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Math. Slovaca 40, 1990, No. 2. 117—122 

REGULAR IDEALS IN AUTOMETRIZED ALGEBRAS 

JIRf RACHtJNEK 

K. L. N. Swamy and N. P. R a o introduced (in [8]) the notion of an 
ideal in autometrized algebras. (Autometrized algebras were introduced by 
SWAMY in [6]). Prime ideals in autometrized algebras were studied by the 
author in [4]. In this paper there is introduced the notion of a regular ideal in 
an autometrized algebra (it is a particular case of the notion of a prime ideal). 
The aim of the paper is to investigate the properties of regular ideals and their 
relations to prime ideals. The theory of autometrized algebras is a common 
generalization, e.g., of the theories of Brouwerian algebras and commutative 
lattice ordered groups. Hence we refer for the results of those theories to the 
books [1, 2, 3]. 

An autometrized algebra is any system sf = (A, + , :_, *) such that 
(1) (A, + , S) is an ordered commutative semigroup with zero element 0; 
(2) *: A x A -> A is a mapping (a metric operation) such that 

Va, beA; a*b^0 and #*b = 0<->a = b, 
Va, be A; a * b = b * a, 

V a, b, c e A; a * c ^ (a * b) + (b * c). 

If the ordered set (A, ^ ) is a lattice and 

V a, b, c e A; a + (b v c) = (a + b) v (a + c), 
a + (b A c) = (a + b) A (a + c), 

then s/ is called an autometrized l-algebra. 
We say that an autometrized algebra is 
a) normal if 

VaeA; a <£ «*0, 
Va, b, c, deA; (a + c)*(b + d) £ (a*b) + (c*d), 

Va, b, c, deA; (a*c)*(b*d) <£ (a*b) + (c*d), 
Va, beyi;(a^b=>3x = 0 ; a + x = b); 

b) semiregular if 

VaG^4;a^0=>a*0 = a. 
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Let si be an autometrized algebra, 0 # / c A. Then / is called an ideal in 
^ if 

Va, be/; a + be/; 
Vae / , x e ^4; x*0:ga*0=>xe/. 

Let us denote the set of all ideals in si by J (si). If ^ is a normal autome
trized algebra, then J (si) ordered by set inclusion is (by [8, Theorem 1]) a 
complete algebraic lattice. Moreover, infima in J (si) are formed by intersec
tions. Let si be an autometrized algebra, IeJ(si). Then we say that / i s a prime 
ideal in si (see [4]) if 

VJ,KeJ(si);JnK=I=>J = I or K=I. 

Definition 1. Let si be an autometrized algebra, IeJ(si). Then / i s called a 

regular ideal in ^/ if / = f] Ja, where JaeJ(si) for each a e f implies the 
aer 

existence of (3e r such that / = Jp.
 v 

It is evident that any regular ideal is also a prime ideal. Now, let us consider 
a regular ideal / in a normal semiregular autometrized algebra si, I =£ A. Denote 
/* the intersection of all ideals in si strictly containing /. Evidently, / <z /* and 
/* is a unique cover of / in the lattice J (si). 

Definition 2. Let si be a normal autometrized algebra, 0 ^ aeA. If IeJ(si) 
is a maximal ideal in si not containing a, then / is called a i;a/we of the element 
a in si. 

The set of all values of a will be denoted by val(a). 

Theorem 1. Let Abe a normal autometrized algebra, Ie <f(A). Then I is regular 
if and only if there exists aeA such that /Eval(a). 

Proof . Let / be a regular ideal in si. Let us consider ael*\l. If JeJ(si) 
and / cz / , then a e J, hence / is a value of a. 

Conversely, let 0 # aeA and Zeval(a). If JaeJ(si), aeT, and / = f] Ja, 
aer 

then there exists fie Fsuch that a$Jp. Moreover, / c J^ and since Ie val(a), it 
must be / = Jp. Therefore / is a regular ideal. 

Theorem 2. If A is a normal autometrized algebra, IeJ(si), aeA,a$I, then 
there exists Ie val(a) such that I c; / . 

Proof . Denote Z = {KeJ(si)\ I s K, a$K}. In [5, Proof of Theorem 3], 
it is shown that Z is an inductive set, and hence Z contains a maximal element 
/ which is a value of A. 
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Consequently: 

Theorem 3, Any ideal of a normal autometrized algebra s/ is the intersection 
of regular ideals. 

Let us recall the notion of a dually residuated lattice ordered semigroup 
(£)/?/-semigroup) which has been introduced by Swamy in [7]. 

A system si = (A, + , <£, —) is called a DRl-semigroup if 
(1) (A, + , ^ ) is a commutative lattice ordered semigroup with zero element 

0; 
(2) for each a, be A there exists the least element xe A such that b + x ^ a 

(x is denoted by a — b); 
(3) Va, be A; (a - b) v 0 + b S a v b; 
(4) VaeA;a-a = 0. 
If we denote a*b = (a — b) v (b — a) for a, be^4, then (,4, + , ^ , *) is an 

autometrized /-algebra which is normal and semiregular. (See [7, 8].) 
A Z)/?/-semigroup s/ is called representable (see [9]) if 

Va, be A; (a - b) A (b - a) S 0. 

(Commutative 1-groups and Boolean algebras are examples of representable 
Z)/?/-semigroups.) 

Theorem 4. If I is a prime ideal in a representable DRl-semigroup s/, then the 
set of all ideals in s/ containing I is linearly ordered. 

