
Mathematica Slovaca

Jiří Novotný
On the characterization of a certain class of monounary algebras

Mathematica Slovaca, Vol. 40 (1990), No. 2, 123--128

Persistent URL: http://dml.cz/dmlcz/136505

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136505
http://project.dml.cz


Math. Slovaca 40, 1990, No. 2, 123—128 

ON THE CHARACTERIZATION OF A CERTAIN CLASS 
OF MONOUNARY ALGEBRAS 

JIRI NOVOTNY 

1. Introduction 

In literature we may observe a continual interest in monounary algebras, the 
simplicity of which enables relatively objective results even of advanced alge
braic studies. Compare papers [13], [4] and monographs [5], [10]. Further, 
attempts have been carried out on arithmetic of types, first Birkhoff [1], [2] and 
others, e.g., [6], [7]. These questions were worked out for types of ordered sets. 
Analogical results were achieved for a certain class of monounary algebras [11], 
[12]. Here we continue in this study. We are concerned with the questions of 
cancellation and the algebraic characterization of the studied class of monoun
ary algebras. There are described subclasses satisfying the cancellation law for 
multiplication. It is shown that the studied class forms a pseudovariety which, 
moreover, can be described in the terminology of usual algebraic structures. 

2. Basic notions 

The ordered pair A = (A J), where A is a set andfa mapping of A into itself, 
is called a monounary algebra. 

We putf0 = id A,f = jf"1 for any positive integer n. 
For arbitrary x, ye A, we put (x, y)e gA iff there exist nonnegative integers 

pyq such that f(x)=f(y). 
Clearly, QA is an equivalence on A. Each class of the equivalence QA is called 

a component of the algebra A. 
If A has exactly one component, then A is said to be a connected monounary 

algebra. 
The set {xeA; there exists n(x) > 0 such t h a t f ^ x ) = x} is called a cycle of 

the algebra A. 
We study the class of monounary algebras consisting of a finite number of 

components each being a cycle. This class is denoted by the symbol 21. 
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The type t(A) of any algebra A of the studied class 91 can be expressed in the 
canonical form of a polynomial ax 1 + a22 + ... + amm, which means that the 
algebra A consists of at /-element cycles, 1 ^ / :g m. The numbers a, are deter
mined uniquely by A, i means the type of an /-element cycle. 

By the sum A + B of the algebras A = (A J), B = (B,g),A n B = 0 we mean 
the algebra C = (C, h) such that C = (C,h) such that C = AuBJi = / u g . 

By the product ,4. B of the algebras .4 = (A, / ) , £? = (JS, :) we rrean the 
algebra C = (C, h) such that C = A x B, h(a, b) = (f(a), g(b)) for any (a, b) e C. 
For A. 4 ... 4 we write A1. 

n times 

1. For any positive integers ij such that i = t(4), / = t(B), A, BESH we have 

# . / = g . c . d . ( / , j ) i . c m . (/,/), 
n,/iere g. c. d means the greatest common divisor and 1. c. m the least common 
multiple. 
Compare [11] 3.5. 

3. Cancellation law 

In this paragraph we shall consider the following cancellation law for multi
plication : 

4 C ^ B.C, C # 0 
implies A^B. 

Some results are known for arbitrary finite monounary algebras. 
If A, B, C are finite, C contains one-element cycles, then A. C = B.C 

implies A^ B. Compare [7] 4.3. 
If A, B are finite and An s BT then A ^ B. 

