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Math. Slovaca 35,1985, No. ^169—173 

THE STRUCTURE OF THE RINGS 
ASSIGNED TO GROUP VARIETIES 

BOHUSLAV SIVAK 

Recall a construction which assignes to each congruence-modular variety Y 
some ring R(Y) [1]. 

Let Y be a congruence-modular variety and let F2 be the T*-free algebra 
generated by {x, y}. Let us denote F the least congruence on F2 which identifies x 
and y. Let ;r: F2—>F2/[F, F] be the natural projection on the factor-algebra, 
f=jt(r), R(Y) = [y]t. The ring operations on R(Y) are the following ones: 

u(x, y) + v(x, y) = d(u(x, y), y, v(x, y)), 
u(x, y) • v(x, y) = u(v(x, y), y), 

-u(x,y) = d(y, u(x,y),y), 
\ = x, 0 = y. 

In this definition, d is the ternary difference term in Y. 
We shall consider only the case Ycz <S, where ^ is the variety of all groups. Each 

term u(x, y) • y) can be written in the form 

u(x,y) = u'(x,y)y 

and trivially: 

u(x, x) = xou'(x, x)= 1. 

Since R(Y) contains exactly the classes of idempotent terms, the definition of 
R(Y) can be modified in the following way: R(Y) = [l]f (i.e., R(Y) contains 
exactly the classes of terms u satisfying u(x, x)= 1.) 

u(x> y)® v(x, y) = u(x, y) • v(x, y) (the product in n(F2)) 
u(x, y)Qv(x, y) = u(v(x, y) • y, y) 

Qu(x, y) = (u(x, y))'1 (the inverse element in JZ(F2)) 

l=xy~\ 0 = yy_1 

Lemma 1. u(x, x)=l in Y if and only if there exists u such that u = uinV and 
u(x, x)=l in <£. 

Proof. il(x, y) = u(x, y) • W_1(JC, x) proves =>. The implication 4- is trivial. 
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Corollary. The subgroup of F2 which corresponds to [F, F] is generated by the 
set of all elements of the form 

u(x, y) • v(x, y) • u~l(x, y) • v~l(x, y), 

where u(x, x) = v(x, x)=l in (S. 
Proof. The terms u satisfying u(x,x) = \ in <S form a subgroup of F2 

corresponding to the congruence F. 

Lemma 2. If u(x, x) = 1 in (S, then u = V\ ... vk in
 c&, where each in has the form 

xny~n or ynx~n, neZ. 
Proof. The term u(x, y) can be written as a product of powers of x and y. The 

proof can be done by the induction on the number of these powers. 

Corollary. The subgroup of F2 which corresponds to [F, F] is generated by the 
set of all elements conjugated with the elements of the form 

u(x, y) • v(x, y) • u~\x, y) • v~x(x, y), 

where u and v have the form xny~n or ynx~n, neZ. 

Lemma 3. The additive semigroup of the ringR(Y) is generated by the set of all 
elements of the form xny~" or ynx~n, neZ. 

Corollary. The additive group of the ring R(T) is generated by the set 

{xny~n\neZ}. 

Definition. For each neN, let us denote 

an=xny~n, bn=y~nxn. 

R e m a r k . In R(T), the elements an, bn have the additive inverse elements 

Qan = ynx~n, Qbn=x~nyn. 

Lemma 4. Let us denote s = b\ = y~lx. Then 

bn=snQsn~lQ...Qs (the powers in R(Y)) 

for each ne N. 
Proof. It suffices to prove bnQbn-l = sn for n^2. We shall do it by the 

induction on n. For n = 2 we have: 

s2(x, y) = s(s(x, y) • y, y) = s(y~lxy, y) = y~2xy = 
= (y'2x2)x-ly) = b2Qbl. 

Assume that n>2 and that r ^ ^ - 1 0 ^ - 2 = (yl~nxn~l) • (x2~nyn~2) = yn~2. 
Then 
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sn(x, y) = sn-\s(x, y) y,y) = sn~1(y-1xy, y) = y1"" • y-'xy • y""1 = 
= y-xy"-1 = (y-^Xx'-y1-1) = bnQbn-u 

Lemma 5. Let us denote t = yxy~2. Then 

an = tn-1®tn-2®...®t®l 

(the powers and the unit in R(T)) for each neN. 
Proof. It suffices to prove an+1Qan = tn for n^l. We shall do it by the 

induction on n. For n = 1 we have: 

t\x, y) = yxy-2 = (yx'1)(x2y-2) = Qat@a2 = a2Qau 

Assume that n>l and that tn~1 = anQan-1 = (Jt^y"',)(y',"V"',) = Jtny"V"\ 
Then 

tn(x, y) = tn~\t(x, y) y,y) = tn-\yxy-\ y) = 
= (yjcy_1)n • y" 1 • (yjcy"1)1"n = yjc"y"1y"1yjc1"rty"1 = yx"y"1jc1""y"1 = 

= (yjc-1)(jc"+1y""-1)(y"jc-")(jcy-1) = 0 1 © a „ + 1 0 f l „ © l = a„+ 10a„. 

