Mathematic Slovaca

Bohuslav Sivák
The structure of the rings assigned to group varieties

Mathematica Slovaca, Vol. 35 (1985), No. 2, 169--173

Persistent URL: http://dml.cz/dmlcz/136386

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE STRUCTURE OF THE RINGS ASSIGNED TO GROUP VARIETIES

BOHUSLAV SIVAK

Recall a construction which assignes to each congruence-modular variety \mathscr{V} some ring $R(V)$ [1].

Let \mathscr{V} be a congruence-modular variety and let F_{2} be the \mathscr{V}-free algebra generated by $\{x, y\}$. Let us denote Γ the least congruence on F_{2} which identifies x and y. Let $\pi: F_{2} \rightarrow F_{2} /[\Gamma, \Gamma]$ be the natural projection on the factor-algebra, $\bar{\Gamma}=\pi(\Gamma), R(\mathscr{V})=[y] \bar{\Gamma}$. The ring operations on $R(\mathscr{V})$ are the following ones:

$$
\begin{aligned}
& u(x, y)+v(x, y)=d(u(x, y), y, v(x, y)) \\
& u(x, y) \cdot v(x, y)=u(v(x, y), y) \\
&-u(x, y)=d(y, u(x, y), y) \\
& 1=x, \quad 0=y
\end{aligned}
$$

In this definition, d is the ternary difference term in \mathscr{V}.
We shall consider only the case $\mathscr{V} \subseteq \mathscr{G}$, where \mathscr{G} is the variety of all groups. Each term $u(x, y) \cdot y$) can be written in the form

$$
u(x, y)=u^{\prime}(x, y) \cdot y
$$

and trivially:

$$
u(x, x)=x \Leftrightarrow u^{\prime}(x, x)=1
$$

Since $R(\mathscr{V})$ contains exactly the classes of idempotent terms, the definition of $R(\mathscr{V})$ can be modified in the following way: $R(\mathscr{V})=[1] \bar{\Gamma}$ (i.e., $R(\mathscr{V})$ contains exactly the classes of terms u satisfying $u(x, x)=1$.)

$$
\begin{aligned}
& u(x, y) \otimes v(x, y)\left.=u(x, y) \cdot v(x, y) \quad \text { (the product in } \pi\left(F_{2}\right)\right) \\
& u(x, y) \odot v(x, y)=u(v(x, y) \cdot y, y) \\
& \Theta u(x, y)\left.=(u(x, y))^{-1} \quad \text { (the inverse element in } \pi\left(F_{2}\right)\right) \\
& 1=x y^{-1}, \quad 0=y y^{-1}
\end{aligned}
$$

Lemma 1. $u(x, x)=1$ in \mathscr{V} if and only if there exists \bar{u} such that $\bar{u}=u$ in \mathscr{V} and $\bar{u}(x, x)=1$ in \mathscr{G}.

Proof. $\bar{u}(x, y)=u(x, y) \cdot u^{-1}(x, x)$ proves \Rightarrow. The implication \Leftarrow is trivial.

Corollary. The subgroup of F_{2} which corresponds to $[\Gamma, \Gamma]$ is generated by the set of all elements of the form

$$
u(x, y) \cdot v(x, y) \cdot u^{-1}(x, y) \cdot v^{-1}(x, y)
$$

where $u(x, x)=v(x, x)=1$ in \mathscr{G}.
Proof. The terms u satisfying $u(x, x)=1$ in \mathscr{G} form a subgroup of F_{2} corresponding to the congruence Γ.

Lemma 2. If $u(x, x)=1$ in \mathscr{G}, then $u=v_{1} \ldots v_{k}$ in \mathscr{G}, where each v_{i} has the form $x^{n} y^{-n}$ or $y^{n} x^{-n}, n \in Z$.

Proof. The term $u(x, y)$ can be written as a product of powers of x and y. The proof can be done by the induction on the number of these powers.

Corollary. The subgroup of F_{2} which corresponds to $[\Gamma, \Gamma]$ is generated by the set of all elements conjugated with the elements of the form

$$
u(x, y) \cdot v(x, y) \cdot u^{-1}(x, y) \cdot v^{-1}(x, y)
$$

where u and v have the form $x^{n} y^{-n}$ or $y^{n} x^{-n}, n \in Z$.
Lemma 3. The additive semigroup of the ring $R(\mathscr{V})$ is generated by the set of all elements of the form $x^{n} y^{-n}$ or $y^{n} x^{-n}, n \in Z$.

Corollary. The additive group of the ring $R(\mathscr{V})$ is generated by the set $\left\{x^{n} y^{-n} \mid n \in Z\right\}$.

