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Math. Slovaca 37, 1987, No. 1, 71—83 

ON STEINER QUASIGROUPS 

JOZEF DUDEK 

0. Introduction 

Let 21 = (A, F) be an algebra. By pn = p„(2l) we shall denote the number of 
all essentially rz-ary polynomials over an algebra 21. 

A groupoid (G, •) is called distributive if it satisfies (xy) z = (xz) (yz) and 
z(xy) = (zx) (zy) for all x, y, zeG. Recall that an idempotent commutative 
groupoid (G, •) satisfying (xy) y = x is called a Steiner quasigroup (e.g. see [1]). 

For other definitions and notations used here we refer to [5]. 
In this paper we prove the following theorems: 

Theorem 1. Let (G, •) be a Steiner quasigroup. Then the following conditions 
are equivalent: 

(/,) (G, •) is distributive, 
(i2) (G, •) satisfies (xy) z = ((xz) y) x, 
(i3) (G, •) satisfies (xz) (yz) = ((xz) y) x, 
(i4) (G, •) satisfies (((xz) y) ((zy) x)) ((xy) z) = xy, 
(i5) The polynomial (((zx) y) ((zy) x)) ((xy) z) is not essentially ternary over 

{G, ), 
06)P3(G, - ) 0 . 

Theorem 2. Let (G, •) be an idempotent commutative groupoid. Then the 
following conditions are equivalent: 

(/',) (G, •) is a distributive Steiner quasigroup, 
(j2) (G, •) satisfies ((xz) (yz)) z = xy, 
(j3) (G, •) satisfies ((xz) (yz)) (xy) = z, 
(j4) (G, •) satisfies ((zx) y) ((zy) x) = z, 
(j5) The polynomial ((xz) (yz)) z is not essentially ternary in (G, •), 
(/6) The polynomial ((xz) (yz)) (xy) is not essentially ternary in (G, •), 
(/7) The polynomial ((zx) y) (zy) x) is not essentially ternary in (G, •). 

Theorem 3. Let (G, •) be an idempotent commutative groupoid. Then p3(G, •) 
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^ 3 if and only tf(G, •) is either a semilattice or a distributive Sieiner quasigroup. 
Recall that an idempotent commutative semigroup is called a semilattice. 
As a corollary from this theorem we get 

Theorem4. Let (G, -)be an idempotent commutativegroupoid with card G ̂  2. 
Then (G, •) is a distributive Steiner quasigroup if and only if p3(G, •) = 3. 

The proofs of Theorems 1, 2 and 3 are presented in the last section. 

1. General remarks on idempotent commutathe groupoids 

In this section we prove several useful lemmas concerning mainly ternary poly­
nomials over idempotent commutative groupoids. However, first we need further 
notations and definitions. 

For a given groupoid (G, •) we write x,x2-... -xn_ {xn instead of 
(...(x,x2)- ...-xn_,) xn and xyn stands for the polynomial (... (xy)- ... -y)y 
where x occurs once and y occurs n times (n ^ 1). The variety of idempotent and 
commutative groupoids (G, •) is denoted by V(-). For a fixed positive integer rz, 
by V„() we denote the subvariety of V(-) of all groupoids (G, •) which satisfy 
xyn = x. It is clear that the variety V2( •) coincides with the variety of all Steiner 
quasigroups. For n ^ 3, every member from Vn(-) will be called a generalized 
Steiner quasigroup. 

Given two integers m and n, where 1 ̂  m < rz, the symbol Vm „(•) stands for 
the subvariety of V( •) of all groupoids (G, •) satisfying xym = xyn. Members 
from V]2(-) will be called near-semilattices. It is clear that every semilattice is 
in Vm n(-). Let us add that a near-semilattice i.e., a groupoid (G, •) satisfying 
x2 = x, xy = yx and (xy) y = xy is called an upper bound algebra in [8]. 

Further, a groupoid (G, •) is said to be proper if the polynomial xy is 
essentially binary. In general, an algebra (A, {ft}leT) of type (nt)teTis proper if the 
mapping t -> nt is one-to-one andf is essentially rzrary provided nt ^ 1. It is easy 
to see that any idempotent commutative (symmetric) algebra (A, -f, •) of type 
(2, 2) is proper iff x + y and xy are distinct on A. 

