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A METHOD OF INVERSION
OF THE LAPLACE TRANSFORM

PAVOL CHOCHOLATY

ABSTRACT. An approximate method of the Laplace transform inversion is given
which is particularly appropriate for stress analysis problems in quasi-static linear
viscoelasticity.

1. Introduction

The Laplace transform is useful in solving some ordinary and partial differ-
ential equations and integral equations and arises in many ficlds of engineering
mathematics. However, the exact determination of the original function f(t)
from its Laplace transform

o0

Fo) = [ e fioy (1)

0

is often a great difficulty. In many cases, numerical methods must be used.

In determining a function f(¢) from its Laplace transform F(p) one applies
either a partial fraction expansion or an integration along some contour in the
complex p-plane; one thus obtains f(¢) in terms of the poles and residues of
F(p), or from the values of F(p) on a contour of the p-plane. Both methods
have obvious disadvantages for a numerical analysis.

In the following we propose to develop a method for determining f(¢) in
terms of the values of F(p) on a sequence of equidistant points

pi=po+Jh, 7=0,1,...,n (2)

on the real p-axis, where py is a real number in the region of existence of F(p),
and h is an arbitrary positive integer. That F(p) is uniquely determined from
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its values at the above points, is know [4]. It should therefore be possible to
express f(t) directly in terms of F(py + jh).

An approximate method of the Laplace transform inversion is given, which
is particularly appropriate for stress analysis problems in quasi-static linear vis-
coelasticity. A viscoelastic response can be easily calculated from an associated
elastic solution, which is known numerically, using experimentally determined
material properties, regardless of the complexity of the property dependence of
the elastic solution and it holds that the Laplace transform of a viscoelastic
stress has singularities only on the non-positive real p-axis, and that all poles
are simple, except at the origin, where a double pole may occur. Schapery
[5] shows that for the mentioned problems, f(t) can be written in the form

OED P (3)

1=1

and the time dependence of the exa(t inversion therefore suggests that a Dirichlet
series

k
fe(t) =) Spemmit (4)

1=1

can be used as a reasonable approximation to the solution f(¢), where the m;
are prescribed positive constants, and the S; are unspecified coefficients.
Under the assumption that a finite sequence of the (n + 1) values of F(p)
at the equidistant points p;, j = 0,1,...,n, n > 2k is given, the method
presented here extends these results also for unspecified positive constants m; .
Our method determines the cocflicients S;, my, 1 = 1,2,...,k by solving linear
overdetermined systems and a polynomial equation of the kth order.

2. Numerical inversion of the Laplace transform

From an experiment we get the values Fj, j = 0,1,...,n by equal spacing
h, so that pjyy —p;j = h, j =0,1,...,n —1 and there holds F(p;) = Fj,
J =0,1,...,n. Then with regard to the termwise Laplace transformation of (4)
we get a system of (n+ 1) equations of the form

M»

S, e s ) =0,1,...,n. )
(1’0+j/1 o " (%)

i=1
If we consider the first differences d; from the values Fj | i.e
(l"]': ]'+1-—-Fj, ].:0,1,...,71-1. (6)
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we can express d; in the form

k Si
= _h; (po +jh+mi)(po+ (G +Dh+ my) )
or shortly
dj = Ek_:dj,i , (8)
i=1
where the relation
djy1,i = Pot gt i = ujid; 9)

po+(J+2)h+my

holds for j =0,1,...,n—2 and i = 1,2,...,k.
Let D}, be the set of (n — k) subsets, each consisting of (k +1) clements
of the set {do,d;,...,dn-1}, i.e. for a fixed j there holds
{d]7 d]+1 )dj+k} € DZ+1 )

where

k
dj = Zd]}i )
=1
k k
diy1 =Y dyri= Y ujidi,
1=1 =1

(10)
k k k—1
djpk =) dyyri=--= (Huj+s,i)dj,i-
=1 i=1 > s8=0
From (9) an interesting result for uj4,,; can be obtained, namely
Ujq +1 1
Wig1i= 2220wy = 11
= T LS il Y (11)
and for simplicity of notation we shall denote
u]'+3,,“—=(,9s(u]",'), 320,1,...,k—1, (12)
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where uj; = @o(u;,i).
And so, instead of (10) we have

k
d; =Zd,-,.-,
H,-Z(Hgo, u,y,)) iy r=12,...,k.

=1 “s=0

(13)

Instead of solving the nonlinear systems (13) for'S; and m; (see (7), (8)),
we propose to solve the following (see (17)) linear system corresponding to (13).

Let M}__ be the set of all subsets, each consisting of (k — r) elements, of
the set {1,2,...,k}. Take

gr-r = (-7 ) (lﬁ'/)s.(uj',i)) :

(o1.02, o op_pyemE_t=1

@0=1, r=0,1,...,k—-1

(14)

and ,(z) is given.
For example, if k =3, j =1, then there holds
Q=

(ua,suz,aul,s—u3,1U2,1u1,1)(u1,2-Ul,l)—(us,zuz,zul,z—ua,luz,lul,1)(“1,3”“1,1)
(Uz,sul,s - "2,1U1,1)(u1,2 - U1,1) - (u2,2U1,2 - u2,1“1,1)(u1,3 - “1,])

(15)
Then, by multiplication of the whole system (13) by expressions gqx—,,
r=0,1,...,k, we get the system corresponding to (13)

k
ged; = qr Y dji,

i=1

Qk—rdj+r=q1: rZ(H‘Pa u],t)) Jaiy r=12,...,k.

