,

Let cel, A=[c,b), A;={&(x): &(x)<c, xe A} and d=infuA;, j=
1,2, ..., m. Then we put A.=[d, c] if d>—o. Otherwise let A.=(—o0, c].

For given functions ao, 01, ..., 0.-1 € C°(A.) we say that is a solution of (1) with
the initial values {0 }¢ " at ¢ or simply a solution of (1) through (c; 0o, 01, .., Oa-1)
if y is a solution of (1) on A and

yP(s)=0(s) forall seA.,
0=k=n-—1.
If a, bij, &, o« (0=i, k=n—1; 1=j=m) are continuous on I, there exists
a unique solution of (1) through (c; g, 0, ..., 0.-1) (see [1], p. 34).
In this paper we derive the most general transformation, which converts any
linear equation (1) into another equation of the same form

w0+ 3 [ A0 + 3B ] =0, @
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where A;, By, ;€ C°(J), n,# ni if j# k on J, sgn(z—n,(¢)) = sgn(t— n(¢)) #0on
J, B,;#0 on J for some p and q, 0=i, p=n—1; 1=k, j, g=m.

Although the equation (1) was studied by many authors, they did not pay special
attention to the question of transformations. Er'scor'c [1] and NORkIN [2]
considered the transformation

x=f(8), y=g()u,

that converts any equation (1) into another of the same form and order. This
transformation was used by MELVIN [5] and others for a functional generally
nonhomogeneous differential equations.

STACKEL [3] and WiLczyNnski [4] have proved that the most general point-transf-
ormation

T:x=f(t,u), y=g(t u),
converting every linear differential equation of the n-th order (n =2) of the form
yP+ai(x)y" P +... +a.(x)y=0 3)
with continuous coefficients into another equation of the same form and order, is

x=f(1), y=g()u,

where f and g are arbitrary functions satisfying some additional assumptions.
Using the same arguments as in [3] and [4] we obtain the form of the most

general transformation for (1). We wish that the transformation T=(f, g) be

independent of coefficients of (1) for the same reason as in [4] (see [4], p. 8).
The case n=1 is solved in [9].

The most general transformation of the equation (1).

Theorem. For each n=2, the most general transformation converting any
equation (1) into (2) is

x=f(1), y=9()u,

where f, g € C"(J), f(£)g(t) #0 for all teJ.
Furthermore

iof =fom

onlJforj=1,2, ..., m.

Proof: If y is a solution of (1), there exists c € I such that y is defined on an
interval AUA.. A mapping ¥: AUA.— R’ defined by W(x)=(x, y(x)),
X€AUA,, is a one-to-one homeomorphism of AUA. into a graph of the given
solution y. Conversely, to any point (xo, yo) € R?, xo€ A, there is a solution y of (1)
such that a graph of y contains the point (xo, yo). For example, the interval
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A =[xo, b) and some continuous functions 0o, 01, ..., Sa-1; Oo(X0) = Yo On A, will
do. Due to continuity of a:, by, &, o« (1=i, k=n—1; 1=j=m) there exists
a solution of (1) through (xo; 0o, 01, ..., Ga-1).

If G: =Ix R c R*then G is open and ¥(x) =(x, y(x)) € G for any solution y of
(1) and each x € I where y is defined. Consider a one-to-one homeomorphism @
taking G into U< R? with properties @ € C"(G) and Jacobian |®’'(p)| +0 for all
peG,ie. @ is a diffeomorphism. Then U is open and there is @' =(f, g) such
that |@~"(gq)| #0 for all g€ U (see [6], p. 223; [8], p. 58—59).

The mapping @' is a point-transformation. Consequently, for any nontrivial
solution y of (1) and an arbitrary fixed x € I where y is defined there is a unique set
of mutually disjoint points in U

(t’ u) = ¢( l]/(x))’ (tn ui) = (p( !I/(El(x))), (4)
1=j=m. Using

(x, y(x)) = W(x) = D7'(t, w) = (f(#, u), g(¢, u))

we get

YO() =7 u®())+ Du(t) (2Sk=n), )

where H=|®"'(t, u)| = fig:— 9:/2#0 on U, o: = fi+fu(?) (f,, g: denotes the
partial derivatives of f, g with respect to the i-th variable, i=1,2) and Di(?)
obtains terms of order lower than k (see also [3], [4]). Then

a1 (0)y* 0 (x) + an(x)y®(x) =

_H
- o,k+l

(ak:l’(f) u*(F) + ak(f)u(")(t)) + as1(f) D (2) + a(f) D(1)

and the linearity of ﬂ%ﬁu"‘*"(t)+ak(f)u""(t) in u(e), ..., u®(r), u*"(1)
implies £,=0 since o= f,+ f,u and a transformation

(x, y(x)) = (f(t, u(9)), g(t, u(®)), (#, u(r))e U, (7

is independent of coefficients a,(x) of (1), 2=k=n-—1, a.(x)=1. Hence
H=f,g,+0 on U and

x=f(2) (6)
is one-to-one mapping and f'(I)=Jc R. From (4), (6) we have
(x, y(x) =(f(2), g(t, u(1)))s %)
(&(x), y(E))) = (f(5), 9(5, u())),
thus E(F()) = 1(8) ®
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Denote ¢ =,(¢). Then 7,: J— R and
E(f())=f(n(2)), 1=j=m, %)

since (8) converts deviating arguments of (1) into deviating arguments of (2).
Hence

(x, (1)) = (), (1, u(), 10
(&), YE@)) = (F(n(2), g(n (D), u(n (D)),

by means of (7), (9). We have 7,(¢)# m(?) as j+k and n,(¢)#¢ on J since
&i(x) # E«(x) as j# k and &(x) # x on I and the function f is monotonic on J and
(9) holds, 1=k, j=m.