Lemma 1.1. Let (G, -)e V(-). Then (G, •) is proper if and only zfcard G ̂  2. 
Proof. If (G, •) is proper, then obviously card G ^ 2. Conversely, if xy is 

not essentially binary, then using the commutativity and the idempotency of xy 
we get a contradiction. 

Lemma 1.2. Let (G, •) be an idempotent groupoid with card G ^ 2. Then 
p2(G, •) = 1 if and only if(G, •) is either a Steiner quasigroup or a near-semilat­
tice. 

Proof. If (g, -)eV(') or (G, -)G V1?2(-)> then using the previous lemma 
we infer that (G, •) is proper. Now using, e.g. Marczewski's formula of a 
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description of the set A(2) (G, •) (see [7]) one can prove that xy is the only 
essentially binary polynomial over the considered groupoid (G, •). 

Conversely, assume that p2(G, •) = 1. Then we infer that (G, •) is a com­
mutative groupoid and xy is the only essentially binary polynomial over (G, •). 
Consider now the polynomial xy2. If xy2 is essentially binary, then the above 
gives xy = xy2. This proves that (G, •) is a near-semilattice. If xy2 is not 
essentially binary, then applying Theorem 1 of [2] we infer that (G, -)e V2(). 
The proof is completed. 

Before formulating the next lemma we need the definition of a linear polyno­
mial (a good polynomial in [3]). 

We say that a polynomial f = f(x}, ..., xn) over F = {xy} is a linear polyno­
mial if all its variables are different. For example the polynomials: xy, x}x2x3, 
..., x}x2- ...-xn_xxn, xi(x2x3) x\(xi("-(xn-\xn) *••••))> (xix2> (x3*4), and so on, 
are linear polynomials over any groupoid. 

Lemma 1.3. Let (G, •) be in V(-). Then the following conditions are equivalent: 
(CO (G, •) is proper 
(c2) card G ^ 2, 
(c3) every n-ary linear polynomial over (G, •) is essentially n-ary, 
(c4) the polynomial g(x, y, z) = (xz) (yz) is essentially ternary over (G, •). 
Proof. (c!)=>(c2) follows from Lemma 1.1. 
(c2) => (c3). The proof of this implication follows by induction on the arity of 

a linear polynomial. Indeed, for n = 1, the implication is obvious. For n = 2, it 
follows from Lemma 1.1 and the fact that xy is the only binary linear polyno­
mial over (G, •). Further, observe that for every n + 1-ary linear polynomial 
f = f(x\ > x2> •••> xn> xn +1) there exists an n-ary linear polynomial f0 such that 
/ (* , , x2, ..., xn, x„ + 1) =f0(xpcj, x2, ..., xn, xn + ]) where 1 ^ i,j^n+ 1. Now 
using the idempotency, the commutativity and the inductive hypothesis we infer 
tha t / i s essentially n + 1-ary. 

(c3) => (c4). By (c3) we infer that the polynomial xy is essentially binary. Using 
this fact and the identities 

xy = g(x> x> y) and g(x, y, z) = g(y, x, z) 

we deduce that g is essentially ternary. 
(c4) => (c^. If (G, •) is improper, then xy is not essentially binary and hence 

g is also not essentially ternary, — a contradiction. This completes the proof of 
the lemma. 

Lemma 1.4. If(G, •) is proper and (G, -)eV(-), then the polynomial h(x, y, 
z) = ((xz) y) x depends on both variables y and z. 

Proof. If h does not depend on y, then we get 
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((xz) y) x = ((xz) z)x = ((zx) x) x. 

Putting x = z we have yx2 = x. This identity contradicts Theorem 1 of [2]. If 
h does not depend on z, then we have 

((xz) y)x = ((xy) y) x = (xy) x. 

Putting here x = y we get x = zx3, which again contradicts Theorem 1 of [2]. 