Definition. For each $n \in N$, let us denote

$$
a_{n}=x^{n} y^{-n}, \quad b_{n}=y^{-n} x^{n}
$$

Remark. In $R(\mathscr{V})$, the elements a_{n}, b_{n} have the additive inverse elements

$$
\Theta a_{n}=y^{n} x^{-n}, \quad \Theta b_{n}=x^{-n} y^{n}
$$

Lemma 4. Let us denote $s=b_{1}=y^{-1} x$. Then

$$
\left.b_{n}=s^{n} \oplus s^{n-1} \oplus \ldots \oplus s \quad \text { (the powers in } R(\mathscr{V})\right)
$$

for each $n \in N$.
Proof. It suffices to prove $b_{n} \Theta b_{n-1}=s^{n}$ for $n \geqslant 2$. We shall do it by the induction on n. For $n=2$ we have:

$$
\begin{gathered}
s^{2}(x, y)=s(s(x, y) \cdot y, y)=s\left(y^{-1} x y, y\right)=y^{-2} x y= \\
\left.=\left(y^{-2} x^{2}\right) x^{-1} y\right)=b_{2} \Theta b_{1} .
\end{gathered}
$$

Assume that $n>2$ and that $s^{n-1}=b_{n-1} \Theta b_{n-2}=\left(y^{1-n} x^{n-1}\right) \cdot\left(x^{2-n} y^{n-2}\right)=y^{n-2}$. Then

$$
\begin{gathered}
s^{n}(x, y)=s^{n-1}(s(x, y) \cdot y, y)=s^{n-1}\left(y^{-1} x y, y\right)=y^{1-n} \cdot y^{-1} x y \cdot y^{n-1}= \\
=y^{-n} x y^{n-1}=\left(y^{-n} x^{n}\right)\left(x^{1-n} y^{n-1}\right)=b_{n} \Theta b_{n-1} .
\end{gathered}
$$

Lemma 5. Let us denote $t=y x y^{-2}$. Then

$$
a_{n}=t^{n-1} \oplus t^{n-2} \oplus \ldots \oplus t \oplus 1
$$

(the powers and the unit in $R(\mathscr{V})$) for each $n \in N$.
Proof. It suffices to prove $a_{n+1} \Theta a_{n}=t^{n}$ for $n \geqslant 1$. We shall do it by the induction on n. For $n=1$ we have:

$$
t^{1}(x, y)=y x y^{-2}=\left(y x^{-1}\right)\left(x^{2} y^{-2}\right)=\Theta a_{1} \oplus a_{2}=a_{2} \Theta a_{1}
$$

Assume that $n>1$ and that $t^{n-1}=a_{n} \Theta a_{n-1}=\left(x^{n} y^{-n}\right)\left(y^{n-1} x^{1-n}\right)=x^{n} y^{-1} x^{1-n}$. Then

$$
\begin{gathered}
t^{n}(x, y)=t^{n-1}(t(x, y) \cdot y, y)=t^{n-1}\left(y x y^{-1}, y\right)= \\
=\left(y x y^{-1}\right)^{n} \cdot y^{-1} \cdot\left(y x y^{-1}\right)^{1-n}=y x^{n} y^{-1} y^{-1} y x^{1-n} y^{-1}=y x^{n} y^{-1} x^{1-n} y^{-1}= \\
=\left(y x^{-1}\right) \cdot\left(x^{n+1} y^{-n-1}\right)\left(y^{n} x^{-n}\right)\left(x y^{-1}\right)=\Theta 1 \oplus a_{n+1} \Theta a_{n} \Theta 1=a_{n+1} \Theta a_{n} .
\end{gathered}
$$

Lemma 6. $s \odot t=t \odot s=1$ in $R(\mathscr{V})$.
Proof. $(s \odot t)(x, y)=s(t(x, y) \cdot y, y)=s\left(y x y^{-1}, y\right)=y^{-1} \cdot y x y^{-1}=x y^{-1}$, $(t \odot s)(x, y)=t(s(x, y) \cdot y, y)=t\left(y^{-1} x y, y\right)=y \cdot y^{-1} x y \cdot y^{-2}=x y^{-1}$. The term $x y^{-1}$ is the unit of $R(\mathscr{V})$.

Theorem 1. The ring $R(\mathscr{V})$ is generated by the elements $s=y^{-1} x, t=y x y^{-2}$. This two elements commutate in $R(\mathscr{V})$.

Corollary. The ring $R(\mathscr{V})$ is isomorphic to the factor ring of $Z[p, q]$ by some ideal containing the element $1-p q$.

Corollary. The ring $R(\mathscr{V})$ is commutative.
Theorem 2. The ring $R(\mathscr{G})$ is isomorphic to $Z[p, q] /(1-p q)$, the isomorphism is defined by $1 \mapsto 1, \bar{p} \mapsto y^{-1} x, \bar{q} \mapsto y x y^{-2}$.

