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ABSTRACT. It is shown that the Witt equivalence class of the field of m-th
roots of unity over the rationals is determined completely by the following three
field invariants: the degree over the rationals, the level, and the number of dyadic
primes of the field. Using this result, a classification with respect to Witt equiv-
alence is given of all cyclotomic fields of degree not exceeding 400.

Introduction

Two fields are said to be Witt equivalent, if their Witt rings of symmetric
bilinear forms are isomorphic. Witt equivalence of global ficlds has heen inves-
tigated in several recent papers (see, for instance, [P-S-C-L], [S2], [S3]) leading
up to a Hasse Principle for Witt equivalence of global fields and a fairly detailed
understanding of the general problem.

In this note we confine ourselves to cyclotomic fields in an attempt to answer
a question raised by one of us at the 9-th Czechoslovak Colloquium on Number
Theory ([S1]). The question is how to compute the number wey(2N) of Witt
equivalence classes of cyclotomic fields of a given degree 2N . We feel that an ex-
act formula for wcyc1(2V) is out of reach, but we are able to simplify the general
criteria and obtain a definitive classification theorem for cyclotomic fields.

We recall that for an algebraic number field F' the following field invariants
are preserved by Witt equivalence: the degree [F: Q] of the ficld F over the
rational field @, the level s(F'), that is, the minimal number of summands
in a representation of —1 as the sum of squares of elements of F (if such a
representation exists), and the number g(F) of dyadic primes of the field F
(see [S3] for details).

It turns out that for cyclotomic fields these are the only invariants needed.

THEOREM. Two cyclotomic fields E,, and E, are Witt equivalent if and only
of
(1) [Em: Q] = {En: Q]»

AMS Subject Classification (1991): Primary 11E04. Secondary 11R18.
Key words: Witt classes, Cyclotomic fields.

663



RADAN KUCERA — KAZIMIERZ SZYMICZEK

(2) s(Ewm)
(3) 9(Ewm)

r

(En),
g(En).

I

Here E,, = Q((,,) 1s the m-th cyclotomic field generated by a primitive root
of unity (. of degree m, and as is well known, [E,,: Q] = ¢(m), where ¢ is
the Euler totient function.

Using a PC computer we have calculated the invariants ¢(m), s(E., ), ¢(En)
in the range ¢(m) < 400 and classified all cyclotomic fields of degrees not
exceeding 400 with respect to Witt equivalence. The results are summarized in
the Table 1 at the end of the note.

It is remarkable that, while for cyclotomic fields there is no difficulty in push-
ing up the calculations to the degrees < 15000 (see Table 2), for the general
algebraic number fields the classification with respect to Witt equivalence has
been obtained so far only for the degrees n < 4 (see [Cz] and [S2] for n = 2,
[S3] for n < 3, and [J-M] for n =4).

We will prove the Theorem in Section 1, and in Section 2 we consider the
sum

CW(r):= Z Weyel(2N)

2N<r

that 1s, the number of Witt equivalence classes of all cyclotomic fields of de-
grees < r. We find explicit estimates for CW(x), but we have been unable to
determine the exact order of magnitude. This appears to be an interesting and
nontrivial problem related to some open problems on the distribution of values of
the ¢ -function. We find, however, an asymptotic formula for C(r), the number
of all cyclotomic fields of degrees < x. Some numerical data on the behaviour
of CW(z) are displayed in the Table 2.

Acknowledgement. We want to thank Dr. M. Kula for writing an independent
program and checking the numerical data on the number of cyclotomic Witt

classes up to degree 5 760. We also thank Professor A. Schinzel for orienting our
attention to the elegant formula (2.6).

1. Classification of cyclotomic fields

Here we prove the classification theorem stated in the Introduction. The ne-
cessity of (1), (2) and (3) follows from the results in [P-S-C-L] and [S2]. It is
proved there that Witt equivalence of two global fields coineides with reciprocity
cquivalence of the fields, and the latter requires the same numbers of real, com-
plex and dyadic primes in the two global fields. Henee (1) and (3) follow. As to
(2), it is well known that for a nonreal field F, the additive group of the Witt
ring W(F) has the expouent 2 s(F) (cf. [L]. p. 303). It follows that the level
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is preserved by Witt equivalence of fields. Thus we will be concerned only with
the sufficiency part of the proof.