Lemma 1.5. If(G, •) e V( •) andh(x, y, z) = ((xz) y) x is not essentially ternary, 
then (G, -)e V4(-). Moreover, there exist proper groupoids in V4() for which h 
does not depend on x. 

Proof. If (G, •) is improper, then (G, • )eV 4 ( ) . Let (G, •) be proper. 
Then using the previous lemma we get 

((xz) y)x = zy3 = yz2. 

Setting y = z we obtain xy2 x = y. Using this identity and xy3 = yx2 we get 
xy4 = yx2y = x. Thus (G, -)G V4(-). To prove the second assertion of the lemma 
it suffices to consider an affine groupoid G(5), i.e., G(5) = (G, 3x -F 3y) where 
(G, + ) is an abelian group of exponent 5 (see the next section). It is easy to 
check that G(5)e V4() and h(x, y, z) = 2y + z. The proof is completed. 

2. Affine groupoids 

Let (G, +) be an abelian group of an odd exponent n. Denote by G(n) the 

groupoid ( G, (x + y) \. Up is prime, then G(p) is called an affine groupoid 

(see [3]). Using the main result of [10] we have G(n) = (G, I(G, +)) where 7(21) 
denote the full idempotent reduct of an algebra 21. The last equality justifies the 
name "an affine groupoid" for the groupoid G(p). We should mention here that 
(A, FX) = (A, F2) means that the algebras (A, Ff) (i = 1, 2) are polynomially 
equivalent, i.e. the sets A(F}), A(F^) of polynomials are equal. 

Recall that a groupoid (G, •) is medial if (G, •) satisfies (xy) (uv) = (xu) (yv) 
for all x, y, u, veG. Denote by Mn() the variety of idempotent commutative 
medial groupoids (G, •) satisfying xyn = x. 

Lemma 2.1. G(p)eMp_ ,(•) for every prime p = 3. 

Proof. It is clear that the groupoid G(p) = (G, •) where xy=^——(x + y) 

p+\ u 
is idempotent, commutative and medial. Putting s = —-— w e nave 
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xy2 = s2x + (s2 + s)y and in general xyk = skx + ( Z s)y' 

H e n c e f o r k = p - 1 w e g e t x / " 1 =sp~]x + (Pfj Ay. To prove xf~ ] = x it 

suffices to check the following congruences: 

sp~l = 1 (mod/?) and ' £ s' = - ^ — = O(modp). 
1 = 1 s — 1 

Both congruences follow from the Fermat formula since s and p are relatively 
prime and s — 1 and s are relatively prime. 

Note that G(p) and in general any member from Vn(.) is a quasigroup (see 
Theorem 2 of [2]). In particular, ifp = 3 we infer that G(3) is a (medial) Steiner 
quasigroup. We also have 

Lemma 2.2. If (G, +) is a group (not necessary abelian) of exponent 3, then 
(G, .) where xy = x + 2y + x is a Steiner quasigroup. 

Proof. Clearly we have x2 = x and xy = x + 2y + x = (x + (—y)) + x = 
-(y + (-x)) + x = 2(y + 2x) + x = y + 2x + y + 2x + x = y + 2x + y = 
= yx. Using this fact we have xy2 = (xy) y = yx + 2y + xy = y + 2x + y + 
+ 2y + x + 2y + x = x. Thus (G, .)eK2(«). 

3. Ternary polynomials. 

In this section we shall consider some special ternary polynomials over 
groupoids (G, .) from V(.) Namely, we shall deal with the following polyno­
mials: 

f(x, y, z) = (xy) z, g(x, y, z) = (xz) (yz), h(x, y, z) = ((xz) y) x, 
(*) a(x, y, z) = ((xz) (yz)) z, b(x, y, z) = ((xz) (yz)) (xy), 

c(x, y, z) = ((yz) x) ((zx) y) and d(x, y, z) = (((yz) x) ((zx) y)) ((xy) z). 

To formulate further lemmas we need some more definitions. 
L e t / = / (x , , ..., xn) be a function on a set A. We say that / admits a 

permutation aeSntff(xx, ...,xn) =f(x(Tl, ..., xm) for all*,, ...,xneA. We shall 
write f7(xl, ..., xn) instead of/(xa l , ..., xj). By G(f) we denote the subgroup of 
the group Sn of all admissible permutations of/(see [6]). 

