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A METHOD OF INVERSION 

OF THE LAPLACE TRANSFORM 

PAVOL CHOCHOLATY 

ABSTRACT. An approximate method of the Laplace transform inversion is given 
which is particularly appropriate for stress analysis problems in quasi-static linear 
viscoelasticity. 

1. Introduction 

The Laplace transform is useful in solving some ordinary and partial differ­
ential equations and integral equations and arises in many fields of engineering 
mathematics. However, the exact determination of the original function f(t) 
from its Laplace transform 

/ 
F(p) = e-*lf(t)dt (1) 

is often a gгeat difficulty. In many cases, numerical methods must be used. 

In determining a function f(t) from its Laplace transform F(p) one applies 
either a partial fraction expansion or an integration along some contour in the 
complex p-plane; one thus obtains f(t) in terms of the poles and residues of 
F(p), oг from the values of F(p) on a contour of the p-plane. Both methods 
have obvious disadvantages for a numerical analysis. 

In the following we propose to develop a method for determining f(t) in 
terms of the values of F(p) on a sequence of equidistant points 

Pj =Po +jh, j = 0 , 1 , . . . , n (2) 

on the real p-axis, where po is a real iшmber in the region of existence of F(p), 
and h is an aгbitraгy positive integer. That F(p) is uniquely determined from 
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its values at the above points, is know [4]. It should therefore be possible to 
express f(t) directly in terms of F(po +jh). 

An approximate method of the Laplace transform inversion is given, which 
is par t icular ly appropr ia te for stress analysis problems in quasi-static linear vis-
coelasticity. A viscoelastic response can be easily calculated from an associated 
elastic solution, which is known numerically, using experimentally determined 
mater ia l propert ies , regardless of the complexity of the proper ty dependence of 
the elastic solution and it holds that the Laplace transform of a viscoelastic 
stress has singularities only on the non-positive real p-axis , and tha t all poles 
are simple, except at the origin, where a double pole may occur. S c h a p e r y 
[5] shows tha t for the mentioned problems, f(t) can be wri t ten in the form 

s 

/(<) = X>. e " 7 < < (3) 
i = l 

and the t ime dependence of the exact inversion therefore suggests tha t a Dirichlet 
series 

k 

/fc(<) = X>e-"--' (4) 
1 = 1 

can be used as a reasonable approximation to the solution f(t), where the mi 
are prescribed positive constants , and the 5,- are urispecified coefficients. 

Under the assumption that a finite sequence of the (n + 1) values of F(p) 
at the equidistant points pj , j = 0 , 1 , . . . , n, n > 2k is given, the me thod 
presented here extends these results also for unspecified positive constants mi. 
Our me thod determines the coefficients 5Z , nii , i' = 1, 2 , . . . , k by solving linear 
overdetermined systems and a polynomial equation of the k th order. 

2. N u m e r i c a l invers ion o f t h e Laplace t r a n s f o r m 

From an experiment we get the values F3: , j = 0 , 1 , . . . , n by eqvial spacing 
h, so tha t Fj+i — Pj -= h, j = 0 , 1 , . . . , 7? — 1 and there holds F(pj) = Fj , 
j — 0 , 1 , . . . , 7/ . Then with regard to the termwise Laplace t ransformat ion of (4) 
we get a system of (n + 1) equations of the form 

* 1 
Fj = V Sl — , j = 0 , 1 , . . . , 71 . (5) 

If we consider the first differences d} from the values Fj , i.e. 

dj = Fj+l-Fj, j = 0 , 1 , . . . , 7 i - l , (6) 
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we can express dj in the form 

* c. 
di = -hY -^ r , (7) 

£ ? (Po+jh + mi)(p0 + (j + l)/i + tin) 

or shortly 
k 

<*> = £ < * > , . , (8) 

i = i 

where the relation 

A Po+jh + nij _ 
di+1'i = Po + U+2)h + rni

di'i = Ui'idi'i ( 9 ) 

holds for j = 0 , 1 , . . . , n — 2 and i = 1, 2 , . . . , k . 