We will use the following notation. Write m = 2% . i, where j is odd. Since
E., = E3, when m is odd, we may assume that & # 1.

In other words, we assume that m is either odd. or else divisible by 4. We
know that the principal ideal (2) has the following decomposition in E,,

(2)=(p1----"Ppg)°,

where the ramification index ¢ = ¢(2F). The dyadic primes py... .. p, have all
the same degree f and e¢fg = @(m).

We write E,(,:) for the completion of E,, at the dyadic prime p,. The fields
E,(,',) are pairwise isomorphic (cf. [C-F], p. 163), hence they all have the same
level s* := S(E,(,'l)) ,1=1,...,9.

Obviously we have s* < s := s(E,, ), since Ey, 1s contained in its completion.
Our first goal is to show that actually s* = s. We begin with the following result.

LEMMA 1.1. s(E,) =1 if and only 1of 4|m.

Proof. The group W,, of roots of unity in E,, has order m if m is even,
and order 2m if m is odd ([W], p. 267). Now we have s(E,,) =1 if and only if
W,, contains an element of order 4 if and only if the order of W, is divisible
by 4 if and only if 4|m.

LEMMA 1.2. If s* =1, then e > 1.

Proof. If s* =1, then we have 2 = (1 - /-1 )2 (V-1) in EY) . and we

conclude that e is even.

PROPOSITION 1.3. s = s*, that is, the global level s(E,,) s equal to the local
dyadic level s* = S(ES,:)) ,1=1,...,9.

Proof. It is well known that the level of a nonreal number field can assume
only the values 1,2 or 4 (cf. [L], p. 299). As we have already obscrved, we always
have s* < s. Thus s* =4 implies s = 4, and conversely, if s = 4, then by the
Hasse-Minkowski principle we must have s* =4 as well. Further, s = 1 if and
only if s* = 1. Indeed, if s =1, then s* =1 by the general inequality s* < s.
On the other hand, if s* = 1, then by Lemma 1.2 we have ¢(2¥) = e > 1, that
is, k > 2. Thus 4|m, and so s =1 by Lemma 1.1. Thus we have proved that
s = s*, whenever one of the s, s* equals 1 or 4. This shows also that s = 2 if
and only if s* = 2. The proof is now complete.
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Proof of the Theorem. Assume that F, and FE, satisfy (1), (2)
and (3). According to the general result in [S3], to prove that E,, and E, arc
Witt equivalent, we only have to show that the local degrees and the local levels
at dyadic primes coincide. Using (1) and (3), we have

i) =2 20 |

and using (2) and Proposition 1.3, we get
s(ER) = s(Em) = s(Eq) = s(E).
This proves the Theorem.

Now we make a few remarks about determining the three invariants for a
given cyclotomic field E,,. The computation of the degree #(m) is routine,
and the level s(E,,) and the number ¢g(E) of dyadic primes can be found as
follows. Write m = 2¥ - i1, where p is odd, and define

. 1, i k=0,
e(m) =9 = ok-1. itk >0

f(m) :==min{f eN: 2/ =1 (mod n} .
Then for m # 2 (mod 4), we have

1, if 4|m,
sS(Em)=<{ 4, if m isoddand f(m) isodd, (1.4)

2, if m isoddand f(m) 1iseven,

9(Em) = o #m) (1.5)

) fm)
To get the result for the level s(E, ), we combine Lemma (1.1) with the fact
that the dyadic local level is equal to 4 if and only if the dyadic local degree
e f =e(m)- f(m) is odd (cf. [L], p 307). The computation of g(Ey,) is well
known in classical number theory (cf. [W], p. 263).

It follows from the above computation of the Witt equivalence invariants
#(m), s(Em), 9(Em) that they are determined completely by the arithmetical
invariants ¢(m), e(m), f(m). Thus the classification theorem can be rephrased
as follows.

(1.6). Two cyclotomic fields E,, and E, are Witt equivalent if and only if
¢(m) = ¢(n), e(m)=e(n), f(m)= f(n).
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2. The number of cyclotomic Witt equivalence classes

According to the classification theorem (1.6) the number weye(2N) of Witt
equivalence classes of cyclotomic fields of degree 2N can be computed as follows:

Weyel(2N) = #{(e(m),f(m)): meN and ¢(m)=2N}.