Let E be a set of identities. Then by E* we denote the class of all algebras 
satisfying all identities of E. A permutation as Sn is said to be trivial for a 
polynomial p = p(xx, ..., xn) with respect to E (or with respect to E*) if the 
identity p = pa is an identity in E*. 
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Lemma 3.1. Each polynomial from (*) (except h) admits the transposition (x, 
y) of its variables. 

Proof . An easy consequence of the commutativity of xy. 

Lemma 3.2. If(G, •) e V( •) and (G, •) is proper, thenf g are essentially ternary, 
h depends on y and z, a depends on x and y, b and c depend on z. 

Proof . The first statement follows from Lemma 1.3, the second follows 
from Lemma 1.4. Using the previous lemma, we infer that a does not depend on 
x if and only if a does not depend on y. If a(x, y, z) = z, then we get y = a(x, 
x, y) = ((xy) (xy)) y = xy2. The identity xy2 = y contradicts Theorem 1 of [2]. 
Thus a depends on x and y. If b does not depend on z, then b(x, x, y) = 
= ((xy) (xy)) x = yx2 does not depend on y which contradicts Theorem 1 of [2]. 
If c does not depend on z, then the polynomial c(y, y, z) does not depend on z 
either. Hence we get x = c(x, x, y) = ((xy) x) ((yx) x) = yx2. The identity 
yx2 = x again contradicts Theorem 1 of [2]. 

Lemma 3.3. If (G, - ) eV ( - ) and (G, •) is not a semilattice, then 
G(f) = G(g)^S2. 

Proof . The fact G(f) = S2 follows from Lemma 3.1 and the nonassoci-
ativity of xy. The second statement follows from (iii) of Theorem 8 of [3]. 

Lemma 3.4. If(G, -)eV(-) and d(x, y, z) = z, then (G, - )e V4(). Moreover, 
there exist groupoids (non-one-element) from V4(-)for which d(x, y, z) = z holds. 

Proof . Setting x = y in the identity d(x, y, z) = z we get 

y = ((Lyz)y)((zy)y))(yz) = x(yz)2 

Putting x = z in d(x, y,z) = z we obtain x = d(x, y, x) = (((yx) x) (xy)) xy) x) = 
(x(xy)2) (yx2). Now we have x = y(yx2) = (yx2) y = ((yx) x) y. The identities 
xy2x = y a n d x(xy)2 = y imply y = (yx2) (yx2y)2 = (yx2) x2. Thus xy4 = x 
holds in (G, •), i.e. (G, -)e V4(-). To prove the remaining part of the assertion 
it suffices to consider an affine groupoid G(5). Applying Lemma 2.1 we infer that 
G(5)e V4(-). One can also easy verify that d(x, y,z) = z if xy = 3x + 3y where 
G(5) = (G, 3x + 3y). The proof of the lemma is completed. 

Lemma 3.5. If(G, ) G V2() and(G, •) is proper, then the identity permutation 
and the transposition (x, y) are the only admissible permutations for the polyno­
mials f g, a, b, c and d. 

Proof . It is easy to see that if any of the above mentioned polynomials 
admits a nontrivial permutation of its variables, then using the commutativity 
of xy we infer that this polynomial is symmetric. If pe{f, g, a, d] and p(x, y, 
z)=p(y, z, .x), then putting x = y we infer that (G, •) is improper, — a 
contradiction. I fnowpe{6, c} andp(x , v, z) = p(y,z,x), thenp ( j ; , v, z) = p(y, 
z, y). The last identity in both cases gives y = z, — a contradiction. 
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4. The polynomial h(x, y, z) = ((xz) y) x over Steiner quasigroups 

In this section we characterize the distributive law for groupoids from V2() 
using the polynomial h (see proposition 1). 

Lemma 4.1. If(G, -)e V2() and (G, •) is proper, then the polynomial h(x, y, 
z) = ((xz) y) x is essentially ternary. 

