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ON THE CONNECTIVITY 
FOR DARBOUX FUNCTIONS 

JAN JASTRZEBSKI—MARIUSZ STRZESNIEWSKI 

Let A be a set of connected points of fe D*. Then every bilateral accumulation 
point of A belongs to A. If A is a set such that any bilateral accumulation point of 
A belongs to A, then there is a function feD* such that A is the set of points at 
which / is connected. 

In [1] B r u c k n e r and C e d e r described what it means for a real function to be 
Darboux at a point and in [2] G a r r e t , Ne lms and Ke l lum introduced the idea of 
a connected function at a point. In [3] R o s e n showed that the set of points at which 
/ is Darboux and the set of points at which / is connected are G6-sets. In [4] S no ha 
showed that if A is a Ga-set then there exists a discontinuous function / such that A 
is the set of points at which / is connected. It is clear that if / is a Darboux function 
then not every G6-set is the set of points at which / is connected. Snoha posed the 
following problem: Find the characterization of a set A c R for which there exists 
a Darboux function / such that / is discontinuous at every point of R and A is the 
set of points at which / is connected. 

The present paper gives an answer as regards functions of class D*, where D* 
denotes the class of all functions / : R-*R for which f(J) = R for every non 
degenerate interval JczR. It is clear that every function feD* is the Darboux 
function. 

Let C+(/, JC)[C_(/ , JC)] denote the right-hand side the left-hand side cluster set of 
a function / at a point JC. For any subset M of the plane R2, JZ(M) denotes the 
X-projection of M. lx denotes the vertical line containing a point (JC, 0). No 
distinction is made between a function and its graph. 

Definition 1. We say that a function f is connected from the right [the left] at 
a point x (we write x e Cted+(/) [JC e Cted_ (/)] if and only if 

1. f(x)eC+(f,x)[f(x)eC-(f,x)], 
2. if a, be C+(/, JC) [a, b e C-(f, JC)] 

and M is a continuum such that 
CI. lxnMcz{x}x(a, b), 
C2. JT(M) is a non degenerate set with the left [the right] endpoint x, 

then Mnf± 0. 
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The function f is connected at a point x (we write x e Cted (/)) iffis connected from 
both the right and the left atx. 

Definition 2. If in the definition 1 each M is a horizontal interval, then we 
obtain the definitions of the Darboux function from the right-hand side [the 
left-hand side] at a point x and the Darboux function at a point x. 

Theorem. IffeD* and a set A is a set of all points at which f is connected, then 
every point of a bilateral accumulation of A belongs to A. If A is a set such that 
every point of a bilateral accumulation of A belongs to A, then there exists 
a function feD* such that Cted(/) = A. 

Proof. Let feD* and A = C t e d ( / ) . Let x be a bilateral accumulation point 
of A. It is clear that C+(f, x) = R. Let a, b eC+(f, x) and M be a continuum 
satisfying the conditions CI and C2 of the definition 1. Then there exists x' eA 
such that x'>x, lx>nMcz{x'} x (a, b) and n(M)n{u: u^x'} is a non-degenerate 
set with the left end-point x' and there exists a continuum M' satisfying the 
conditions CI and C2 of the definitions 1 for the point x' and M ' _ 
Mn{(u, y): u^x'}.Then M'nf = 0, which implies Mnf=0. We have shown that 
JC eCted+(/). In a similar way we prove that xeCted_( / ) . Hence xe A. 

Let A be a set such that every bilateral accumulation point of A belongs to A. A 
one-point set cannot be a component of the complement of A since A contains all 
its bilateral accumulation points. Therefore the complement of A is a union of 
a finite or an infinite countable system of intervals. Every component of R \ A can 
have a form: (a, b), (a, b), (a, b), ( -oo , a), ( -oo , a), (b, + oo), (b, + oo), 
(_oo, + oo), (a, b). 

We define a function \p: R \ A —> R as follows: If I is a component of R \ A with 
end-points a, b and a, b eR, then 

il>(x) = ctgj——(x-a) if xe (a,—— j and a e A, 

tl>(x) = ctg-j^--(x-a) if x e (?---—, b\ and beA, 

\p(x) = x — if xela,^-z— \ and aé A, 

ip(x) = x — if xe ( , b) and b é A. 

If I is a component of R\A of the form (a, + oo) or ( - oo, b), a, b eR, then %\)\i is 

a strictly monotonic continuous function on I and | lim ^ ( x ) | = + o o or 
x—*a + 

| lim I/>(JC)| = + oo, respecively. If I is a component of R \ A of the form (a, + oo) 
x—b~ 
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or ( - oo, b) a, b eR, then xp\i is a strictly monotonic continuous function on I. If 
A = 0 , then \p(x) = x. 

Let s4 be a family of the cardinality c of dense pairwise disjoint sets in R. Let Wl 
be the family of all continuax in R2 such that their X-projections are nondegener-
ate sets. Since these families are of the same cardinality, there exists a one-to-one 
function T: 3Ji-».s#. We define a function q>: R^R as follows: 

q>(x) = min {y: (x, y) e M} if JC e T(M), {y: (x, y) e M} * 0 

and min {y: (x, y)eM} + ty(x), and qp(jc) = 0 otherwise. We will show that 
cpeD*. Let zeR and J be a non-degenerate interval. Since ip is strictly monotonic 
on each component of its domain, there exists a non-degenerate closed interval 
JczJ such that xl>n{(u, z): uel} = 0. Since Ix{z}eWl, cp(I)n{z}±0. 

We shall prove that Cted(qp) = A. Let JC e A and M be a continuum satisfying the 
conditions CI and C2 of definition 1. There exists a continuum M'crM such that 
M'n\p = 0. From the definition of cp it follows that M'ncp+0. Let JC^A. Then 
there exists a one-side connected neighbourhood UczR\A of the point JC. 

Let M= {(u, y): ueU, y = %l>(u)}. Then there exists a continuum M i c M 
satisfying the conditions CI and C2 of definition 1, but Mincp = 0. This ends the 
proof of the theorem. 

If we replace "feD*" in the Theorem by the expression "/ is a Darboux 
function dense between graphs of two continuous functions g and h such that 
g(x)<h(x) for all xeR", then the Theorem is also true. 

The condition "g and h are continuous" is essential because: 
II 

Examp le . Let g, h, ty: R-^R be defined as follows: g(x) = sm 
JC 

if JC^O 

and g(0) = 0, h(x) = -1 and I/J(JC) = JC. Then, according to the construction used in 

the second part of the proof, there exists a function (p contained in the set 

W={(x, y): f(x)<y<g(x), y^ip(x)} and satisfying the condition: every con­

tinuum contained in W has a non-empty intersection with cp. Points — and — 
r J nit nn 

belong to Cted(cp), however, 0«_Cted((p). 
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О СВЯЗНОСТИ ДЛЯ ФУНКЦИИ ДАРБУ 

1ап 1а81Г2еЪ$к1—Мапшг $1г2е8те\У8к1 

Резюме 

Пусть С1ес1/ будет множеством всех точек связности некоторой действительной функции /. В 

этой работе дана следующая характеризация С1ес1/ для плотной в К2 действительной функции 

Дарбу/: каждая двухсторонняя граничная точка множества Оес1/ принадлежит к Оес1/. 
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