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Math. Slovaca 34,1984, No. 4,387—392 

NOTE ON SEMIGROUP VALUED 
MEASURES 

IVICA MARINOVA 

In paper [2] the extension of measures defined on an algebra with values in 
partially ordered semigroups to a generated a-algebra is done by transfinite 
induction. This paper is concerned with the extension of semigroup valued 
measures whose domain is a ring. We differ from [2] also by omitting transfinite 
induction although some other assumption is added. However all examples in [2] 
fulfil this added assumption. 

Let 01 be a ring of subsets of a nonempty set X. Let ^ be a partially ordered 
semigroup with a binary operation © , partial ordering ^ and let 0 e & be such that 
O^a for all a e ^ . W e shall write 

xn]x iff jenl^;tn+i, xn9xe& (n = l ,2 , . . . ) and jc = supjcn 
n 

yniy iff yn+.-sy-, yn,ye& (n = l, 2,...) and y = infy„ 
n 

Zn-*z iff zn, z e ^ and there are un, t ^ e ^ (n = l , 2,...) 

such that un^zn = vn (n = l, 2,...) and wnfz, vn{z 

An]A iff Ane0l9 A n cA n + i (n = l ,2 , . . . ) and L j A n = A 
n = l 

Bn[B iff Bnem9 Bn+l<zBn (n = l ,2 , . . . ) and f)Bn=B. 
n - l 

We shall denote by ^>< the set of all functionals /: 0>—>(0, a>) satisfying the 
following properties: 

(a) /(0) = O 
(b) a£b implies f(a)£f(b) for all a, be& 
(c) /(a©b)^f(a) + f(b) for all a, b e & 

(d) an-*a implies lim f(an)=f(a) for all a„, ae& (n = l, 2,...) 
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Troughout the paper we shall assume that the semigroup 3* has the following 
properties: 

(i) a®0^a for all ae3 
(ii) a®b = b®a for all a, be3 
(iii) a^b implies a®c^b®c for all a,b, ce3 
(iv) 3 is relatively a-complete (i.e. every increasing (decreasing) bounded 

sequence in 3 has the supremum (the infimum) in 3) 
(v) an-*a, b„->b implies a„® b„->a® b for all a„, b„, a, b e 3 (n = 1, 2, ...) 
(vi) 0* is separative (i.e. if a, be3, a^b, then there is fe3< such that 

/(«0 */(*)) 
(vii) /(jc)^/(y) for all / G ^ > < implies x ^ y 

(this is the assumption mentioned at the beginning). 
Let m: 31-* 3 be such a set function that: 

(1) A c B u C implies m(A);£m(B)©m(C) for all A, B, CeSft 
(i.e. m is monotone and subadditive) 

(2) A„j0, Ane3l (n = l,2, ...) implies m(A„)J0 
(i.e. m is continuous from above in 0) 

(3) AnczAn+l, Ane3l (n = l, 2, ...) implies m(A„+i-A„)—>0 
(i.e. m is exhausting) 

(4) the range of m is bounded. 
We shall call such a function m a submeasure. 
Observe that when 31 is an algebra (4) holds. Notice further that a submeasure is 
continuous (i.e. An]A (Bn[B) implies m(A„)|m(A) (m(B„)|m(B)) for all 
An,Bn,A,Be3l (n = l, 2, ...) and that m(0) = 0. 

The exhaustivity is a necessary condition of extension of a monotone, continuous 
and subadditive function. We can see it in the following lemma. 

Lemma 1. Let Sf be a o-ring. Let m: £f-*3 be a monotone, continuous and 
subadditive function. Then m is exhausting. 

Proof. Let A„ e if (n = 1, 2,...), A„f A. Then Aetf,(A- A„)|0 and m(A -
A„)j0-(A„+i-A„)c=(A-A„) for n = l ,2 , ... and this implies m(A„+i - A „ ) ^ 
m(A-An). Thus m(A„+i- A„)j0. 

But the exhaustivity need not be fulfilled automatically on a ring as we can see in 
the following example. 

Example. Let X = (0, <»). Let 31 be a ring containing finite unions of intervals 
(n, n + 1), n = 0 ,1 , 2, . . . , complements of these unions and the empty set. Let 

3 = « 0 , 1 >, © ) , where a®b = fl+ . for a, be 3. One can easily find out that 3 
1 + ab 

with the usual ordering of real numbers is a semigroup satisfying the properties 
(i)—(vii). Define a set function m: 31-*3 as follows: 

m(0) = O 
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m((n, n + l)) = ! for n =0 ,1 ,2 , 

( U (iif ' / + l ) ) = © a / , where i, is an integer and 
M-l / / - l 

a ; =2 for / = 1,2, ..., n 

m(A) = l f o r 0 * A * U < M / + l). 