Proof. Using Lemma 3.2 we infer that h depends on y and z. If h does 
not depend on x, then h(. , y) does not depend on x either. This implies 
y = h(x, y, y) = ((xy) y) x = xx = x, — a contradiction. 

Lemma 4.2. If(G, •) e V2( •) and (G, •) is proper, then h does not admit any cycle 
of its variables and it does not admit the transpositions (x, z) and (y, z) of its 
variables. 

Proof. If h(x, y, z) = h(y, z, x), then ((xz) y)x = ((yx) z) y. Putting in to 
this identity _y = zwe get x = xx = ((xy) y) x = ((yx) y) y = xy. Thus we have 
xy = x, — a contradiction. Let now ((xz) y) x = (zx) y) z. As above we get 
x = xy, — a contradiction. Analogously one proves that h does not admit the 
transposition (y, z). 

Lema 4.3. Let (G, )eV2(-). Then (G, •) is distributive if and only if 
(xy) z = ((xz) y) x holds in (G, •). 

Proof. If (G, •) is distributive, then ((xz) y) x = ((xz) x) (yx) = (xy) z. 
Assuming (xy) z = ((xz) y) x we get ((xz) y)x = ((yz) x) y since the polynomial 
(xy) z admits the transposition (x, y). Using the last identity and putting yz for 
z in the first identity we get 

(xy) (zy) = ((x(zy)) y)x = (((yz) x) y) x = (((xz) y) x) x = (xz) y. 

Thus (G, •) is distributive. 

Lemma 4.4. Let (G, -)eV2(-). Then (G, •) is distributive if and only if 
(xz) (yz) = ((xz) y) x holds in (G, •). 

Proof. If (G, •) is distributive, then 

(xz) (yz) = ((xz) y) ((xz) z) = ((xz) y) x. 

Let now (xz) (yz) = ((xz) y) x hold in (-G, •). Then we have ((xz) y) x = 
= ((yz) x) y since the polynomial g(x, y, z) = (xz) (yz) admits the transposition 
(x, y) of its variables. Using this fact we get 

(xy) z = (xy) ((zy) y) = ((xy) (zy)) x = ((zy) y) x) (zy) = (xz) (yz). 

Hence (G, •) is distributive 

Lemma 4.5. If(G, -)e V2(), (G, •) is proper and the admissible group of h is 
nontrivial, then (G, •) satisfies ((xz) y) x = ((yz) x) y. 
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Proof. This fact follows immediately from Lemma 4.2. Let us add that 
we do not know if there exists any nondistributive Steiner quasigroup satisfying 
the above identity. 

Lemma 4.6. Let (G, •) be in V2(-). Then (G, •) is distributive if and only if 
P*(G, - ) 0 . 

Proof. Let (G, •) be a distributive Steiner quasigroup. If card G = 1, then 
p3(G, •) = 0 < 3. If card G > 2, then using Lemmas 3.2 and 3.4 we infer that the 
polynomials xyz, yzx and zxy are essentially ternary and different. Using 
Marczewski's description of the set A(3) (G, •) (see [7]) we infer that the polyno­
mials xyz, yzx and zxy are the only essentially ternary polynomials over (G, •). 
Thusp3(G, •) = 3. Assume now that (G, -)e V2(-)and/?3(G, •) ^ 3. IfF3(G, •) = 
= 0, then by Lemma 1.3, the groupoid (G, •) is improper. Thus (G, •) is 

distributive as a one-element groupoid. Assume now that G, •) is nondistri­
butive. Applying Lemma 3.5 we get card G(f) = 2. This implies that p3(G, 
•) ^ 3. Using once more Lemma 3.5 we deduce that G(f) = G(g) ^ S2 and that 
the identity permutation and the transposition (x, y) are in the group 
G(f) = G(g). It is obvious that (using Lemma 3.5) all the polynomials xyz, yzx, 
zxy, (xz) (yz), (xy) (zy) and (yx) (zx) are pairwise distinct. Applying to these 
polynomials Lemma 1.3 we infer that they are all essentially ternary. Hence 
p3(G, ) ^ 6 , which is impossible. Thus (G, •) is distributive, which finishes the 
proof of the lemma. 

