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STABILIZATION OF SOLUTIONS OF CERTAIN 
ONE-DIMENSIONAL DEGENERATE DIFFUSION 

EQUATIONS 

MAREK FILA, JÁN FILO 

0. Introduction 

Stimulated by paper [1] we are concerned with the asymptotic behaviour of 
nonnegative solutions of the initial-boundary value problem 

ut = (iT)xx+f(u) in (-L,L)xR\ 
u(±L,t) = 0 in R+, (0.1) 
w(x,0) = u0(x) in [-L,L], 

where m > 1, u0 is bounded and nonnegative, / satisfies the following set of 
hypotheses: 

(HI) /eC'tfO, oo)),/(0) = 0,/(0) < 0; 
(H2) f(r) ^ crY for some c > 0 and m > y > 1; 
(H3) there exists r0 > 0 such that f(r) > 0 for r > r0 and f(r) ̂  0 for 

0 < r ̂  r0; 
(H4) there exists rx > 0 such that / (r) ^ 0 for r ̂  r„ 
(H5) there exists r2 > 0 such that cp(r) = ^(mftr) — r/(r)) is positive and 

nondecreasing for r > r2 and <p(r) ^ 0 for 0 ̂  r ̂  r2. 

These will be called the "hypotheses H". For example, we might consider 
f(r) = ary — br with a, b > 0 and m > y> 1, which one may keep in mind as a 
model growth term. 

It is well known that the equation in (0.1) appears in various physical, 
chemical and biological models. We mention only a model from biology, where 
(0.1) describes the growth and spread of a spatially distributed biological 
population, whose tendency to migrate is governed by the local population 
density [2]. The form of the function / in our example corresponds to an 
interesting case of the Verhulst law [2]. 

We begin by describing the set E(L) of nonnegative stationary solutions of 
Problem (0.1). There are two critical values L0 and L, such that 
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(i) E(L) = {0} for 0 < L < L0, 
(ii) E(L0) consists of it = 0 and one positive solution, 

(iii) E(L) = {0,p, q) for L0 < L ^ L,, where p and q are positive solutions 
withp < q on ( — L,L), 

(iv) for L > L,, L(L) consists of the trivial solution, one isolated positive 
solution q and continua of solutions generated by p(. ,L,). 

Aronson, Crandall and Peletier [1] studied E(L) for Problem (0.1) with 
f(u) = u(\ — u) (u — a) and they find the structure of E(L) to be the same, but 
there is a difference in the dependence of possible values of L on maxima of 
positive solutions u. This situation is indicated in the four diagrams in Figure 1. 

f(u) = u(1-u)(u- a) f(u)= au*-bu 

Fig. I 

Our stabilization result is a slight modification of the results of [1], it turns 
out that both the trivial solution and the large positive solution q are stable. 

The existence of global solutions is proved by the Galerkin method and our 
proof is closely related to the work of Nakao [3]. 

1. Stationary solutions 

A nonnegative function v is a stationary solution of Problem (0.1) when it is 
a solution of the problem 
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(vm)"+f(v) = 0 in (-L,L), 
v(±L) = 0. U U 

v is called a solution of Problem (1.1) iff w = vm is a classical solution of 
w" +f(w,/",) = 0, w( + L) = 0. 

Obviously v = 0 is always a solution of Problem (1.1). If v is a positive 
solution of Problem (1.1), then there exists a x0e( — L,L) such that 
0 < v(x) < v(x0) for xe( — L, L) and i/(x0) = 0- Conversely, let us seek con­
ditions which guarantee that the solution of the initial value problem 

(try +f(v) = o, 
v(x0) = n, v'(x0) = 0 

is also a positive solution of Problem (1.1). Using standard manipulations we 
obtain from (1.2) 

-(u™)'2 + mF(v) = mF(n), (1.3) 

Jo 
where F(t;)= .j* " yfr) dy. 