Proof . Let / be a prime ideal in s/. Suppose that / , KeJ(s/), I a J, 
la K, and that J£K,K£J. Then there exist 0 < aeJ\K, 0 < beK\J. Let us 
consider the elements a — (a A b) and b — (a A b). By [7, Corollary of Lemma 
4], a — (a A b) > 0 and b — (a A b) > 0. Moreover, from a A b = 0 we get 
(a A b) + a = a and (a A b) + b = b, hence a^a — (a A b)> 0 and 
b 2> b — (a A b) > 0. Hence, the semiregularity of s/ implies a — (a A b)e/and 
b-(a A b)eK. 

Since s/ is representable, by [4, Lemma 6] we have [a — (a A b)] A -
[b — (a A b)] = 0, but this is by [3, Theorem 4] a contradiction to the assumption 
that / is a prime ideal. 

Therefore J^KorK^J. 
Let s/ = (A, + , = ) be an ordered semigroup with zero element 0. Then s/ 

is called an interpolation semigroup if 

V a, b, c e A; [(0 ^ a, b, c and a ^ b + c) => 

=->(30^b, ^ b , 0 ^ c , Sc;a = b{ + c,)]. 

(For instance, commutative /-groups and Brouwerian algebras are interpolation 
semigroups.) 
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Theorem 5. If I is an ideal in a semiregular normal interpolation autometrized 
l-algebra si such that the set of all ideals in si containing I is linearly ordered, then 
I is a prime ideal in si'. 

Proof . Let / be an ideal in si satisfying the condition of the assumption. 
Suppose that / is not prime. Then by [4, Theorem 4] there exist a, be A, 0 < a, 
0 < b such that a A be I. Denote 

J = {xeA; (x * 0) A be/}, K= {ye A; (y*0) A a el}. 

If x e /, then x * 0 e I. Moreover, 0 ^ (x * 0) A b <£ x * 0, and since 
[(x*0) A b] * 0 = (x*0) A b, we get (x*0) A be/, hence xeJ. Therefore / s / . 
Similarly / c K. 

Further, (a * 0) A b = a A b e /, thus a e J. In addition, (a * 0) A a e /, hence 
a£J£, and so aeJ\K. Analogously beK\J. 

Let us prove that / , KeJ(si). Let x, ye/. Since si is a normal and 
interpolation algebra, we get 

[(x + y)*0] A b^[(x*0) + (y*0)] A b^[(x*0) A b] + [(y*0) A b]e/, 

hence x + y e / . 
Further, let x e J, ze^4, z*0 ^ x*0. Then from the semiregularity of si we 

get 
[(z*0) A b]*0 = (z*0) A b^(x*0) A b = [(x*0) A b]*0, 

and since (x*0) A be/, we also have (z*0) A be/, thus zeJ. 
Therefore JeJ(si) and similarly Ke J (si). But this means that / c / , / c K:, 

/ ^ KT, jK $£ / , a contradiction with the assumption. Hence / is a prime ideal in 
si. 

Theorems 4 and 5 and [4, Theorem 4] now imply: 

Theorem 6. If si is a representable interpolation DRl-semigroup, IeJ(si)y 

then the following conditions are equivalent: 
(1) / is a prime ideal in si. 
(2) VJ,KeJ(si);JnK^I=>J^IorK^I. 
(3) Va, be^; 0 ^ a A bel=>ael or bel. 
(4) {JeJ(si); I c J} is linearly ordered. 
Let us recall that a subset S of a lattice ££ is called a root system (see [1, p. 

27], [3, p. 51]) if for each xeS the set of all yeL such that x ^ y is linearly 
ordered and contained in S. 

Corollary. The set of all prime ideals in a representable interpolation DRl-semi-
group si forms a root system in the lattice J (si). 

We know that any regular ideal is prime. Now let us show a more complete 
connection between these notions. 
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Theorem 7. If si is a representable DRl-semigroup, IeJ{s$), then I is a prime 
ideal if and only if it is the intersection of a linearly ordered system of regular 
ideals. 

Proof . Let I be a prime ideal. Then by Theorem 3, I is the intersection 
of regular ideals. Moreover, since s/ is a representable Di?/-semigroup, the 
ideals containing I form, by Theorem 4, a chain. 

The converse implication follows from the fact that by [4, Theorem 8] the 
intersesction of any linearly ordered system of prime ideals in a semiregular 
normal autometrized /-algebra s/ is a prime ideal in s/9 too. 

Theorem 8. Let si be a semiregular interpolation normal autometrized l-alge-
bra, IeJ{stf), 0 # ael. Then the mapping (p: J\~-*JnLfor any Jeval^(a), is a 
bijection of the set va\A{a) onto the set val7(a). 

Proof . Let IeJ{s$), ael. According to [4, Theorem 10], the mapping y/: 
Pi—• P n / i s a bijection of the set of all prime ideals in si not containing /onto 
the set of all proper prime ideals in /which is an isomorphism between those sets 
ordered by set inclusion. Evidently, q> is a restriction of y/ on the set val^(a). 

Let Jev&\A{a). Since JnIeJ{I) and a^Jnl, there exists Keva\r{a) such 
that JnI<~iK. And since J = q>~\JnI), we have J ~i <p~\K). Moreover, 
ae(p~\K), but that implies / = <p~\K). Therefore Jnl = (p~\K)nI = KT, i.e. 
Jnlevalf{a). 

Conversely, let Meval,(a). Then (p~~\M) is contained in some IVeval^Ca). 
We have M = <p~\M)nI ~; Nnl and aeNnl, hence M = NnI, which 
means cp~\M) = IV. Therefore (p~\M)evalA{a). 
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РЕГУЛЯРНЫЕ ИДЕАЛЫ В АВТОМЕТРИЗОВАННЫХ АЛГЕБРАХ 

Тт К а с Ь й п е к 

Р е з ю м е 

В статье введены регулярные идеалы в автометризованных алгебрах и показаны их 
свойства в некоторых классах этих алгебр. 
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