Thus

y'(x)=[g:(¢, u(2)) + g2(t, u(e))u(2))/f(2),

__\'yz(t, u(®)

ym(x):?kT’j’m u®(f) + Di(1) = Fin w00+ Do), (11)

2=k=n,

using (5), and the equation (1) becomes

w0+ 3 [ 400+ S, (1

fr
Fm)™
x gz(’?i,g’:('li)) u(i)(m)] + al(f)f"n—l (%4_ u) N
fr S 4f—"~ (7, u(n,
+“°(f)f iJr,; [bll(f) () <W+

+g2(7],,gu(77i)) u(ﬂi)) + bo,()f~ g(n, u('?:))] +

g:
f"n n—1 »
Yo [D"(’) > (D'(’H,ElD.(m))] =0, (12)
where g.#0 for all teJ.
The following relations
(# u(®) _
o)~ ", (13)
gi(t, u(t) _
g(t, u(t))—ﬁ(t)l'(t), (14)
g(m (1), u(n,(9)) _ )
ngz(t,l;(t)) =y (‘)), 1=Sj=m, (15)
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must be valid for suitable functions a, g,

% on . . .
homogenity of J to obtain the linearity and

aomf"i, al(f)f"'_l%, by, ()7~ ggnf,gu(llf)Z

in u(n;), u, u.
From (13) we have g(¢, u(s)) = a(t)u(t)gz(t u(£))=£ 0 on any subinterval on J
since g(¢, u) =y(x) is a nontrivial solution of (1) on any subinterval on I. Thus

g:(t, )/ g(t, u) = e(t)/u, ax=1/a, on some j, < J and through integration we
get

) In Ig(t, u)|=a1(t) In |u|+1n laz(t),,
ie.
g(t, u)= ax(t)us®,
Hence
0+ gx(t, u(t))= at)en()u(r)=o-1

for all teJ and
9(t, u(t) = a(u"?®,  ay(Hax() #0 (16)
on J. Using (16) and (14) we obtain
a:u+ au® In |u| = ﬁdl'/a'zu"'"u,
ie.
d:+ di In |u|=Ba;a, (17)

on J. It is clear that only a:(f)=A = const. complies with (17).
Finally, A =1 for the sake of equations

ax(n())u* (m(0)) = Ay () aae)u(m () u(e)* (18)
(1=j=m) obtained from (15). Consequently
g(t, u())=a(u(r), ax(t)+0 forall tel. (19)

It remains to show that the required transformation rewritten as

. x=f(t), y=g(u,
f, g€ C*(J)), fg#0on J, E(f(?)) =f(ni(9)), te J, 1= j= m, converts (1) into (2).
By succesive differentiation we find

(k)() P%ztl)’ k=1,2,...,n, (20)

where
Yi(2) = g(t)u(e) + g(t)u(?)
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and

Yi(0) = Yied(Df(1) — (20 = 3)f(1) Yier(0), (21)

i=2, 3, ..., n. Thus Yi(¢) is a linear combination of u, 4, ..., u® (1=k=n)
because Y, is linear in wu, .
From &of=fon; we have

oe (o - Yel(0)
YOS = (s

and Yi(n,(?)) is a linear combination of u(n;), u(n;), ..., u*’(n;) by means of (20)
and (21), k=1,2, ..., n—1.

Hence the Theorem is proved.

Remark. If the function f is strictly increasing (strictly decreasing) then

FO)=E(f()) = E(x)<x=f(r) implies ()<t (n()>1) for all reJ
(1=j=m) and the transformation described in Theorem converts a retarded
equation into a retarded (an advanced) equation.
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CAMOE OBUIEE IMPEOBPA3OBAHUE OTHOPOQHOIO JTMHEMHOIO
YPABHEHHS n-oro MOPAOKA C 3AIIA3BIBAHUEM

Viclav Tryhuk
Pe3iome
Iteken u BuwramHckM noka3samu, 4to x=f(¢f), y=g(f)u — camoe o6wee npeobpasoBaHue

06bIKHOBEHHOro offHOpofiHOro AuddepesInansHOro ypaBHeHus n-oro NMopsAaKa, CoXpaHsiollee of-
HOPORHOCTb, THI H MOPAROK YPaBHEHMA.

B crathe noka3siBaetcs, 4To X = f(t), y = g(f)u — camoe o6iuee npeoGpa3oBatue sl OGHOPORHOTO
JIMHeHOro AugdepeHIMaIbHOIO YpaBHEHHS C 3ama3[bIBaHHEM

Y+ 3 [aly ) + Sy ] =0,

yO(s)=d'y(s)/ds', n=2.
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