Mathematic Slovaca

Jana Galanová
 A note on indecomposable elements in the tensor product of semigroups

Mathematica Slovaca, Vol. 35 (1985), No. 4, 357--360

Persistent URL: http://dml.cz/dmlcz/136403

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE ON INDECOMPOSABLE ELEMENTS IN THE TENSOR PRODUCT OF SEMIGROUPS

JANA GALANOVÁ

Let \mathscr{T} be the class of all semigroups. In [1] the tensor product \otimes is defined and following property is proved:

For any $A, B \in \mathscr{T}$ the semigroup $A \otimes B$ is isomorphic to $F_{A \times B} / \tau$, where $F_{A \times B}$ is the free semigroup on the Cartesian product $A \times B$ and τ is the smallest congruence over the relation τ_{0}, which is defined on $A \times B$ in this way:

For any $a, a_{1} a_{2} \in A$ and $b, b_{1}, b_{2} \in B$ the relations

$$
\begin{aligned}
& \left(a, b_{1} b_{2}\right) \tau_{0}\left(a, b_{1}\right)\left(a, b_{2}\right) \\
& \left(a_{1} a_{2}, b\right) \tau_{0}\left(a_{1}, b\right)\left(a_{2}, b\right)
\end{aligned}
$$

hold.
The relations τ_{0} will be called the tensor relation and τ will be called the tensor congruence (on $F_{A \times B}$). The class of the tensor congruence which contains the element $\left(a_{1}, b_{1}\right) \ldots\left(a_{n}, b_{n}\right) \in F_{A \times B}$ will be denoted by $\left(a_{1} \otimes b_{1}\right) \ldots\left(a_{n} \otimes b_{n}\right)$. This is an element of $A \otimes B$.

The following properties of $A \otimes B$ are proved in [1]:
G1. If E is a one-element semigroup, then $A \otimes E \cong E(A)$ holds for any $A \in \mathscr{T}$. $E(A)$ is the greatest idempotent homomorphic image of A.

G2. If $A, B \in \mathscr{T}, A_{1} \subset A, B_{1} \subset B$ and A_{1} is a set of generators of A, B_{1} a set of generators of B, then the set

$$
\otimes\left(A_{1}, B_{1}\right)=\left\{a \otimes b \in A \otimes B: a \in A_{1}, b \in B_{1}\right\}
$$

is a set of generators of $A \otimes B$.
Definition 1. Let $A \in \mathscr{T}$ and $a \in A$. Then the element a is called indecomposable (in A), if $a \in A-A^{2}$. If $a \in A^{2}$, then a is called decomposable (in A).

The following properties are proved in [2]:
J1. Let $A, B \in \mathscr{T}, a \in A$ and $b \in B$. Then $a \otimes b$ is indecomposable in $A \otimes B$ iff $a \in A-A^{2}$ and $b \in B-B^{2}$.

J2. Let $A, B \in \mathscr{T}, a_{i} \in A-A^{2}, b_{i} \in B-B^{2}, i=1, \ldots, n$ and $a_{j+1} \neq a_{j}, b_{i+1} \neq b_{j}$ for $j=1, \ldots, n-1$. Then the element $\left(a_{1}, b_{1}\right) \ldots\left(a_{n}, b_{n}\right) \in F_{A \times B}$ is the only element of the class $\left(a_{1} \otimes b_{1}\right) \ldots\left(a_{n} \otimes b_{n}\right)$ of the tensor congruence on $F_{A \times B}$.

In particular we have $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$ in $F_{A \times B}$ iff $a_{1} \otimes b_{1} \neq a_{2} \otimes b_{2}$ in $A \otimes B$.
If I is an ideal in a semigroup A, then A / I denotes the Rees factor semigroup.
The cardinality of a set X will be denoted by $|X|$.
The purpose of this note is to prove the statements $\mathrm{C} 1-\mathrm{C} 5$ formulated below which clarify the influence of the indecomposable elements of A and B on the structure of $A(\times) B$.

Statement C1. Let $A, B \in \mathscr{T}$. Then

$$
\left|(A \otimes B)-(A \otimes B)^{2}\right|=\left|\left(A-A^{2}\right) \times\left(B-B^{2}\right)\right| .
$$

Proof. This follows from J 1 and J 2 , since $a \otimes b \in\left[(A \otimes B)-(A \otimes B)^{2}\right]$ iff $(a, b) \in\left[\left(A-A^{2}\right) \times\left(B-B^{2}\right)\right]$.

Statement C2. If $\left|A-A^{2}\right|>1$ and $\left|B-B^{2}\right|>1$, then the semigroup $A \otimes B$ is an infinite non-commutative semigroup.

Proof. Let $a_{1}, a_{2} \in A-A^{2}, b_{1}, b_{2} \in B-B^{2}$ and $a_{1} \neq a_{2}, b_{1} \neq b_{2}$. Denote $s_{1}=$ $a_{1} \otimes b_{1}, s_{2}=a_{2} \otimes b_{2}$. Since $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \neq\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$ we have $s_{1} s_{2} \neq s_{2} s_{1}$ by J2 and $A \otimes B$ is non-commutative semigroup.

The following elements are different (by J2):

$$
s_{1}, s_{2}, s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{2}, s_{1} s_{2} s_{1} s_{2} s_{1}, \ldots
$$

Hence the semigroup $A \otimes B$ is infinite.
If A, B satisfy the conditions of the Statement $C 2$ then $A \otimes B$ contains indecomposable elements and it is infinite. The question arises: If $A \otimes B$ is finite are there indecomposable elements in $A \otimes B$. The answer is given in the Statement C3.