Let -D^l+1 be the set of (n — k) subsets, each consisting of (k + 1) elements 

of the set {r/0, d\,. . . , dn-\ } , i.e. for a fixed j there holds 

where 

{dj,dj+i,... ,dj+k} Є D^+i , 

1 = 1 

*: ifc 

</-•+! = 2^dj+í}l = 2^,uhidj,i , 
i=i i=i (10) 

A: fc , k - \ N 

d> + * = / L d> + *>« = ' ' ' = .--/ ( I I M> +J ' ' ) dhl ' 
l _ l 1=1 ^ 3 = 0 ' 

From (9) an interesting result for iij+3,i
 c a - i be obtained, namely 

UJ,I + 1 _ 1
 / i n _>+l, i = , UJ + 2,I - ~ , . . . , I l l ) 

6 — Uj^ Z — Uj^x 

and for simplicity of nota t ion we shall denote 

Uj+3ii = v?s(_j,,-), s = 0 , 1 , . . . , k - 1 , (12) 

241 



PAVOL CHOCHOLATY 

where Uj^ = <£>o(uj,t)-
And so, instead of (10) we have 

dJ = ] C d > ' i ' 
i = i 

k , r - \ v 

dJ+r = Yl[ Yi^^i^) )dh*i r = l,2,...,fc 
j = l ^ a = 0 ' 

T , <13> 
k / r—\ 

Instead of solving the nonlinear systems (13) for'S* and mj (see (7), (8)), 
we propose to solve the following (see (17)) linear system corresponding to (13) . 

Let M*_ r be the set of all subsets, each consisting of (k — r) elements, of 
the set { 1 , 2 , . . . , * : } . Take 

k-t 

qk-r = (-1)* " 
(14) 

q0 = 1, r = 0 , 1 , . . . , * - 1 

and i>9(x) is given. 

For example, if k = 3 , j ' = 1, then there holds 

9i = 

(^3,3^2,3^1,3 ~^3A^2A t i lA ) (^l ,2~^l ,0^(^3,2^2,2^1,2-^3,11^2,1^1.00*1,3-1*1,1) 

(^2,3^1,3 ~ 1*2,1^1,00*1,2 - 1i i ,0 - (u2,2Wif2 ~ 1*2,lt*l,l)0*l,3 - 1*1,0 
(15) 

Then, by multiplication of the whole system (13) by expressions qk-r -
r = 0 , 1 , . . . , k , we get the system corresponding to (13) 

qkdj = 9* 7 ^ dj,j, 
t = i 

qk-rdj+r = 9*-r ] C ( I I ^( t ti.«) ) di.«"' r = 1,2,..., A:. 
t = l ^ 5=0 ' 

(16) 

The equation which originated from (16) does not contain by its sum djj and 
is of the form 

k 

£»-rd i+r = 0. (17) 
r=0 
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This holds for each j , j = 0 , 1 , . . . , n — k — 1. Hence, (17) represents the linear 
system of (n — k) equations containing k unknown parameters 91,92? •••-9* • 
And so equations (17) form the overdetermined system. Such overdetermined 
system can be solved in the L\ sense, that is, the solution can be the q+, 
i = 1,2,.. . , k , that minimize 

n-k-\ k 

Y, \Y,9k-rdj+r\. (18) 
jf=0 r = 0 

The background material on the L\ minimization can be found in B 1 o o m -
f i e l d and S t e i g e r [2] and B a r r o d a l e and R o b e r t s [1]. Any linear 
L\ problem can be rephrased as a linear-programming problem [1]. The L\ 
strategy for solving system (17) is presented by myself [3]. We propose to solve 
the system (17) by minimizing the quadratic deviation 

n - i f c - l y k v 2 

E= E (I>-'d>+') • <19> 
j = 0 ^ r=0 ' 

Consequently, the formula (14) (and (15) also) are only of theoretical interest. 
In actual computations, the values 9i,92? • • • 9 9fc are calculated from the system 

dE 
— = 0, j = l ,2 , . . . , fc , ,o = l . (20) 
OQj 

Let 9 = (90- 9ii • • •, 9*) D e the vector that spans the null space of the system 
(17). Then it is easy to show that from (17) after substituting (16) for each i , 
i = 1,2, . . . , k, we have 

k ,r-\ . 

qk + Yl^-A n ^ K ) ) =0- (21) 

The problem of finding the Ujt. that fulfills the equation (21) can be rephrased 
as the problem of finding the roots of the equation 

