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A CONJECTURE ON LIE ALGEBRAS 
ADMITTING A REGULAR AUTOMORPHISM 

OF FINITE ORDER 

EUGEN RU2lCKt—JOZEF TVARO2EK 

Let !£ be a Lie algebra over a field F of characteristic p ^ 0 admitting a regular 
automorphism1) A: S£-±S£ of order n, n ^ 2 . According to V. A. K r e k n i n , [2], 
the Lie algebra 5£ is solvable and the length /({i^*0}) of the derived series {i^0} of 
X is bounded from above by the integer 2n _ 1 . This estimate is rather rough, it seems 
to be possible to improve it. O. Kowa l sk i in 1981 proposed the following 

Conjecture. l({S£0)})^n -1. 
The purpose of this paper is to prove the Conjecture for n = 2, ..., 7. 
First we recall some basic notions and facts. Without loss of generality the field F 

can be supposed to be algebraicly closed. Further, if p > 0 (a prime number), we 
can suppose that ( n , p ) = l , i.e. n, p are relatively prime. Ii\ fact, let r be the 
greatest number such that pr\n. Then Apr: S£-*S£ is a regular automorphism of 
order n' = nlpr and {n\ p)= 1 (see [2]). Since (w, p) = 1, all roots of the minimal 
polynomial of the automorphism A are different. 

Choose some primitive2) nth root of 1 e F and denote it by a. Let iS be the 
characteristic subspace corresponding to the root a, = a ' of the minimal polynomial 

n - i 

of the automorphism A, i = 1, ..., n — 1. Then ££= 2 J£ and A(JC.) = a,*,- for all 
i = l 

JCI e -S5, i = 1, ..., n — 1. Since A is an automorphism of the Lie algebra ££, we have 

[ « , ^ ] c i f i + / (1) 

for all i, je {1, ..., n — l},see [1]. As usually, the index / + / is taken modulo n and 
«2o = 0 in the formula (1). 

Let <£=<£i0)zD<£il)=>...^££(k)z>... be the derived series of the Lie algebra SB. 
Every &k) is a vector subspace of the vector space S£. Let ££\k) = S£ik)nS£i, / = 0, 1, 

!) Automorphism without non zero fixed vectors. 
2) An element a of the field F is a primitive nth root o f l€F i f a" = l and a* 4 1 for all k, 0 < k < n. 
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..., n-1, keN. The subspace S£(k) is generated by the set {[x, y ] ; xeS£{k~X), 
yeS£Sk~x), i = p 4- q}, shortly 

#*>= J [^- 1 )^" , ) ] > (2) 

where the indices /, p and q are taken modulo n. 
Further, for all h, keN, h^k, and for every ie {0, 1, ..., n-1} we have 

S£(ik)aS£\h). (3) 

Let r e { l , ..., n-1} be a given number for which (r, n)=l. Denote G„ the 
multiplicative group of nth roots of leF, i.e. Gn = {a ' ; / = 0, 1, ..., n - 1}. The 
map fr: Gn-^Gn, fr(ai) = a\ is a group isomorphism. The isomorphism fr rep
resented on the aditive group Zn of cosets modulo n (under the identification 
al = i) will be denoted by Fr. 

Let the symbol S£\ denotes some subspace S£\k) in the case when it is not 
necessary to specify k, / = 0, 1, ..., n-1. Since a is a primitive nth root of 1 and 
since fr is a isomorphism of Gn, fr(a) is a primitive nth root of 1 too. Making use of 
this fact and (1), we get the following 

Proposition 1. Let Q be any inclusion or equality, derived from (2) using (1), 
(3) and Jacobi's identity, containing sums of vector subspaces S£\, [S£h S£'k] for 
some i , ; , ke{0, ..., n-1}. Then Q is preserved if all terms S£[, ..., S£'n i 
contained in Q are replaced by the terms SEFAX^ •••> S£'F^n-\y 

Corollary. Let S£\k) = 0 for some ie (1, ..., n -1}. Then S£]k) = 0 for all 
je{l, ..., n-1} such that (/, n) = (j, n). 

Proof. Since (/, n) = (j, n), there is an integer r e {1, ..., n - 1} such that 
(r, n) = 1 and /-(a,) = ah Applying Proposition 1 we get that S£F

k)
(0 = 0, i. e. S£(k) = 0. 

The next proposition is useful for the practical computation. 

Proposition 2. Let /, ;, k e {1, ..., n - 1}. Then 

a) i + j = nd>[[S£i,S£i],S£i] = 0 
b) i + j = n^[[S£i,S£i],[S£],S£i]] = 0 

c) i 4- k = n, j + 2k = 0(mod n) --> [[&, S£j], [S£k, S£k]] = 0. 

Proof. We prove only part a) because the rest of the proof is similar. Taking use 
of Jacobi's identity and (1) we get: [[S£h S£t], S£i]cz[[S£i, S£}], S£i]^[S£0, S£t] = 0. 
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Proof of the Conjecture for n = 2, ..., 7. 

The case n=2 is trivial because <£=<£i and $[1) = [£1, ^ ] = 0. 
In order to simplify our next formulae we shal introduce the following notation: 

i=& 
ip = &p 
ij = [i£,^] 

ipr = [£e(ip), &r\ 

where /, j e {1, ..., n - 1}, p, q e N, p > 0 , q > 0 . 