Since very little is known about the number of solutions of the cquation
#(m) = 2N | we cannot expect to find an exact formula for wey1(2N). We can,
however, compute wcyc1(2N) for moderately large numbers 2N (see Tables 1
and 2).
As to the estimates from above, by counting crudely the possible invariants
(2N, s,g9) we get
Weycl(2N) < 2-d(2N),

where d(2N) is the number of divisors of 2N .

On the other hand, the function weyc1(2NV) assumes infinitely often the values
1 and 2. This can be seen as follows.

For each 2N = 2.3%%+1 'k =1 2 ... theequation ¢(m) = 2N has precisely
two solutions: m; = 3%%t2 and m, = 2-3%%+2 An elementary proof for that
can be found in [Si], p. 255.

It follows that there are at most two cyclotomic fields of degree 2N . But since
my 1s odd and my; = 2-m;, we have in fact En, = E,,, and so there is just
one cyclotomic field of the degree 2N . Hence weyi(2N) =1 for 2N = 2.36k+1
k=1,2,....

A similar argument shows that there are infinitely many even numbers 2N
such that wcyca(2N) = 2. For this we will use A. Schinzel’s result show-
ing that there are infinitely many even numbers 2N such that the equation
¢(m) = 2N has exactly three solutions ([Sc]). For example, if 2N = 12.7'2k+1
k=0,1,..., then m; =3-7'2k+2 ', = 4. 7'2k42 1y — 2m, are the only
solutions to @¢(m) = 2N . It follows that F,, and E,,, are the only cyclotomic
fields of degree 2N . We will show that these fields are not Witt equivalent. It
suffices to show that

s(Em,) =2 and  $(Em,)=1,

the latter being an immediate consequence of the parity of m, (see (1.4)). To
compute the level of Em, We observe that f(7) = 3, and by elementary number

theory,
]‘(7"):3-7"—1 for n>1.

Thus f(m;) = 6- 712k+1 is even, and so s(Em,) =2 by (1.4).
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Remark. Among the 1260 values of the ¢ -function less than 5000 there
are 512 values 2N with wey(2N) = 1, and

278 values 2N with weya(2N) = 2,
which gives the approximate frequency of 40% and 22% for the values 1 and
2 of the function weya(2N). For the value wey(2N) = 3 the corresponding
frequency in the interval 2 < 2N < 5000 is roughly 11%. It is interesting to
notice that almost the same frequencies are obtained when 2N ranges over any
shorter interval. However, we conjecture that the function wey 2N is unbounded
as 2N — oo.

While the distribution of the values of wcyc1(2N) is quite irregular, the sum-
matory function counting the number of cyclotomic Witt classes of degrees < z,

CW(x):i= Y weya(2N),

2N<z

behaves very much like a linear function of x. This is apparent from the Table 2,
where the values of the ratio CW(x)/r are given for some values of z < 15000.
To get some estimates for CW(x) we consider the following trivial inequalities:

1< wcycl(QN) <en < agn,

for any even number 2N for which the equation ¢(:n) = 2N is solvable in m
where

cyn is the number of cyclotomic fields of degree 2N | and
azN 1s the number of solutions of the equation ¢(m)=2N.

Adding the inequalities for 2N < z, we get
V(z) < CW(2) < C(x) < A(x),

where V() is the number of the values of the ¢-function less than or equal
to r, C(r) is the number of cyclotomic fields of degrees < z, and A(x) is the
number of integers m with ¢(m) < z.

The functions V and A attracted the attention of several writers. An as-
ymptotic formula has been found for A(z) with the main term az, where
a = ((2)-((3)/¢(6) (Erdos-Turan-Dressler-Bateman theorem, see [B]). On the
other hand, it turns out that V(z) is of smaller order of magnitude. In fact, it
is known that there exists a real number ¢ = 0.8178... such that

T T

exp((c — €)(log loglog 2)*) < V(X) < exp((c + €)(log loglog z)?)

log x

log z
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for every ¢ > 0 and sufliciently large & ([M-P]). Thus for CTV(0) we get

£

exp((e = ¢)(logloglog )< CW () < (14 &)ar
log «

for any € > 0 and sufficiently large r.

A slightly better upper estimate comes from the inequality CH () < C(r). We

have not found any results on the asymptotic behaviour of C(r) in literature

and so we prove here the following result.