Jo 
The hypotheses (H3), (H4) imply that there is a > 0 (a > r0) such that F < 0 on 
(0, a) and F > 0 on (a, oo). For // e (0, a), the values of the solutions of Problem 
(1.2) lie in some interval [v,, v2], where v,, v2 > 0 and v, = // for some /e{l,2}. 
Thus in order that a solution of (1.2) represents a solution of Problem (1.1) it 
is necessary that JJ, ^ a. If fi > a, we can integrate (1.3) to obtain 

2 Jv(x. 
, "m ' ds = \x0-x\. (1.4) 

) y/FW - F(i) 

The integrand has a singular point at s = //, but by (H3) F(ji) — F(s) ^ d(ju — s) 
for some 8 > 0 and s near //, and so the singularity is integrable. For / i ^ a w e 
have F(s) < F(fi) if se(0,//), thus we can define 

-TAO = ^ ү | 0 - 7 = = . = = d s ' « < /*• (1 -5> J i 
Jo v I^T- í"(s) 

If// = a, the integrand in (1.5) may have a second singularity at s = 0. However, 
from (HI) it follows that — F(s) ^ ksm+ l for some k > 0 and s > 0 near 0, thus 
sm~](-F(s))-]/2 ^ k-]/2s(m-3)/2 near s = 0. Since m > 1, F is well defined on 
[a, oo). For a positive solution of Problem (1.1), v = 0 only at ±L. Therefore 

T(M) = \X0-L\ = \X0 + L\ 

from which we conclude that x0 = 0. We have proved 
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Lemma 1.1. Let the hypotheses (HI), (H3) and (H4) hold. Then v is a positive 
solution of Problem (1.1) if and only if 

1 Jiix) 

m - 1 

ds = |.v|, |.ү| ^ L, (1.6) 
yfm~- Ds) 

where pe[a, oo) and LeR+ are related by the equation T{p) = L and a is the 
unique positive root of F. 

This lemma yields that the number of positive solutions of (1.1) is determined 
by the number of roots of the equation T{p) = L. The following result describes 
the function T given by (1.5). 

Lemma 1.2. Let the hypotheses H hold, then 

(i) FeCfla, oo)) n C f t a , oo)), 
(ii) T{/J) -> + oo as p -> + oo, 

(iii) T{p) —> — oo as p -> a, 
(iv) T{p) has a unique root pQe{a, oo). 

Proof. Write 

S(џ) = - T(u) = I . " ds. 
Vm W Jo VD/J) - Ds) 

If we set (s) = 2mF(s) — s"'f(s), we get 

^ / / y M \ / y ^ j w - l 

2/Jo (E(/.)-F(s)) 3 2 

It means that Fe C\{a, oo)). The proof of the facts that S{p) -> S{a) as // -> a 
and S'(//) -• — oo as p -> a employs the hypotheses (HI), (H3). The arguments 
are exactly the same as in the proof of analogous statements in [1]. In order to 
prove (ii) introduce the substitution t = s/p, which yields 

' r-1 

£(/.) = //" - - = át > ff 
ýШ — 1 

ât = J 
'o yfflfi) - F{tp) J. 2 VF(/i) - F{tp) 

F{p) - F{tp) ^ -pmf{p) for - ^ r, (r, is from (H4)). This implies that J ^ K//" 7 
2 2 

l\Jf{p) if // is large enough, K is a positive constant. From (H2) we get 
S{p) - > + o o a s / / - > + o o . 

For the proof of (iv) we use (H5), from which we obtain the existence of 
p2 > r2 with 6(r) < 0 for re[r2,p2) and 6{r) > 0 for r > p2 {rff{r) = (p{r)). If 
p > //2, then 6{p) > 6{s) for 0 ^ s < p, hence S'{p) > 0 for p > p2. Therefore S' 
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has at least one zero in [r2,/.2]. In the same way as in [1] we could derive the 

inequality 

S"(ji) ^ —- -----=- Ҷ:ť- ' ds 
2u2 Jo (" ч " ч ч 1 " 2//2Jo (F(^)-F(s)) 

for // which are roots of S'. (H5) implies that pff(p) — sff(s) ^ 0 if // ̂  r2, 
se [0, //] and on a set of positive measure this inequality is strong. Since S'(ji) = 0 
implies S"(/i) > 0, there can be at most one zero of S'. Hence this completes the 
proof. 

Set L0 = T^io) and L, = T(a). We distinguish four cases: 
(i) T(p) = L has no solutions for 0 < L < L0, hence there are no positive 

solutions of Problem (1.1) if 0 < L < L0. 
(ii) T(fi) = L has one solution for L = L0, therefore there is one positive 

solution v(-,p0). 
(iii) T(p) = L has two solutions for L0 < L ^ Lx, there are two positive solu­

tions p( •, L), q( •, L) with p < q on (— L, L). 
(iv) F(//) = L has one solution pL for L> L]9 hence there is one positive 

solution q(-,L) (of Problem (1.1)) which corresponds to p,L. In addition, 
there are families of nonnegative solutions of Problem (1.1) on ( — L9L). 
They are generated by p( •, L,) because F(a) = 0, so (pm)' (+ L„ L,) = 0 and 
it follows that p(x, L,) extended as 0 for L > |x | ^ L, is a solution for 
L> Lx. More generally, let N be a positive integer and L ^ NLX. For each 
TV-vector z = (z„ ...,zN) which satisfies 