We may now state the first main result of this paper: 

Proposition 1. Let (G, -)be a Steiner quasigroup. Then the following conditions 
are equivalent 
(//,) (G, •) is distributive 
(h2) (G, •) satisfies (xy) z = (xz) y) x 
(h3) (G, •) satisfies (xz) yz) = ((xz) y) x 
{h,)Pi{G, - ) < 3 . 

Proof. The proof follows from Lemmas 4.3, 4.4 and 4.6. 

5. The polynomial a(x, y, z) = ((xz) (yz)) z over groupoids from V ( ) 

In this section we characterize distributive Steiner quasigroups by means of 
the polynomial a. Before formulating the main result of this section (Proposi­
tion 2) we need three lemmas. 

Lemma 5.1. Let (G, •)e V( •). Then a(x, y, z) = ((xz) (yz)) z is not essentially 
ternary if and only if a(x, y, z) = xy. 
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Proof. If (G, •) is improper, then the assertion is obvious. Let now (G, •) 
be proper. If a is not essentially ternary, then applying Lemma 3.2 we infer that 
a does not depend on z. Hence a(x, x, y) = xy2 does not depend on y. This gives 
xy2 = x. Using this identity we have a(x, y, z) = a(x, y, y) = ((xy) (yy)) y = 
= xy3 = xy. Thus a(x, y, z) = xy. The converse is obvious. 

Lemma 5.2. Let (G, -)e V(-). Then (G, •) is a distributive Steiner quasigroup if 
and only if a(x, y, z) = xy. 

Proof. If (G, •) is a distributive Steiner quasigroup, then 

a(x, y, z) = ((xz) (yz)) z = (xz2) (yz2) = xy. 

Let now a(x, y, z) = xy. Then y = yy = a(y, y, z) = yz2. This shows that 
(G, -)e V2(). Further, we have (xy) z = (a(x, y, z)) z = (((xz) (yz)) z)z = 
= (xz) yz). Hence (G, •) is distributive. 

Lemma 5.3. Let (G, -)e V(). Then (G, •) a distributive Steiner quasigroup if 
and only if a(x, y, z) = ((xz) (yz)) z is not essentially ternary. 

Proof. Immediately follows from the last two lemmas. 
Combining these three lemmas we get 

Proposition 2. Let (G, -)e V(-). Then the following conditions are equivalent: 
(ax) (G, •) is a distributive Steiner quasigroup, 
(a2) (G, •) satisfies, the identity ((xz) (yz) z = xy, 
(a3) The polynomial a(x, y, z) = ((xz) (yz) z is not esentially ternary. 

6. The polynomial b(x, y, z) = ((xz) (yz)) (xy) and the distributivity 
of groupoids from V( •) 

We start with 

Lemma 6.1. Let (G, -)e V(-). Then the polynomial b is not essentially ternary 
if and only if b(x, y, z) = z. 

Proof. The proof of this lemma is similar to that of Lemma 5.1 and 
follows from Lemmas 3.1 and 3.2. 

Lemma 6.2. Let (G, -)e V(-). Then (G, •) is a distributive Steiner quasigroup 
if and only if(G, •) satisfies (bx, y, z) = z. 

Proof. If (G, •) is a distributive Steiner quasigroup, then 

b(x, y, z) = ((xz) (yz)) (xy) = ((xy) z) (xy) = z(xy)2 = z. 

Supposing b(x, y, z) = z. Then we have y = b(x, x, y) = ((xy) (xy)) (xx) = yx2. 
T^us (G, •) is a Steiner quasigroup. To prove the distributive law for (G, •) e 
6 Vi() we use the identity b(x, y, z) = z. We have 
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(xy) z = z(xy) = (b(x, y, z)) (xy) = ((xz) (yz)) (xy)2 = (xz) (yz). 

This finishes the proof of the lemma. 
From the preceding two lemmas we get 

Lemma 6.3. Let (G, -)e V(-). Then (G, •) is a distributive Steiner quasigroup 
if and only ifthe polynomial b(x, y, z) = ((xz) (yz)) (xy) is not essentially ternary. 