=1 ‘s=0

(16)

The equation which originated from (16) does not contain by its sum d;; and
is of the form :

k
Z qk—rdj+r =0. (17)

r=0
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This holds for each j, j =0,1,...,n—k—1. Hence, (17) represents the linear
system of (n — k) equations containing k unknown parameters qi,q2,...,qk -
And so equations (17) form the overdetermined system. Such overdetermined
system can be solved in the L; sense, that is, the solution can be the g¢;,
1=1,2,...,k, that minimize

n—k—1

=0

(18)

k
poree]

The background material on the L; minimization can be found in Bloom -
field and Steiger [2) and Barrodale and Roberts [1]. Any linear
L, problem can be rephrased as a linear-programming problem [1]. The L,
strategy for solving system (17) is presented by myself [3]. We propose to solve
the system (17) by minimizing the quadratic deviation

"}k:l(zth -r ;+r) . (19)

=0 r=0

Consequently, the formula (14) (and (15) also) are only of theoretical interest.

In actual computations, the values q;,q2,...,qr are calculated from the system
OFE .
— =0, 71=12,...,k, Q@ =1. (20)
g,

Let ¢ = (go,q1,---,qx) be the vector that spans the null space of the system
(17). Then it is easy to show that from (17) after substituting (16) for each i,
1=1,2,...,k, we have

qk+Z‘1k r(H%(u, )=0- (21)

=0

The problem of finding the u;. that fulfills the equation (21) can be rephrased
as the problem of finding the roots of the equation

Y wouiTm =0, (22)

where w, = w(q) and uj; € (0,1), i = 1,2,...,k. Now, m;, ¢ = 1,2,...,k
results from relation (9).
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In order to calculate S;, 1 = 1,2,...,k, we use the values of m;, 1 =
1,2,...,k, which are computed using (22) and (9). The equations (5) form
the overdetermined system

k 1

F. — ,
J 'pj + my;

=1

=0, 7=0,1,...,n (23)

of (n + 1) equations for k unknowns S;, 1 = 1,2,...,k. The strategy for
solving the system (23) is to minimize the quadratic deviation. So, form a
system analogous with (20) we have S;, 1 =1,2,... k.

3. Numerical examples

We consider here the problem of the numerical inversion of the Laplace trans-
form.

Example 1. We would now like to discus a mentioned technique based
on finding the approximation fi(t), k = 3, of the exact solution f(¢).

Consider the values Fj, j = 0,1,...,15, be equal spacing h = 5 given in
the Table.
Table:

t; 1 6 11 16 21 26 31
Fy | 3.125-2 1.488-3 4.735-4 2.298-4 1.353-4 8.903-5 6.300-5

t; 36 41 46 51 56 61 66
F; | 4.692-5 3.630-5 2.891-5 2.357-5 1.958-5 1.653-5 1.413-5

t 71 76 |-
F;| 12235 | 1.0685 (24)

In our case, the equation (13) has the form

3 3
uji+1
d; :Zdj,i’ djt2 =Z'3*1$Uj,idj,i,
=1 1=1 1.t ] (25)
3 3
uji uji+1
it =D i dipa =) g g d,
i=1 i=1 Uk It

Using the result of (20), we can obtain from (22) the next formula, i.e. u;;,
1 =1,2,3 are roots of the equation

(g2 — q1)u® + (14 q3 — 5q2 + q1)u® + (1 — 5qz + 6q2 + 21 )u + 6g3 =0,  (26)
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where ¢;, 1 = 1,2,3 are calculated by minimizing the quadratic deviation (19).
According to (26) we have

1.61543u® — 2.11210u? 4 0.803905u — 0.0828195 = 0. (27)
By solving this equation using a well-known technique we obtain these roots:
uji = 0.1668, wujo =04366, wuj;3=0.7041.
Now, using the relation (9) we have
my = 1.00159, iy =6.74971, m3 = 22.79106,

next, we must try to determine the coefficients S;, 1 = 1,2,3 from (23).

Example 2. For the case k = 2, the computation can be simplified
considerably and from values in the Table we can rewrite (22) in the form

(1 -q])u2 +(1+4+3¢1 —q2)u+3g: =0

and, analogously, for k¥ =4 we have

(—3g3+ 3q2)u’ + (—3gs + 20¢3 — 8¢ — 3¢1 — 1)u’ + (20g4 — 43¢3 — q2 + 2q1 + 2)u”
+(——43(I4 + 30g3 + 10¢, + 5¢; + 3)u +30qy =0.

It is clear that the foregoing results can be generalized also for k > 4.

4. Conclusion

This paper deals with a new method of numerical inversion of the Laplace
transform. Thus, for the determination of the approximation (4) two problems
must be considered:

(1) the numerical calculation of the coefficients S; and m;, 1 =1,2,...,k,
(i1) the efficient evaluation of ¢;, : = 0,1,...,k and the roots of the poly-
nomial equation (22).

The advantage of using the mentioned method thus becomes evident. Owing
to the introduction of minimizing the quadratic deviation (19) and solving only
one polynomial equation (22), a much larger class of Laplace transforms can be
efficiently inverted.
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