- L ^ z , -Lx,2i + Lx < z , + I - L „ / = 1,...,N- \9zN + Lx ^ L , (1.7) 

the function 

p(x - z„ L,) for |x - z,| ^ L„ 
^ X ' Z ) 10 if |JC — .zj > Z-„ / = 1,...,N 

is a nonnegative solution of Problem (1.1). We denote the collection of 
functions Q(X,2) where 2ERN satisfies (1.7) as P^L). 

The complete description of the set of the stationary solutions (this set will 
be denoted by E(L)) is as follows: 

Theorem 1.3. Let the hypotheses H hold. Then 

"{0} for 0 < L < L0, 
{0,v(.,M,)} for L = L0, 

E(L) = \ {0,p(.,L),q(.,L)} for l0 < L ^ L„ 
{0,a(.,L)}uP,(L)u...uP^(L) for Lx < L, 

*N is the maximal positive integer for which NLX ^ L. 

221 



In what follows the next lemma plays an important role. 

Lemma 1.4. Let u0eL°°(-L,L), 0 < L < oo. Then there exists U ^ L, such 
that u0 ^ q(- , L'). 

Proof. Denote q,7 = q(-,L,7), where Ln^z L, w = l , 2 , . . . , Ln -• oo . as 

n -> oo, //„ = inf q„(x) = q„(±£), Ŵ = 9W(0). We show by contradiction that 
.VG[-EL] 

r|„ -> oo as ft -* oo. Let there exist K > 0 such that rjn ^ Kfor all positive integers 
n. From (1.6) we obtain 

m | У" ' 

2 J,. vIi/o - m 
ds = L, 

further 

[2 ^" sm ] 1 
-L > -== ds > -(csyr] 2(AC - K"), (i.8) 

Vm J* V-^OO '" 

since F(LO — F(s) ^ K(/0 ^ cp%+r for K large enough. The last expression in 
(1.8) tends to infinity as n -> oo, which is the contradiction and we obtain the 
conclusion. 

2. Existence theorem for smooth initial data 

We shall write D = (-L,L), QT= D x (0, 7), Q = D x R+. The function 
spaces we use are almost familiar and we omit the definitions. 

Theorem 2.1. Let T > 0 be arbitrarily fixed. Suppose that f is locally Lipschitz 
continuous and satisfies (H2). 1fu0 ^ 0, u0e tf0(D), then Problem (0.1) admits a 
nonnegative solution u(x, t) such that 

(u{m + ])2)t(t)eL\[0, T\\L\D)\ 
u"Xl)eL°°([0, oo); tf0(L>)) n tf'([0, T\\ L\D)\ 
u(0eC([0, oo); L\D)) 

and the equation is satisfied in the sense that 

1 u(ť)ę(t)dx + (-uę, + (ď')xęҳ -f(u)ę)dxds 
Q, 

u0ę(0)dx, (2.1) 

0 < t ^ TJor all cpe C2](QT) such that q> = 0 at x = ±L, 0 ^ t ^ T. Moreover 
the following estimate holds: 

4ra 

(m + \y J 
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lHD)ds + V(u(t)) ÍÍ V(u0) (2.2) 



for 0 ^ t ^ F, where 

^ ( i (Г).v - ™Д £)) dx, Дr) = j " - " - 'f(s) dí. 

Remark 2.2. In the proof we proceed similarly as Nakao proceeds in [3], but 
we essentially employ the fact that we consider only one space-variable 

1/2 

(D = ( -L,L)) , hence \\v\\LaaiD) ^ ^(j\vx\
2dx) 

Proof of Theorem 2.1. We extend first / a s 0 in R~. Setting 
v = |ursgn(u), P(v) = |v|1/wsgn(v), y/(v) =f(P(vj) we rewrite Problem (0.1): 

(P(v))t-vxx- y<!;) = 0 in DxR+, 
v(x90) = v0(x)(=u%(x)) in D, (2.3) 
v(±L,t) = 0 in R+. 