As a corollary from the last three lemmas we get 

Proposition 3. Let (G, -)e V(-). Then the following conditions are equivalent: 

(b,) (G, •) is a distributive Steiner quasigroup, 
(b2) the groupoid (G, •) satisfies ((xz) (yz)) (xy) = z, 
(b3) the polynomial b(x, y, z) = ((xz) (yz)) (xy) is not essentially ternary. 

7. The polynomial c(x, y, z) = ((zx) y) ((zy) x) over groupoids from V ( ) 

In this section as in the previous ones we characterize, by means of the 
polynomial c, those groupoids from V(-) which are distributive Steiner quasi-
groups. 

Lemma 7.1. Let (G, -)e V(-). Then the polynomial c is not essentially ternary 
if and only if c(x, y, z) = z. 

Proof . It follows from Lemmas 3.1 and 3.2. 

Lemma 7.2. Let (G, -)e V(). Then (G, •) is a distributive Steiner quasigroup 
if and only if (G, •) satisfies c(x, y, z) = z. 

Proof . If (G, •) is a distributive Steiner quasigroup, then we have 

c(x, y, z) = ((zx) y) ((zy) x) = ((zy) (xy)) ((zy) x) = (zy) ((xy) x) = zy2 = z. 

Let now ((yz) x) ((xz) y) = z. Putting into this identity x = y we get z = zy2. 
Thus (G, •) is a Steiner quasigroup. Using this fact we obtain 

((zx) y) z = (c(x, y, z)) ((zx) y) = ((yz) x) ((zx) y)2 = (yz) x. 

Hence (G, •) satisfies (xy) z = ((xz) y) x and (G, •) e V2( •). Using Proposition 1 
we satisfy our requirement. 

Analogously to the previous sections we have 

Lemma 7.3. Let (G, -)e V(-). Then (G, •) is a distributive Steiner quasigroup 
if and only if the polynomial c is not essentially ternary. 

From the above three lemmas we get 

Proposition 4. Let (G, -)e V(-). Then the following conditions are equivalent: 
(ci) (G, •) is a distributive Steiner quasigroup, 
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(c2) (G, •) satisfies ((zx) y) ((zy) x) = z, 
(c3) the polynomial c(x, y, z) = ((zx) y) ((zy) x) is not essentially ternary. 

8. The polynomial d(x, v, z) = (((yz) x) ((zx) y)) (xy) z) 
over Steiner quasigroups 

Lemma 8.1. Let (G, •) e V2( •). Then the polynomial d is not essentially ternary 
if and only if d(x, y, z) = xy. 

Proof. If d(x, y, z) = xy, then d is obviously not essentially ternary. Con­
versely, assume that d is not essentially ternary over (G, •). Using Lemma 3.1 we 
infer that d admits the transposition (x, y) of its variables. If (G, •) is a 
one-element groupoid, then simply d(x, y, z) = xy. If again card G ̂  2, then by 
Lemma 1.3 the groupoid (G, •) is proper and therefore the assumption implies 
that d(x, y, z) = z or d(x, y, z) = d*(x, y) where d* is essentially binary. 
In the first case we have xy = (xy) z2 = z((xy) z) = (d(x, y, z)) ((xy) z) = 
= c(x, y, z). Hence we get y = yy = c(y, y, z) = ((yz) y) ((zy) y) = zy2 = z, 
which is impossible. If the second case, holds, then we have 

d*(x, y) = d(x, y, y) = (((yy) x) ((yx) y)) ((xy) y) = (yx2) (xy2) = xy. 

Let us add here that the fact that d*(x, y) = xy also follows from Lemma 1.2. 
The proof of the lemma is completed. 

Let us mention (see Lemma 3.4) that there exist proper groupoids (G, •) from 
V( •) for which d(x, y, z) = z but such groupoids do not belong to the variety 
V2( •). However, as Lemma 3.4 shows they belong to the variety V4( •). It is clear 
that F2(.)czV4(.). 