J> r .«;: - r = 0, (22) 
r=0 

where wr = 1 (̂9) and uJit G (0,1), i = 1,2,. . . , A;. Now, m t , i = 1,2, . . . ,& 
results from relation (9). 
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In order to calculate 5 t , i = 1,2, . . . , A:, we use the values of m,t, i = 

l , 2 , . . . , k , which are computed using (22) and ( 9 ) . T h e equations (5) form 

t h e overdetermined system 

^-E5' i 

t = i 
Pj + w . 

j = 0 , 1 , . . . , n (23) 

of (n + 1) equat ions for k unknowns 5 , , i = 1,2, . . . , k . T h e s t rategy for 

solving the system (23) is to minimize the quadrat ic deviation. So, form a 

sy s tem analogous with (20) we have S,;, i = 1, 2,. . . , k . 

3. N u m e r i c a l e x a m p l e s 

We consider here the problem of the numerical inversion of the Laplace t rans­

form. 

E x a m p l e 1. We would now like to discus a ment ioned technique based 

on finding the approximat ion fk(t), k = 3 , of the exact solution f(t). 

Consider the values Fj , j = 0 , 1 , . . . , 15, be equal spacing h = 5 given in 

t h e Table. 

Table: 

<; i 6 11 16 21 26 31 

ГҪ 3.125-2 1.488-3 4.735-4 2.298-4 1.353-4 8.903-5 6.300-5 

4 36 41 46 51 56 61 66 

Ъ 4.692-5 3.630-5 2.891-5 2.357-5 1.958-5 1.653-5 1.413-5 

<; 71 76 

Ъ 1.223-5 1.068-5 (24) 

In our case, the equation (13) has the form 

3 3 

dj — y ^ dj^ , 2j+2 
i = i 

з 

Цj,- + ! 

t-rrl •" 
= £ uj,i dj}i i 

i XГ^ i i V ^ UJ,г UJ,г + 1 j 
öjf+1 = > UJ,I «j,i - « ; + 3 - 2 ^ 9 ' õ ">,« ' 

l = 1
 Z ~ м > , i *-* ~~ UJ,г i=l 

(25) 

Using the result of ( 2 0 ) , we can obta in from (22) the next formula, i.e. Uj ) C , 

i = 1,2, 3 are roots of the equation 

(92 - <7i ) « 3 + (1 + 93 - 5q2 + ?i )u2 + (1 - 5 ^ + 692 + 2 9 , )u + 693 = 0 , (26) 
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where G, , i = 1,2,3 are calculated by minimizing the quadrat ic deviation (19) . 
According to (26) we have 

1.61543tz3 - 2.11210u2 + 0 . 8 0 3 9 0 5 M - 0.0828195 = 0 . (27) 

B y solving this equation using a well-known technique we obtain these roots: 

uiA = 0.1668 , uj%2 = 0.4366 , uji3 = 0 .7041. 

Now, using the relation (9) we have 

ml = 1.00159 , m2 = 6.74971 , m 3 = 22.7916 , 

next , we must try to determine the coefficients 5 , , z = 1,2,3 from (23) . 

E x a m p 1 e 2. For the case k = 2 , the computat ion can be simplified 
considerably and from values in the Table we can rewrite (22) in the form 

(1 - qi)u2 + (1 + 3G! - q2)u + 3o2 - 0 

and, analogously, for k = 4 we have 

( - 3 g 3 + 3q2)u
4 + (-3G4 + 20O3- 8G2- 3G! - l ) u 3 + (20G4- 43( /3 - q2+ 2ql + 2)u2 

+(-43O4 + 30G3 + 10G2 + 5G! + 3)u + 30G4 - 0 . 

It is clear tha t the foregoing results can be generalized also for k > 4 . 

4. C o n c l u s i o n 

This paper deals with a new method of numerical inversion of the Laplace 
t ransform. Thus , for the determination of the approximat ion (4) two problems 
must be considered: 

(i) the numerical calculation of the coefficients Si and ml, i = 1, 2 , . . . , k, 
(ii) the efficient evaluation of q%, % = 0 , 1 , . . . , k and the roots of the poly­

nomial equation (22) . 

T h e advantage of using the mentioned method thus becomes evident. Owing 
to the in t roduct ion of minimizing the quadrat ic deviation (19) and solving only 
one polynomial equation (22) , a much larger class of Laplace transforms can be 
efficiently inverted. 
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