Compare [7] 4.2., or [6] and for n = 2 [9]. 
We shall study the problem in the class 91. 
By 2.1. (compare also [9], 6.3.) we have 

1. Let A, B, Ce9l be connected algebras. Then they satisfy the cancellation 
law: A. C ^ B.C, C # 0 implies Azz B. 

2.1fk=p.q, where p, q are positive integers, then k.k= qp.k. 
Proof : k.k= kk, since g .c .d . (k , k) = 1.c.m.(k, k) = k. Furthermore, 

p.k — p. k and thus q p.k= qpk = kk.U 
As a consequence we obtain the assertion: 
3. Let $ be a class of cyclic monounary algebras closed with respect to addition 

and multiplication (i.e. if A, BeM, then A+ B, A.BeM) containing two dif
ferent cycles. Then the cancellation law for multiplication is not satisfied in M. 
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Proof: Let p, q, r be positive integers, p ¥= rq, p>l, q=l. Then 
g.c.d.(/?, q)l.c.m.(p, g ) . l c m . ( p , q) = g.c.d.(p, q)l.c.m.(p, q)I.c. 
. m . (p, g) = pql. c . m . (p, cjr) and also pgl. c . m . (p, q) = pql. c . m . (p, g). 
Thus, g . c . d. (/?, q) I. c . m . (p, q). I. c . m . (p, q) = pg. I. c . m . (p, q). After 
cancellation g. c. d. (p, q) I. c . m . (p, g) = pq, which is a contradiction. • 

A. Any subclass of 21 closed with respect to addition and multiplication satisfy* 
ing the cancellation law for multiplication is of the form {nk; n _• 0}, where k is 
a positive integer. We denote this class by the symbol Jf* (k). 

Proof: Let A, B, CeJT(k), t(A) = ak, t(B) = bk, t(C) = ck. 
Then by [11] 3.7. 

ak + bk = (a + b) k, (ak). (bk) = abkk. 

Further, if A. C =" B. C, then ackk = bckAr and afr = bfc, thus A^ B. From 
this and 3.3. we obtain the assertion. • 

5. For k > \ the class jfT(k) is not isomorphic to the set of natural numbers (1V, 
+ ,.). 

Proof: Let i be an isomorphism of N onto Jf (k). N contains the unique 
zero element 0 and Jt'(k) has the zero element Ok = 0. Thus i(0) = 0. Further, 
1 T* 0 implies i(\) # 0. From this i(\) = nk for some n > 0. Now, we have 
nk = i(\) = i(\.\) = i(\). i(\) = (nk). (nk) = n2kk. From the uniqueness of the 
type we have n = n2k, thus 1 = nk, which is not possible for k > 1. Thus, there 
is no isomorphism of N onto Jf(k). • 

4. Algebraic structure of extension 

Let f bea family of algebras. According to the usual definition in universal 
algebra iT is a variety if it satisfies the following conditions: 
(i) IfSeiT and T is a subalgebra of S, then T G / . 
(2) If Sei^ and T is a quotient algebra ofS, then TeiT. 
(3) The direct product of any family in i^ is in if. 

Since we are concerned only with finite monounary algebras it will be natural 
to restrict (3) to finite direct products. Such a family *V is sometimes called a 
pseudovariety. Compare [3] p. 109. 

1. 21 is, clearly, a pseudovariety of monounary algebras. 
Let At be a two-element cycle for any ieN. Then _4fe2l and the direct 

product of all Ah clearly, contains infinite many elements, therefore 114,^21. 
Thus, 21 is not a variety. 

2. Let us define the relation = on 21 x 21 in the following way: [.4,, A2] = [£?,, 
B2] iff t{Ax) + t(B2) = t(A2) + t(-Bj). Then the relation == is an equivalence on 
the set 21 x 21 = 2l2. 
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Proof: The assertion follows from the commutativity and the associativ
ity of the addition of types. See [11] 3.4. • 

The factor set 9I2/ = is denoted by the symbol $t*. If ae9l*, [Al9 A2]ea9 we 
write a = T[Al9 A2]. 