Lemma 8.2. Let (G, -)e V2(-). Then (G, •) is distributive if and only if(G, •) 
satisfies the identity d(x, y, z) = xy. 

Proof. If (G, •) is a distributive Steiner quasigroup, then d(x, y, z) = 
= (((yz) x) ((zx) y)) ((xy) z) = ((xy) (xz)) ((xy) (yz)) ((xy) z) = 
= ((xy) (xz) (yz))) ((xy) z) = ((xy) ((xy) z)) ((xy) z) = xy. Hence 
d(x, y, z) = xy. 

Let now d(x, y, z) = xy. Then we have z = z(xy)2 = (xy) ((xy) z) = 
= (d(x, y, z)) ((xy) z) = ((yz) x) ((zx) y) = c(x, y, z). Thus we get c(x, y\ z) = z. 
Applying Proposition 4 we deduce that (G, •) is distributive. 

Analogously to the previous sections one gets 

Lemma 8.3. Let (G, -)e V2(-). Then (G, •) is distributive if and only if the 
polynomial d(x, y, z) is not essentially ternary. 

Summarizing we get 
Proposition 5. Let (G, -)e V2(-). Then the following conditions are equivalent: 

(d,) (G, •) is distributive, 
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(d2) (G, •) satisfies (((yz) x) (((zx) y)) ((xy) z) = z, 
(d3) the polynomial d(x, y, z) = (((yz) x) ((zx) y) (xy) z) is not essentially ter­
nary. 

9. Proofs of Theorems 

Theorem 1 follows from Propositions 1 and 5, Theorem 2 follows from 
Propositions 2, 3 and 4. Now we give the proof of Theorem 3. If card G = 1, 
then (G, •) as a one-element groupoid is simultaneously a semilattice and also 
a distributive Steiner quasigroup. Let now card G ^ 2. Using Lemma 1.3 we 
infer that (G, •) is proper and the following polynomials xyz, yzx, zxy are 
essentially ternary in (G, •). If xy is associative, then (G, •) is a semilattice and 
the assertion follows. If xy is not associative, then the polynomials xyz, yzx and 
zxy are different (see Lemmas 3.1 and 3.3). Since in our groupoid (G, •) we have 
F3(G, •) = 3 we infer that the polynomials xyz, yzx and zxy are the only 
essentially ternary polynomials over (G, •). Applying now Lemma 1.3 we deduce 
that the polynomial g(x, y, z) = (xz) (yz) is essentially ternary. Again by 
Lemma 3.3 we get G(g) ^ S2. I f /V g, then applying Lemmas 3.1—3.3 we infer 
that the following polynomials: 

xyz, yzx, zxy, (xz) (yz), (xy) (zy) and (>>x) (zx) 

are essentially ternary and pairwise distinct. This gives F3(G, •) ^ 6, — a 
contradiction. Thus we have proved that (G, •) is distributive. Consider now the 
polynomial xoy = xy2. Using Theorem 1 of [2] we infer that xy2 ^ y. Thus if 
A'O}' is not essentially binary, then (G, •) is a distributive Steiner quasigroup. If 
again xo y is essentially binary and xo J; = xy, then the application of Theo­
rem 8 of [3] proves that (G, •) is a semilattice. This contradicts F3(G, •) = 3. If 
xoy is essentially binary and xoy ^ xy, then using Theorem 1 of [6] we infer 
that/?3(G, •) =F3(G, •, o) ^p2(G, •, o) + 2 - 1 ^ 4 provided xoy is noncom-
mutative. Hence F3(G, •) ^ 4, — a contradiction. If xoy is commutative and 
xoy ^ xy, then applying Lemma 4 of [9] we obtain F3(G, •) ^ 8, which again 
contradicts p3(G, •) = 3. This completes the proof of Theorem 3. 
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ОБ КВАЗИГРУППАХ ШТЕЙНЕРА 

1о2еГОис1ек 

Резюме 

В этой работе рассматриваются квазигруппи Штейнера. В частности, доказаны необ­
ходимые и достаточные условия для того, чтобы идемпотентный коммутативный группоид 
был дистрибутивной квазигруппой Штейнера. 
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