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ON THE CONNECTIVITY
FOR DARBOUX FUNCTIONS

JAN JASTRZEBSKI—MARIUSZ STRZESNIEWSKI

Let A be a set of connected points of f € D*. Then every bilateral accumulation
point of A belongs to A. If A is a set such that any bilateral accumulation point of
A belongs to A, then there is a function f e D* such that A is the set of points at
which f is connected.

In [1] Bruckner and Ceder described what it means for a real function to be
Darboux at a point and in [2] Garret, Nelms and Kellum introduced the idea of
a connected function at a point. In [3] Rosen showed that the set of points at which
f is Darboux and the set of points at which f is connected are Gs-sets. In[4] Snoha
showed that if A is a Gs-set then there exists a discontinuous function f such that A
is the set of points at which f is connected. It is clear that if f is a Darboux function
then not every Gs-set is the set of points at which f is connected. Snoha posed the
following problem : Find the characterization of a set A = R for which there exists
a Darboux function f such that f is discontinuous at every point of R and A is the
set of points at which f is connected.

The present paper gives an answer as regards functions of class D*, where D*
denotes the class of all functions f: R— R for which f(J)=R for every non
degenerate interval J< R. It is clear that every function fe D* is the Darboux
function.

Let C.(f, x)[C-(f, x)] denote the right-hand side the left-hand side cluster set of
a function f at a point x. For any subset M of the plane R?, n(M) denotes the
X-projection of M. [, denotes the vertical line containing a point (x, 0). No
distinction is made between a function and its graph.

Definition 1. We say that a function f is connected from the right [the left] at
a point x (we write x € Cted.(f) [x € Cted_ (f)] if and only if

L. f(x)e C.(f, x) [f(x) e C-(f, x)],
2. if a, b € C.(f, x) [a, b e C_(f, x)]
and M is a continuum such that
Cl. .LnMc{x} X (a, b),
C2. n(M) is a non degenerate set with the left [the right] endpoint x,
then M f+#0.
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The function f is connected at a point x (we write x € Cted (f)) if f is connected from
both the right and the left at x.

Definition 2. If in the definition 1 each M is a horizontal interval, then we
obtain the definitions of the Darboux function from the right-hand side [the
left-hand side] at a point x and the Darboux function at a point x.

Theorem. If fe D* and a set A is a set of all points at which f is connected, then
every point of a bilateral accumulation of A belongs to A. If A is a set such that
every point of a bilateral accumulation of A belongs to A, then there exists
a function fe D* such that Cted(f)=A.

Proof. Let fe D* and A =Cted(f). Let x be a bilateral accumulation. point
of A. It is clear that C.(f, x)=R. Let a, b€ C.(f, x) and M be a continuum
satisfying the conditions C1 and C2 of the definition 1. Then there exists x'€ A
such that x'>x, [,.nMc {x')} X (a, b) and (M) {u: u=x'} is a non-degenerate
set with the left end-point x' and there exists a continuum M’ satisfying the
conditions Cl1 and C2 of the definitions1 for the point x' and M'c
Mn{(u, y): u=x'}. Then M’'nf =@, which implies Mnf = . We have shown that
x € Cted. (f). In a similar way we prove that x € Cted_(f). Hence x € A.

Let A be a set such that every bilateral accumulation point of A belongsto A. A
one-point set cannot be a component of the complement of A since A contains all
its bilateral accumulation points. Therefore the complement of A is a union of
a finite or an infinite countable system of intervals. Every component of R\ A can
have a form: (a, b), (a, b), (a,b), (-, a), (—»,a), (b, +), (b, +x),
(—oo, +°°)’ (a’ b)

We define a function : R\ A — R as follows: If I is a component of R\ A with
end-points a, b and a, b € R, then

T
b—a

J .
w(x)—ctgb_a(x—a) 1fxe( > ,bland be A,

Y(x)=ctg

a+b

Yx)=x- > 1fxe<a, > andaé A,
w(x)=x—“;’b ifxe(a;b,b>andbéA.

If I is a component of R\ A of the form (a, + ©) or (— «, b), a, b e R, then y|; is

a strictly monotonic continuous function on I and |lim‘ P(x)|=+» or
|lim (x)|= + «, respecively. If I is a component of R\ A of the form (a, + ©)
x—b~
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or (—», b) a, beR, then y|; is a strictly monotonic continuous function on I. If
A =0, then y(x)=1x.

Let o be a family of the cardinality ¢ of dense pairwise disjoint sets in R. Let I
be the family of all continuax in R? such that their X-projections are nondegener-
ate sets. Since these families are of the same cardinality, there exists a one-to-one
function T: IN— of. We define a function ¢: R— R as follows:

@(x)=min {y: (x, y)e M} if xe T(M), {y: (x,y)e M} +0

and min {y: (x, y)e M} # ¢(x), and ¢(x)=0 otherwise. We will show that
@€ D*. Let ze R and J be a non-degenerate interval. Since v is strictly monotonic
on each component of its domain, there exists a non-degenerate closed interval
IcJ such that yn{(u, z): uelI}=4@. Since I X {z} eI, p(I)n{z}#0.

We shall prove that Cted ()= A. Let x € A and M be a continuum satisfying the
conditions C1 and C2 of definition 1. There exists a continuum M’ < M such that
M'nyp =0. From the definition of @ it follows that M'n@+#@. Let x ¢ A. Then
there exists a one-side connected neighbourhood U< R\ A of the point x.

Let M={(u,y): ue U, y=1y(u)}. Then there exists a continuum M;cM
satisfying the conditions C1 and C2 of definition 1, but Min@ =@. This ends the
proof of the theorem.

If we replace “fe D*” in the Theorem by the expression ““f is a Darboux
function dense between graphs of two continuous functions g and h such that
g(x)<h(x) for all xe R”, then the Theorem is also true.

The condition ““g and h are continuous” is essential because:

sinl if x#0

x
and g(0)=0, h(x)= -1 and y(x) = x. Then, according to the construction used in
the second part of the proof, there exists a function ¢ contained in the set
W={(x,y): f(x)<y<g(x), y#¥(x)} and satisfying the condition: every con-
-1

. . . . . 1
tinuum contained in W has a non-empty intersection with @. Points o and v

Example. Let g, h, ¥: R— R be defined as follows: g(x)=

belong to Cted (¢), however, 0 ¢ Cted (9).
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O CBA3HOCTH [JIs1 ®YHKLUN NAPBY
Jan Jastrzebski—Mariusz Strzesniewski
Peslome
MycTts Cted f GypeT MHOXECTBOM BCEX TOYEK CBA3HOCTH HEKOTOPO#H AeHCTBUTENLHOMN pyHKuuu f. B

aToit paboTe naHa cnenyouas xapakrepusauus Ctedf ans nnoTHoit B R? feficTBUTENbHOM DYHKLUH
Jap6y f: kaxaas ABYXCTOPOHHAS rpaHUyHasi Touka MHoxectBa Cted f npunapnexut k Ctedf.
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