3. 91* is a commutative group if we define the addition on classes of s in the 
following way. If a = T [Al9 A2]9 b = T[BX9 B2] we set a + b = T[AX + Bl9 

A2+B2]. 
Proof: 91 is a commutative semigroup with cancellation, which can be 

isomorphically embedded into a commutative group. In this group 91* 0 = T[A9 

A] is a zero element and to any element a = T[AX9 A2) there exists an additive 
inverse element — a -= T[A29 Ax]. D 

4. Let us represent T[Al9 A2] by (t(Ax)9 t(A2)). Instead of (t(Ax)9 0) we write 
t(Ax)9 instead of (0, t(A2)) - t(A2). Clearly, we have (t(4,), t(A2)) = t(Ax) -
— t(A2) and, thus, the set 91* contains elements of the form of polynomials 
ax1 + a22+ ... + ann with integer coefficients au 1 ^i^n. 

An algebraic structure 3C that is at the same time a commutative ring and a 
module over K9 is called a commutative algebra over K if, moreover, 

(*) a(xy) = (ax)y = x(ay) 

for any x9ye3C9 aeK. Compare [8] p. 386. 
5. 91* is a commutative algebra over the ring of integers. 
Proof: 91* is a module over the ring of integers. The axioms of scalar 

product are clearly satisfied since by 4.4. we proceed with polynomials with 
integer coefficients. The multiplicative condition (*) from the definition is also 
fulfilled. Compare 2.1. Together, we have obtained a commutative algebra. • 

6. The commutative ring 91* cannot be extended to a field since it is not an 
integral domain. The necessary and sufficient condition for a commutative ring 
to be an integral domain, is the validity of the cancellation law. Compare [8] the 
assertion 10, p. 165. The cancellation law for multiplication does not hold in 91* 
(see 3.3.). 

7. Let Jf be a commutative algebra over the ring of integers. Then the 
following assertions are equivalent: 
(A) Jf and 91* are isomorphic. 
(B) The module of JT is free over a countable set of generators {t?,.; i > 0} and 
for these ring elements we have 

vi.vJ^g.c.d.(i9j).vl.c.mAiJ). 

Proof: I. The algebra 91* is formed by polynomials ax 1 + a22+ ... + ann 
with the integer coefficient aj9 1 g / ^ n. The elements 7, 2, ..., n, ... clearly are 
generators of the module of 21*. By 2.1. we have /./" = g .c .d .(i9j)\ . c . m .(/, 
j). Thus (A) implies (B). 
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II. Let JT be a free module over the ring of integers with a set of free 
generators {vt\ i > 0}. We show that the mapping 6described by the assignment 
vt -»/ induces an isomorphism of Jf onto 91*. Indeed, as {vt\ i > 0} is a set of 
generators, the mapping 0 can be extended to a linear mapping of modules of 
algebras JT and 91*, that is at the same time a ring homomorphism. Further, 
we have 0^. vj) = 0(g. c. d. (/, j). ^ . c . m . 0 J ) ) = g. c. d. (/, j). flfa.cm. </,;>) = 
= g. c. d. (/,j) I. c . m . (/, j) -= / ./ Similarly a mapping 3given by the prescrip
tion i-*Vi can be extended to a homomorphism of 91* onto JT that satisfies the 
relation 

#( ' ./) = % . c. d.(/, j) I. c . m .(/,/)) = g. c. d. (/, j) vx^mAUI) = vt. Vj. 

By a composition of the mappings 6. 3 we obtain the identity on 91* and by a 
composition of the mappings 3. 6 the identity on Jf. Hence (B) implies (A). • 

5. Concluding remarks 

We have presented the example of the pseudovariety different from Eilen-
berg's examples. Moreover, we have achieved a full characterization of the 
algebra of types from 91* by means of commutative algebras. 
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О ХАРАКТЕРИЗАЦИИ ОДНОГО КЛАССА МОНОУНАРНЫХ АЛГЕБР 

^^п NоVоI:пу 

Р е з ю м е 

В статье показано, какие подклассы класса циклических моноунарных алгебр 
удовлетворяют законам сокращения для произведения. Далее решается вопрос алгебраичес
кой характеризации изучаемого класса>юноунарных алгебр. 
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