M = 3 . The Lie algebra S£ decomposes in a direct sum of the subspaces 1 and 2. 
Using (2) we get 1J = 22 and 2 ' = 11. Then 12 = 2121 = 21(11) = 0 according to 
Proposition 2. Applying Corollary of Proposition 1 we get 22 = 0. Hence 
/ ( { ^ 0 ) } ) ^ 2 . 

n = 4. As in the case n = 3 we get l 1 = 23, 21 = 11 + 33, 31 = 12. Then 12= 2x3l = 
= (11 + 33)(12 c (11)3 + (33)(12) = 0, 22 = l ' l 1 + 3*3' and 32 = 0 by Corollary of 
Proposition 1. Further 23 = 1212 + 3232 = 0 and / ( { ^ ( , ) } ) ^ 3 . 

n = 5 . By the direct computation using (2), Jacobi's identity and Proposition 1 it 
can be shown that 

l 1 l 1 c 3 4 , l 1 2 1 c 4 4 , l 1 3 1 c 2 2 . (4) 

From (2) (4) and Proposition 1 we get 2 2 c l l and 3 2 c 4 4 , 12, i.e. 3 2 c 4 4 and 
3 2 c l 2 . T h e n l 3 = 2242 + 3232 c (11)42 + (44)(12) = 0. Hence 23 = 3 3 = 43 = 0 by 
Corollary of Proposition 1, thus l({5£(i)})^3. We see that in this case the 
Conjecture holds in the stronger form l({5£(i)})^n-2. 

n = 6. After some computation we get from (2) that l 2 c 25, 22 c 11 + 35 ,11 + 44, 
35 + 44, 3 2 c l 2 , 45. Proposition 1 for r = 5 implies that 4 2 c 5 5 + 13, 55 + 22, 
13 + 22, 5 2 c l 4 . Then 3252 c (12)(14) c 11 and 4242 c (13 + 22)(22 + 55) c 
c (13)(22) + (22)(22) + (13)(55) + ( 2 2 ) ( 5 5 ) c l l . 

We have just proved that 

and by Proposition 1 also 

: U (5) 

4 3 c 5 5 . (6) 

Using (5) and (6) we get 1343 c 13(55) = 0 and 2 3 3 3 c ( l l ) ( 4 5 ) = 0. Then 2353 = 
= 3343 = 0 and 

14 = 54 = 0. (7) 
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From (2) and (7) we have 

15 = 35 = 5* = 0, 25 = 4444, 45 = 2424. (8) 

Making use of 23(44) = 23(325) = 0 we prove 

2424 = 0. (9) 

In fact, 2424 = (1313)(1313) c ((2252 + 3242)1)(11) c ( ((11+ 44)52)1)(11) + 
+ (((45)4)1)(11) c ((45)52)(11) + ((55)4(11) + ((45)5)(11) = 0 using Jacobi's 
identity and Proposition 2. 

Applying Proposition 1 for r = 5 we get from (9) that 

4444 = 0. (10) 

Results ( 8 ) - ( 1 0 ) imply / ( { ^ 0 } ) ^ 5 . 

n = 7. By the standard computation using (2), Proposition 1 and Proposition 2 one 
can obtain the following inclusions: 

2 2 6 2 c35, 3 2 5 2 c26, 4 2 4 2 c26, 35. (11) 

Then 

l 3 c 2 6 , 35. (12) 

Computing 3 3 6 c l l and 4 2 5 3 c l l we get 

2 4 c l l . (13) 

Taking use of the equalities 13(2363) = (3353)(4343) = (3353)(3353) = (44)(4343) = 0 
we prove that 

1414 = 0. (14) 

In fact, we have 1414 = (2363 + 3353 + 4343)(2363 + 3353 + 4343) c 13(2363) + 
+ (3353)(3353) + (44)(4343) + (3353)(4343) = 0. Further, from (12) and (13) using 
Proposition 1 and Proposition 2 one can get 

l 42 4c(44)(36) = 0, l 4 3 4 c (44)3 = 0. (15) 

From (14), (15) and Proposition 1 it follows that a4b4 = 0 for every a, b e {1, ..., 6}. 
Thus / ( { i ^ 0 } ) ^ 5 . As in the case n = 5 the Conjecture holds in the stronger form 
l({&°})^n-2. 
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ГИПOTEЗA O AЛГEБPAX ЛИ, 
ДOПУCKAЮЩИX PEГУЛЯPHЫЙ ABTOMOPФИЗM KOHEЧHOГO ПEPИOДA 

Eugen Ružický—Jozef Tvarožek 

P e з ю м e 

Пycть iř-aлгeбpa Ли нaд пoлeм xapaктepиcтики p Ł 0, дoпycкaющaя peгyляpный aвтoмopфизм 
A: ï£^>5£ кoнeчнoгo пepиoдa n, n^2. B. A. Kpeкнин дoкaзaл, чтo длинa /({J£(,)}) пpoизвoднoгo 
pядa {<Ѓ0} aлгeбpы <£ нe пpeвocxoдит 2""1. B нacтoящeй зaмeткe гипoтeзa l({££(i)})^n - 1 
пpoвepeнa для n = 2 , 3, ..., 7. 
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