It is easy to see that for nonnegative v Problems (2.3) and (0.1) are equivalent. 
In what follows it is more convenient for us to consider Problem (2.3). We use 
the Galerkin method, for which we regularize the equation in (2.3) because the 
leading term (P(v))t = P'(v)vt has singularities at v = 0, v = oo and y/(v) need not 
be locally Lipschitz continuous at v = 0. Thus we first consider the modified 
problem 

(ße(v) + єv), - vxx - y/є(v) = 0, є > 0, ., 
v(x,0) = v0(x), v(±L,t) = 0, к ' } 

(v) ~ ľ 
љ 

where fi£v) = Pe(s)ds, ft(s) = nrl(\s\ + e) .(1 - m)/m 

w (v) = ÍФ + є)- чĄє) for v ^ 0, 
YєK ' І0 for v < 0. 

Take a basis {wy}j*L, in H0(D) (it can be chosen arbitrarily smooth since 
D = (— L, L)) and construct approximate solutions 

n 

vnM)= Y.y"j(t)wpn= 1,2, ... 
1=1 

through the system of ordinary differential equations 

((#K e(0) + e)(v„tJit))t9wJ)0 + ((v„tJit))x9 (wj)x)0 -
- (VsiVnM))* w,)0 = ° (/ = U 2, ..., /i), (2.5) 

vn,£(0) = v0t„e[wl9 ..., wn}9 

where the initial data are chosen in such a way that 
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vo,n -> vo m "o(D) a s n ~* °°, (2.6) 

and (•, )0 denotes the inner product in L2(D). 
The above system (2.5) with respect to >>"(/) has a solution (which is unique) 

on some interval, say, [0, Tn J, because no singularity appears in (2.5) and y/£ is 
locally Lipschitz continuous. 

Now we derive a priori estimates for vn £(t). Multiplying (2.5) by {y"(t))n 

summing up overj and integrating we get 

I I ( # ( 0 + £)I(*VrXUxds + V£(vtU£(t)) = VXv0J (2.7) 
Jo JD 

for 0 ̂  t ̂  Tn%& where we set V£(v) = - \vx\
2dx - G£(v)dx and Ge(v) = 

2 JD JD 

= y/£(s) ds. From the assumption (H2) it follows that we can estimate 
Jo 

y+ m 

G£(v)dx ̂  c \v\~~~dx ̂  C,( J \v\2dx\ 
Ш i 

4 
|гJ2d.v+C2 

for e sufficiently small, where the constants C,, C2 do not depend on /?, s. 
Therefore we have 

yXv)>- I N 2 d x - C 2 
4 JD 

which (together with (2.7)) gives 

f f (PJLvHJ + s)\(vnJt\
2dxds + - f |(^ e(t))Y | 2dx ^ C < oo (2.8) 

Jo JD 4 JD 

for 0 ^ t ̂  7 ^ which implies that we can take Tn £ = F, since the constant C 
does not depend on n, s. Moreover (2.8) yields the following estimates 

%T 

í V^)d^| dxdt^C, (2.9) 
o JD <AJo 

ll^,JIL-([0,TJ;Hl(D))< C * , ( 2 . 1 0 ) 

which implies 

K.J t«( e 7 , < (2£)"2C*. (2.11) 

By a simple calculation we obtain from (2.9) and (2.11) 
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m - 1 

11(0,11^(10,7^(0)) < m(\\v„,eL*(Ql) + *) " C (--12) 

We remark that C, C* do not depend on T. 

From (2.10)—(2.12) we get using the standard arguments 

vn_, -> », weakly* in L°°([0, T]; Hl
Q(D)), (2.13) 

t>„,£ ->• ve weakly in //'([O, 71; L\D% (2.14) 
»».«-•»« strongly in L2(QT), (2.15) 

««.£-»•«« a.e. in QT, (2.16) 

o,,,-i>, in C([0, T]; L\D)), (2.17) 

along a subsequence as n -* oo. From (2.10)—(2.17) we also have 

A f a J - A(o«) strongly in LP(QT), 1 ^ p < oo, 
A ( 0 - Afe) in C([0, 71; L\D)). 

Now from (2.5) it easily follows that 

I I i-PAVe)<P, + (VX9* ~ ¥e(Ve)(p)dxdt + \ ^ / 7 ) ) ^ T ) d x = 
JO JD JD 

= j" P£v0)<p(0) dx for <pe C2- \QT). 
(2.18) 

Since the estimates (2.9)—(2.11) do not depend on £, they hold for v£ as well. 
Taking £-> 0, we obtain (2.13)—(2.17) for v& v instead of vne, v£ respectively. 
Using the obvious inequality \p£(a) - p£(b)\ ^ p£(\a - b\) for a,beR, ab^ 0, 
one can show that 

P£(v£)-+P(v) inC([0,T\;L2(D)). 