Statement C3. let S be a finite semigroup, $S-S^{2} \neq \emptyset$ and S be isomorphic to a tensor product $A \otimes B(A, B \in \mathscr{T})$. If we denote $\left|A-A^{2}\right|=\alpha$ and $\left|B-B^{2}\right|=\beta$, then $\alpha=1$ and β is a non-zero natural number or $\beta=1$ and α is a non-zero natural number.

Proof. By C1 we have $\alpha \neq 0, \beta \neq 0, \alpha$ and β finite. By C2 we have $\alpha \leqq 1$ or $\beta \leqq 1$.

Lemma. Let $S=\{s, 0\}$ be a zero semigroup with zero 0 and T a zero semigroup. Then $S \otimes T$ is isomorphic to T.

Proof. Let 0^{\prime} be the zero of T. Then the set $T_{1}=T-\left\{0^{\prime}\right\}$ is the set of all indecomposable elements of T. Further $\otimes\left(\{s\}, T_{1}\right)=\left\{s \otimes t: t \in T_{1}\right\}$ is a set of generators of $S \otimes T$ by G2. By J1 we have $\otimes\left(\{s\}, T_{1}\right)=(S \otimes T)-(S \otimes T)^{2}$.

Let $\delta: T \rightarrow S \otimes T$ be a mapping defined by $\delta(t)=s \otimes t$ for any $t \in T$. We shall show that δ is an isomorphism:

By J2, δ is injective function, since $t \neq t_{1}, t \in T, t_{1} \in T_{1}$ imply $\delta(t)=s \otimes t \neq s$ $\otimes t_{1}=\delta\left(t_{1}\right)$.

The function δ is surjective: The elements of $S \otimes T$ have the form $\left(s \otimes t_{1}\right) \ldots\left(s \otimes t_{n}\right)$, where $t_{1}, \ldots, t_{n} \in T_{1}$ and n is a natural number. We have $\left(s \otimes t_{1}\right) \ldots\left(s \otimes t_{n}\right)=s \otimes t_{1} \ldots t_{n}=s \otimes 0^{\prime}$ for $n>1$. The elements of $S \otimes T$ are exactly the elements $s \otimes t=\delta(t), t \in T$.

The function δ is a homomorphism: $\delta\left(t_{1} t_{2}\right)=s \otimes\left(t_{1} t_{2}\right)=\left(s \otimes t_{1}\right)\left(s \otimes t_{2}\right)=$ $\delta\left(t_{1}\right) \delta\left(t_{2}\right)$ for any $t_{1}, t_{2} \in T$.

This proves our Lemma.
Statement C4. Let A, B be semigroups. Then $\left(A / A^{2}\right) \otimes\left(B / B^{2}\right)$ is isomorphic to $A \otimes B /(A \otimes B)^{2}$ iff $\left|A-A^{2}\right| \in\{0,1\}$ or $\left|B-B^{2}\right| \in\{0,1\}$.

Proof. Let us remark that $A \otimes B \cong B \otimes A$.
If both $\left|A-A^{2}\right|>1$ and $\left|B-B^{2}\right|>1$, then, by $C 2, A / A^{2} \otimes B / B^{2}$ is non-commutative, while $(A \otimes B) /(A \otimes B)^{2}$ is commutative.

If $\left|A-A^{2}\right|=1$, i.e. $\left|A / A^{2}\right|=2$, then by the Lemma we have $A / A^{2} \otimes B / B^{2} \cong B-$ $/ B^{2}$. Using $C 1$, we have $\left|B / B^{2}\right|=\left|B-B^{2}\right|+1=\left|A-A^{2}\right|\left|B-B^{2}\right|+1=\mid(A \otimes B)-$ $/(A \otimes B)^{2} \mid$, whence $B / B^{2} \cong(A \otimes B) /(A \otimes B)^{2}$.

If $\left|A-A^{2}\right|=0$, i.e. $\left|A / A^{2}\right|=1$, then $A / A^{2} \otimes B / B^{2}$ is by G1 a one-point semigroup, and so is $(A \otimes B) /(A \otimes B)^{2}$, by $C 1$.

This proves Statement C4.
Definition. A semigroup S is called globally idempotent if $S=S^{2}$.
Statement C5. The semigroup $A \otimes B$ is globally idempotent iff A is globally idempotent or B is globally idempotent.

Proof. The semigroup $A \otimes B$ is globally idempotent iff $\mid(A \otimes B)-$ $(A \otimes B)^{2} \mid=0$. We have $\left|A-A^{2}\right|\left|B-B^{2}\right|=0$ by $C 1$ and that means $A=A^{2}$ or $B=B^{2}$.

REFERENCES

[1] GRILLET, P. A.: The tensor product of semigroups. Trans. Amer. Math. Soc. 138, 1969, 267-280.
[2] GALANOVÁ, J.: Codomain of the tensor product of semigroups. Math. Slovaca (To appear).

Received June 6, 1983
Katedra matematiky
Elektrotechnickej fakulty SVST
Gottwaldovo nám. 19
81219 Bratislava

ПРИМЕЧАНИЕ К НЕРОЗЛОЖНЬМ ЭЛЕМЕНТАМ ТЕНЗОРНОГО ПРОИЗВЕДЕНИЯ ПОЛУГРУПП

Jana Galanová

Резюме

Пусть $\boldsymbol{A}, \boldsymbol{B}$ - полугруппы и \otimes - тензорное произведение в классе всех полугрупп. Если в \boldsymbol{A} и в B существует более одного неразложимого элемента, то $A \otimes B$ - бесконечная некоммутативная полугруппа.

Фактор-полугруппа Рисса $A \otimes B /(A \otimes B)^{2}$ изоморфна $\left(A / A^{2}\right) \otimes\left(B / B^{2}\right)$ тогда и толькотогда, когда в \boldsymbol{A} или в \boldsymbol{B} существует не более одного неразложимого элемента.