It is not hard to see that such a function m is monotone, continuous and 
subadditive. It is obvious that m is bounded. Now take a sequence {An}%i9 

An = (0,n) for n = l ,2 , .... Clearly A n c A n + i , but lim m(A n + i -A n ) = 
n-*oo 

lim m((n,Ai + l))=;r. Hence m is not exhausting on 01. Thus a function m is an 
«—»«> .£ 

example of a monotone, continuous and subadditive function which cannot be 
extended to a generated a-ring. 

The following lemma is a consequence of [1, page 217]. 

Lemma 2. Let 01 be a ring.of subsets of a nonempty set X. Let fi: 01 —> (0, oo) be 
monotone, subadditive and continuous from above in the empty set function 

satisfying a condition lim fi(An+i - An) = 0 for all Ane0l, ' An c An + i 
n—*<x> 

(n = 1,2,...) such that lim ju(An) < oo. Let Sf(0i) be a o-ringgenerated by 01. Then 

there is a ring 01 a SB a Sf(0i) and a unique extension v: SB—> (0, oo) of JU such that 
v is monotone, subadditive and continuous from above in the empty set on SB. 
Moreover SB is closed in the following sense: if An\A (An{A), AneSB (n-
1, 2, ...) and {v(An)}n=1 is bounded, then A e SB and lim v(An) = v(A). 

Remark 3. If the range of \i in Lemma 2 is bounded, so is the range of v. Then 
SB is a monotone class and hence Sf(0i)c:SB. 

Let m: 01—> 0* be a submeasure, fe0i<. Since the range of m is bounded, so is 
the range of /o m. Now from Lemma 2 and Remark 3 the following lemma is clear. 

Lemma 4. Let m: 0l-*0> be a submeasure, fe^. then a function f\m: 
0{~+(0, oo) has a unique extension (fom)x: £B(0l)-*(O, oo) which is monotone, 
subadditive and continuous on SB(0l). 

Theorem 5. Let 01 be a ring of subsets of a nonempty set X. Let 0* be 
a semigroup satisfying the conditions (i)—(vii). Let m: 01-+0* be a submeasure. 
Then there exists a unique submeasure m: Sf(0l)-*0> so that ml0i-m. 
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Proof: Let 2. = {q: 3<-+ (0, oo)}. Let us assign S the partial ordering < in the 
following way: qi<q2 iff <?i(/) = <72(/) for all fe3<, qi,q2eS. We consider 

a pointwise convergence on 3 , i.e., q„-><? iff lim q„(/) = q(/) for all fe3<, 
n-*«> 

qn, q eSt9 n = 1, 2, .... Let T: ^>-»S be a mapping defined in the following way: 
for all ae3, T(O) = qa where qa: 3><-> (0, oo) is such a function that qa(f) = f(a) 
for all fe 3><. Using the separativity of 3> one has that for a, b e 3, a± b there 
exists fe 3>< such that qa(f) = f(a)£f(b) = qb(f). Hence T is an injective mapping. 
For a, be39 a^6 iff f(a)^f(b) for all / e ^ iff qa(f)^qb(f) for all / G ^ iff 
q„ < qb. Hence a ^ & iff T(a)< T(&), a, b e 3>. Let E e 31. Then m(E) e 3. We put 
qE = <?„.(E). Obviously qEeT(3>) and for all fe3>< qE(/) = qm(E)(/) = /(m(E)) = 
(/om)i(E),where(/om)iis the unique extension of font to a generated a-ring from 
Lemma 4. For Ee<f(3l) we put qE(f) = (fom)l(E) for all / e 0^. Let us denote 
m(E) = T-l(qE). We shall show that for all Ee&>(3i\ qE is an element of T(3). 
Let 3fC={Ee<f(3l): qEGT(3)}. Obviously %^3i. We shall show that % is 

a monotone class. Let A„fA, AneJC, n = l , 2 , .... Then the lim (/om)i(A„) = 
n—>a> 

(/om)i(A) for all /e l?* , that is the lim qA"(f) = qA(f) for all / e ^ * , hence 
n-*oo 

qAn-+qA. For n = 1, 2, . . . , qA" < qA*+1. If it is false, a functional / e 3< would exist 

such that qAn(f)>qAn+1(f)9 i.e. (fom)i(An)>(fom)l(An+1). This contradicts the 
monotonicity of (/<>ra)i. Hence {T" 1 ^")}* - - ! is an increasing sequence in 3. 
Observe that it is bounded. By relative a-completeness of 3 there exists 

a sup {T-l(qA»)} = ae3. For all fe3< qa(f) = f(a) = lim qA»(f), hence qA»-^qa. 
n - » 