From the definition of y/£ we have \\y/£(v£) — ¥(V)\\LP(QT) ^ II V(ve + e) — 
— ^ ^ H ^ ^ ^ + ILTC^^II^Q^, thus 

¥iv£) -+ ¥(v)in LP(QT), 1 ^p < oo. 

The identity (2.1) now follows from (2.18) and we conclude that v is the desired 
solution. A comparison theorem in the next section implies its nonnegativity. 

In order to derive the inequality (2.2) from (2.7) we apply standard argu­
ments. From (2.9) we get 

(g£(vnJ)t = ( | Vm ds)f -> Xe weakly in L2(QT). 
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Since vn,e-+ve a.e. ((2.16)) and vn,e is L^-bounded ((2.11)), Lebesgue's theorem 
gives 

S , ( 0 -* g,(v£) in U(QT), 1 < p < oo, 

hence £c = (ge(ve))t a.e.. Similarly, one can show that 

rl m + 1 / /' + 1\ 

S ^ J - *0>) - J yfP{s) ds = iT2*" and (gr(vr)\ - ^ 2/" ) . 

3. Existence, continuous dependence, comparison, regularization 
and stabilization of solutions with bounded initial data 

Definition 3.1. [1] A solution u of Problem (0.1) on [0, 7] is a function u with 
the following properties: 
(i) ueC([0, T\;L\D))nL^(Q7), 

(ii) u(t)(p(t)dx~ (u(pt + um(pxx+f(u)(p)dxds = u()<p(0)d\\ 0 < t ^ F 
JD J JQ, JO 

for a// <pe C2' '(ST) such that (p^O, (p = 0 at x =- + L arzd 0 ^ l < F. A solution 
on [0, 00) means a solution on each [0, 7], a subsolution (supersolution) is defined 
by (i) and (ii) vv/lh equality replaced by ^ ( ^ ) . 

Remark 3.2. Clearly, the solution from Theorem 2A . is also a solution in the 
sense of the above definition. 

Theorem 3.3. Let f be locally Lipschitz continuous. 
(i) Let u, u be solutions of Problem (0.1) on [0, 7] u7th initial data u0 and u0, 

respectively. Let K be a Lipschitz constant for f on [ — M, M], where 
M = max(| |u | LHQT), \\U\\LHQJ. Then 

\W(t) - u(t)\\Lm < eKt\\u, - u0\\LHD), O^t^T 

(ii) Let u be a subsolution and u a supersolution of Problem (0.1) with initial data 
u0 and u0. Then if u0 ^ u0, it follows that u ^ u. 

Theorem 3.3. has been proved in [1]. In what follows we shall assume that / 
satisfies the hypotheses H. 

Corollary 3.4 Problem (0.1) has a nonnegative global solution u ifu0eLcr(D), 
u0 ^ 0. 

Proof . Lemma 1.4. yields that there is q(-,L), L ^ L such that 
0 ^ u0 ^ q(-,L') in D. Take a sequence {u0n} cz H\(D) such that 0 ^ u0n ^ q and 
II wo — woJLHD) -> 0 rdsn -> oo. Let un be the solution of Problem (0.1) (in the sense 
of Definition 3.1.) with the initial function u0n. From Theorem 3.3. we have 
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sup \\u\t) - (̂OIILi(D) < eKT\\u0j - uo^HLi(D), 
0 < / < T 

hence there is we C([0, T\; L\D)), O^u^q such that un -> w in C([0, 7]; L^D)) 
and u is the solution of Problem (0.1) with the initial function u0, hence the 
conclusion. 

In order to show the regularization and the stabilization of solutions we need 
the notion of sub- and supersolutions of Problem (1.1). A subsolution of 
Problem (1.1) is a function veC([ — L,L]), v(±L)^0 for which 

(cp"vm + cpf(v)) dx ^ 0 for all <pe C2(D), cp^O, cp(± L) = 0. 

A supersolution is defined by reversing the inequality and requiring v(±L) ^ 0. 