Proof. Each element of $R(\mathscr{G})$ can be written in the form

$$
c_{0} \oplus c_{1} s \oplus c_{2} s^{2} \oplus \ldots \oplus c_{k} s^{k} \oplus d_{1} t \oplus d_{2} t^{2} \oplus \ldots \oplus d_{m} t^{m}
$$

where $c_{i}, d_{j} \in Z$. It suffices to prove that such a representation is unique, i.e. that the zero element of $R(\mathscr{G})$ has only the trivial representation of this type. Trivially,

$$
0=c_{0} \oplus c_{1} s \oplus c_{2} s^{2} \oplus \ldots \oplus c_{k} s^{k} \oplus d_{1} t \oplus d_{2} t^{2} \oplus \ldots \oplus d_{m} t^{m}
$$

if and only if

$$
0=d_{m} \oplus d_{m-1} s \oplus \ldots \oplus d_{2} s^{m-2} \oplus d_{1} s^{m-1} \oplus c_{0} s^{m} \oplus c_{1} s^{m+1} \oplus \ldots \oplus c_{k} s^{m+k}
$$

Therefore, we have to prove that the elements $1, s, s^{2}, \ldots$ are Z-linearly independent. By Lemma 4, it suffices to prove that $b_{1}, b_{2}, b_{3}, \ldots$ are Z-linearly independent. This proof will be done if we find a group G and its elements x, y such that:
(1) The elements of the form $x^{n} y^{-n}$ or $y^{n} x^{-n}, n \in Z$, commute in G.
(2) No equality of the form

$$
\left(y^{-1} x\right)_{1}^{e}\left(y^{-2} x^{2}\right)_{2}^{e} \ldots\left(y^{-n} x^{n}\right)_{n}^{e}=1, \quad e_{i} \in Z, n \in N
$$

holds in G except in the case $e_{1}=\ldots=e_{n}=0$. Now we shall construct such a group. Let us denote

$$
\begin{aligned}
M & =\left\{f \mid f: Z \rightarrow Z \text { has a finite support and } \sum_{i \in Z} f(i)=0\right\}, \\
G & =Z \times M .
\end{aligned}
$$

We define the operation $*$ on G in the following way:

$$
(m, f) *(n, g)=(m+n, h), \text { where } h(i)=f(i+n)+g(i) .
$$

The direct calculations whow that $(G, *)$ is a group with the neutral element $(0, o)$, $o: Z \rightarrow Z, o(i)=0$. Let us denote

$$
\begin{aligned}
& \varphi_{k}(i)=\left\{\begin{aligned}
1 & \text { if } i+k=0 \\
-1 & \text { if } i=0 \\
0 & \text { otherwise }
\end{aligned} \text { for } 0 \neq k \in Z,\right. \\
& x=\left(1, \varphi_{1}\right), y=(1, o) .
\end{aligned}
$$

Easy calculations give $y^{-n}=(-n, o), x^{n}=\left(n, \varphi_{n}\right)$, therefore $y^{-n} x^{n}$ $=(-n, o) *\left(n, \varphi_{n}\right)=\left(0, \varphi_{n}\right), x^{n} y^{-n}=\left(0, \psi_{n}\right)$, where $\psi_{n}(i)=-\varphi_{n}(-i)$.

As all elements of the form $(0, f)$ commute in $(G, *)$, the condition (1) is satisfied. The condition (2) is a consequence of the equalities

$$
\begin{gathered}
\left(y^{-i} x^{i}\right)_{i}^{e}=\left(0, \varphi_{i}\right) * \ldots *\left(0, \varphi_{i}\right)=\left(0, e_{i} \varphi_{i}\right), \\
e_{i} \text {-times } \\
\left(y^{-1} x\right)_{1}^{e} * \ldots *\left(y^{-n} x^{n}\right)_{n}^{e}=\left(0, \sum_{i=1}^{n} e_{i} \varphi_{i}\right)
\end{gathered}
$$

and the linear independence of the functions φ_{i}.
Remark. The ring $R(\mathscr{V})$ is a homomorphic image of $R(\mathscr{G})$ for each subvariety $\mathscr{V} \subseteq \mathscr{G}$. This ring can be sometimes easily determined. For instance, if \mathscr{V} is the subvariety of all abelian groups, then $R(\mathscr{V}) \cong Z$. If \mathscr{V} is the subvariety of \mathscr{G} determined by the identity $x y^{2}=y^{2} x$, then $R(\mathscr{V})$ is isomorphic to $Z[w] /\left(w^{2}, 2 w\right)$. (In this case, $w=s \Theta 1$.)

The assignment $\mathscr{V} \mapsto R \mathscr{V}$) is not injective. If \mathscr{K} is the subvariety of \mathscr{G} determined by the identity $[[x, y],[z, t]]=1$, then $R(\mathscr{V}) \cong R(\mathscr{V} \cap \mathscr{K})$ for each $\mathscr{V} \subseteq \mathscr{G}$. For instance, $R(\mathscr{K}) \cong R(\mathscr{G})$.

REFERENCES

[1] FREESE, R. S., McKENZIE, R.: The commutator, an overview (preprint).
Received January 6, 1983
Katedra matematiky Pedagogickej fakulty
Tajovského 40
97549 Banská Bystrica

СТРУКТУРА КОЛЕЦ, СВЯЗАННЫХ С МНОГООБРАЗИЯМИ ГРУПП
Bohuslav Sivák
Резюме
В работе найдено строение колец $R(V)$ поставленых модулярным многообразиям \mathscr{V} для случая многообразий групп. Доказано, что для многообразия всех групп это кольцо изоморфно $Z[p, q] /(1-p q)$ и для других многообразий групп оно является гомоморфным образом этого кольца. Таким образом, вде кольца $R(V)$ коммутативны.