It follows that qA = qaeT(3) and hence AeW. Further T_1(qA) = x'l(qa) = a = 

sup {^(q^)} and so ffi(A) = sup ra(A„) in 3. In the same way one can prove that 
n n 

if B„|B, Bn e% (n = 1, 2,...), then Be9if and m(B) = inf m(B„). Hence y ( & ) c 
SiT and m is a continuous set function on Ŝ (S%). Obviously m(E) = m(E) for all 
Ee£%. m is monotone on y(0l) because if A, BeSf(9l), AcB, then 
(/om),(A)^(/om),(B) for all / e ^ , that is iff qA(f)^qB(f) for all feP* iff 
qA<qB iff T- l(qA)^T_1(qB) iff m(A)^m(B). Now we shall claim the subad-
ditivity of m. Let us denote S£l = {Ae9'(<3l): m(AuB)^m(A)®m(B) for all 
Be 01}. Obviously 0t cS£i. We shall show that S£i is a monotone class. If Anel£x, 
n = l ,2 , . . . , A4ALA4A) , then for all B e l A „ u B | A u B (A„uB | 
JAuB) . By continuity of m on Sf(0l) one has 

m(AuB ) = sup m(A„uB)^sup (m(A„)®m(B)) = m(A)®m(B) 
n n 
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(m(A uB) = inf m(A„ uB)^inf (m(An) © m(B)) = m(A) © m(B)). 
n n 

Hence Sf(0l) a S£i. Further let us denote i?2 = {A 6 Sf(0fc): 
m(A uB) .g m(A)®m(B) for all B e Sf($)}. Then 01 cz X2. In the same way as for 
-Sfi one can prove that «2?2 is a monotone class. Then Sf(0i) cz S£2 and hence the 
subadditivity of m. 

There remains to be proved the uniqueness of such an extension m. Let mx: 
Sf(0l)-*0>, m2: Sf(0l)-*0> be such submeasures that mi(E) = m2(E) = m(E) for 
all Ee0l. Let si be a class of all sets E e Sf(0l) such that mx(E) = m2(E). It will 
suffice to show that SP(0i) cz si. But this is clear since by continuity of mi,m2 si is 
a monotone class. Hence the theorem is proved. 

If a submeasure m: 01 ->0> is additive, i.e. m(AuB)®m(AnB) = 
m(A)®m(B) for all A, Be01, we shall call it a measure. 

Theorem 6. Let 01 be an arbitrary ring of subsets of X=£0. Let 0> be 
a semigroup satisfying the properties (i)—(vii). Let m: 0l-*0>bea measure. Then 
there exists a unique measure m: Sf(0l)-+0> extending m. 

Proof. From the preceding we know that a submeasure m: Sf(0l)-+0> exists 
such that ml0i = m. It suffices to show that m is additive. Denote Mi = {A e Sf(0i), 
m ( A u B ) ® m(AnB) = m(A)®m(B) for each B e 01}. We shall show that Mi is 
a monotone class. Let A„fA, AneMx (n = 1,2,...). Then m(A)®m(B) = 

(sup m(A„))®m(B) = sup (m(An)®m(B)) = 
n n 

sup (m(A„uB)®m(AnnB)) = sup m(A,uB)®sup m(AnnB) = 
n n n 

= m(AuB)©m(AnB). Let A„ jA, A , e J , (n = 1, 2,...). Then 

m(A)©m(B) = (inf m(A„))©m(B)=inf (m(A„)©m(B)) = 
n n 

= inf (m(A„uB)©m(A„nB))=inf m(AnuB)©inf m(A„nB) = 
n n n 

= m(AuB)®m(AnB). Hence Jd is a monotone class evidently containing 01 
and so we have Sf(0i)czMx. Further denote M2 = {AeSf(0l), 
m(AuB)®m(AnB) = m(A)®m(B) for each BeSf(0l)}. Then0lczM2. In the 
same way as for Mt one can prove that M2 is a monotone class. Then Sf(0l) cz M2 

and the additivity of m is proved. 
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ЗАМЁТКА О МЕРАХ С ЗНАЧЕНИЯМИ В ПОЛУГРУППАХ 

1ласа Ма^^поVа 

Резюме 

В статье идет речь о разширении мер, определенных на кольце 01 подмножеств непустого 
множества X, с значениями в некоторых частично упорядоченных полугруппах на наименьшее 
а-кольцо над 01. 

В теореме 5 доказано, что монотонная, полуаддитивная, непрерывная функция т: 01—>0> (0* 
обозначает полугруппу, удовлетворяющую некоторым свойствам), для которой из Ап е 01, 
Аис:Аг,+1 (л = 1,2, ...) следует т(Ая+1 —А*)—>8, имеет однозначное разширение на наимень
шее а-кольцо над 01. В работе показан и пример монотонной, Ъолуаддитивной, непрерывной 
функции, которую невозможно разширить. 
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