Theorem 3.5. For each r > 0 and each supersolution v (of Problem (1.1)) there 
is a constant M(T, V) such that for the solution u with u0^ v the following assertions 
hold: 
(i) (um)x(t)eL^(D)fort^T, 

(") \\(tf\(t)\\LHD)^M(T,v)and 

essential variation (um)x(t) ^ M(T,V) for t ^ r. 

This regularizing property of the equation and all other results in this section 
can be shown in a similar way as the analogous results in [1], with the only 
difference that we have no universal supersolution (of Problem (1.1)) like v = 1 
in [1]. But according to Lemma 1.4. for every u0eLcc(D) there is a number L 
such that u0 ^ q(-,L). 

Let u0 ^ 0, u0eLcc(D) and u = u(t,u0) be the solution of Problem (0.1) 
emanating from u0. For each r > 0 define the semiorbit 
YAu0) = {u(t, u0): t ^ r}. The theorem above yields that YXUO)

 c ^(r> *0 if wo ̂  v* 
where X(r, v) is the complete metric space consisting of those weUc(D) such 
that O^w^v, (wm)xeL™(D), \\(wm)x\\LHD) ^ M(T,V), ess var (w"% ^ M(T,V), 

equipped with the metric 

d(u, v) = ||u - v||Ll(D) + \\(um - vm)x\\L2{Dy 

We also set X(v) = {ueL°°(D): O^u^v, (if)xeL2(D)} 
equipped with the same metric. The compactness of X(r, v) follows from the fact 
that a set which is bounded in L00 and in variation is precompact in V. 

To study the asymptotic behaviour of u(t, u0) we introduce its olimit set: 

(o(u0) = {weX(v): u(tn, u0) -* w in X(v) for some sequence 
{tn} with tn -• oo as n -• oo}. 

The basic observations are collected in the next lemma. 
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Lemma 3.6. Let u0 ^ v. Then 
(i) /Xuo) i5 a precompact subset of X(v) for r > 0. 

(ii) u(.,u0)eC((0,cx));X(v)). 
(iii) co(u0) is nonempty and connected in X(v). 
(iv) Ifweco(u0), then u(t, w)eco(u0) for t ^ 0. 

Theorem 3.7. Let the hypotheses H hold. Then co(u0) cz E(L). This result can 
be derived from the inequality (2.2) in a similar way as in [1]. 

Lemma 3.8. Let u0e[v, v] = {weLx(D): v ^ w ^ v a.e. on D, v, v are sub- and 
supersolution of Problem (LI)}. Then 

(i) u(t, u0)
et^ v\for t^ 0, 

(ii) 0Xwo) ^ [v, v\ n X(v). 

Corollary 3.9. 1/w0G L°°(L)), u0

 G [^ ]̂ - ^ [v, v] n L — {g}, then u(t, u0) -> g in 
X(v) as t -• oo. 

This Corollary can be used to determine domains of attraction of 0 and 
a(-,L). These equilibria are stable and all the other elements of E(L) are 
unstable. As an example we will construct a domain of attraction of g(-,L) for 
Le(L0,L}]. Choose le[L0,L) and >>e( — L, L) such that — L ^ y — /, j + / ^ L . 
Set 

ФO 
_ Jt>(* - v, 0 for JCЄJJ - l, y + l\, 

0 if xф\y-l,У + l\-

P(-У.ІL 

-L y 0i /_ 

Fig. 2. Domain of attraction for a(-, L) where Le(L0, L,]. 

Then v is a subsolution of Problem (VI). Since /e[L0,L), we have 

v(y) = P(0, I) > F(0, L) ^ pO, L) 

If u0 ^ £ a e - in A then u(t, u0) -> _*(•, L) in X(q(-, L')) for some L' because 
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[v,q(-,L')]nE(L) = {q(-,L)}. 

We remark that v = r0 is always a supersolution and [0, r0] n E(L) = {0}, hence 
u(/, u0) -> 0 if w0 ^ -V 
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СТАБИЛИЗАЦИЯ РЕШЕНИЙ Н Е К О Т О Р Ы Х ВЫРОЖДАЮЩИХСЯ ДИФФУЗНЫХ 

У Р А В Н Е Н И Й В О Д Н О Й П Р О С Т Р А Н С Т В Е Н Н О Й П Е Р Е М Е Н Н О Й 

Магек Р П а , 1ап Е й о 

Р е з ю м е 

В статье исследуется асимптотическое поведение решений возмущенного уравнения типа 

нестационарной фильтрации с одной пространственной переменной с однородными условия­

ми Дирихле (0.1) при выполнении условый (Н1)—(Н5) . 
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