Lemma 6. sOt = tOs = l in R(T). 
Proof. (sOt)(x,y) = s(t(x,y)y,y) = s(yxy~\y) = y"1 • yxy~x = xy~\ 

(tOs)(x, y) = t(s(x, y) y,y) = t(y~xxy, y) = y • y~xxy • y"2 = xy~\ The term 
jcy-1 is the unit of R(T). 

Theorem 1. The ring R(T) is generated by the elements s = y~xx, t~=yxy~2. 
This two elements commutate in R(T). 

Corollary. The ring R(T) is isomorphic to the factor ring of Z[p, q] by some 
ideal containing the element 1-pq. 

Corollary. The ring R(T) is commutative. 

Theorem 2. The ring R(<&) is isomorphic to Z[p, q]l(l - pq), the isomorphism 
is defined by 1 •—-> 1, pt-+y~1x, q\-+yxy~2. 

Proof. Each element of R(<§) can be written in the form 

c 0 © c 1 s © c 2 s 2 © . . . © c k s f c © d 1 r © d 2 r 2 © . . . © d m r , 

where c , d} e Z. It suffices to prove that such a representation is unique, i.e. that 
the zero element of R(<8) has only the trivial representation of this type. Trivially, 

o = co©c 1 s©c 2 s 2 © . . .©c f c s f c ©d 1 r©d 2 r 2 ©. . .©d m r 

if and only if 

0 = dm©dm_1s©...©d25
m"2©d1s

m-1©Cosm©C1s
m+1©...©Cfcs

m + fc. 
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Therefore, we have to prove that the elements 1, s, s2, ... are Z-linearly indepen
dent. By Lemma 4, it suffices to prove that b\, b2, b3, ... are Z-linearly indepen
dent. This proof will be done if we find a group G and its elements x, y such that: 

(1) The elements of the form xny~" or y"x~n, neZ, commute in G. 
(2) No equality of the form 

(y~xx)\(y-2x2y2 ... (y~nxn)e
n = 1, et eZ,neN, 

holds in G except in the case ex = ... = en = 0. Now we shall construct such a group. 
Let us denote 

M ={f\f: Z^>Z has a finite support and ~~)f(i) = 0}, 

G = ZxM. 

We define the operation * on G in the following way: 

(m, f)*(n, g) = (m + n, h), where h(i) = f(i + n) + g(i). 

The direct calculations whow that (G, *) is a group with the neutral element (0, o), 
o: Z^>Z, o(i) = 0. Let us denote 

r 1 if / + k = 0 
cpk(i) = \-l if i = 0 forO^keZ, 

I 0 otherwise 

x = (l,<pi), y = ( l , o ) . 

Easy calculations give y~n = (-n, o), x" = (n, q)n), therefore y~nxn 

= (-n,o)*(n,cpn) = (0, cpn), xny~n = (0, xpn), where %(i) = -<p„(-i). 
As all elements of the form (0, / ) commute in (G, *), the condition (1) is 

satisfied. The condition (2) is a consequence of the equalities 

( y - y ) W O , cpi)*...*(0, (fi) = (0, e^), 

e,-times 

(y-1*)',*... *(yvY, = (o, J>,<p,) 

and the linear independence of the functions <p,-. 
Remark. The ring R(Y) is a homomorphic image of R(^) for each subvariety 

"Fcz^. This ring can be sometimes easily determined. For instance, if Y is the 
subvariety of all abelian groups, then R(Y) = Z. If Y is the subvariety of ^ 
determined by the identity xy2 = y2x, then R(Y) is isomorphic to Z[w]/(w2, 2vv). 
(In this case, w = sQl.) 
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The assignment Y>-> RT) is not injective. If % is the subvariety of ^ determined 
by the identity [[x9y]9 [z9 f]] = l, then R(T) = R(Yn%) for each 7 c « . For 
instance, R(JC) = R(<$). 
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СТРУКТУРА КОЛЕЦ, СВЯЗАННЫХ С МНОГООБРАЗИЯМИ ГРУПП 

ВоЬш.ау $\\ак 

Резюме 

В работе найдено строение колец К(У) поставлены^ модулярным многообразиям У для 
случая многообразий групп. Доказано, что для многообразия всех групп это кольцо изоморфно 
2[р> ч*]/(-— Рй) и Д л я Других многообразий групп оно является гомоморфным образом этого 
кольца. Таким образом, вде кольца К(У) коммутативны. 
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