((2)C(3)

PROPOSITION 2.1. lim C(z)/x = —g—n, where a = R0

Apart from ayn and con defined above, we will consider
byn - the number of solutions of the equation ¢(m) = 2N in odd
integers m.

We begin with noticing the following fact.

LEMMA 2.2. a;n = ban + con .

Proof. For i € {0,1,2,3} we write
aan(?) = #{m e N: ¢(m)=2N and m =17 (mod 4)}.
Observe that by = aan(2). This follows from the fact that for m € N,
misodd and ¢(m)=2N <= 2m=2 (modd4) and ¢(2m)=2N.
Now since cony = aan(0) + azn(1) + agn(3), we have

asn = asn(0) + arn (1) + azn(2) + axn(3) = ban + cun .

Proof of the Proposition 2.1. Weset B(x) := Y byn. Then,

IN<r
according to the Lemma 2.2, we have
A(z) = B(z) + C(x)
and since
lim A(z)/z = « (2.3)
Ir—00 .
is a known result (see [B]), it is sufficient to prove that
. 1
tll{];o B(z)/z = 3% . (2.4)
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We prove (2.4) by modifying slightly the proof of (2.3) in Section 2 of [B]. We
consider the Dirichlet series with cocfficients by, b,, ..., (where ban41 = 0 for
every N ) and factor out ((s) to get

S ban 0= (1-27%) ((s) - F(s),

n=1

where

F(s) = H(l -p 4+ (p-1)").

p>2

Here F(s) is an analytic function in the right half-plane.
By the Dirichlet-Dedekind theorem, if 11m B(z)/x exists and is equal to 7,

llm(?—l Zb,,n =y

s—1% n=1

then

Thus, if the limit exists, it equals

1
lim (s — 1)¢(s)(1 —27°)F(s) = 5F(1).

s—1+
Now
F(l):H(l——p_l+(1)~1)_’)
p>2
D05 (-5)
=[[(1-5%)(1-5 1- —
6 2 3
p>2( p P P
_2¢@K3) 2,
3 ¢6) 3
. . - 1 _ 1
Hence, if 4 exists, it is equal to EF(l) =3a.

As in [B], an application of the Wiener-lkehara theorem shows that the limit
of B ')/z exists, and this proves (2.4).

COROLLARY 2.5. The number of cyclotomic fields with the prime 2 unrama-
fied 18 asymptotically equal to the number of cyclotomic fields with 2 ramified.

This follows from Proposition 2.1 and 2.4.

We do not know whether or not a similar statement holds for the num-
ber of cyclotomic Witt classes. We show in Table 2 the values of the functions
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CWodd(z) and CWeven(z) counting the number of Witt equivalence classes of
cyclotomic fields of degrees < r with 2 unramified or ramified, respectively.
Within the limits of computation we have approximately

4
CWodd(x) = EC‘Veven(I)v

in other words, cyclotomic fields with 2 unramified produce more Witt equiva-
lence classes than the remaining cyclotomic fields.

We remark that another proof of the Proposition 2.1 can be obtained by using
(2.3) and the following formula communicated to the authors by

A.Schinzel:
1 T

k=1

This relation implies also that an asymptotic formula for A(z) produces an
asymptotic formula for C(z) with the same error term (the main terms being

azr and 2—az, respectively).

3

Table 1.

Notation. The first column lists even numbers 2N with the property
that there is at least one cyclotomic field of degree 2N . The second column
gives all m # 2 (mod 4) such that [E,, : Q] = 2N. g¢,s, w, are g(En),
$(Em) and weyc1(2N), respectively.

2N m g s w 2N m g s w 2N m g s w
2 3 1 2 2 22 23 2 4 1 42 43 3 2 2
4 1 1 24 35 2 2 3 49 2 4
4 5 1 2 2 39 2 2 44 69 2 2 2
8 1 1 45 2 2 92 2 1

12 1 1 52 1 1 46 47 2 4 1

6 7 2 4 2 56 2 1 48 65 4 2 3
9 1 2 72 1 1 104 1 1
8 15 2 2 2 84 2 1 105 4 2
16 1 1 28 29 1 2 1 112 2 1
20 1 1 30 31 6 4 1 140 2 1
24 1 1 32 51 4 2 3 144 1 1
10 11 1 2 1 64 1 1 156 2 1
12 13 1 2 4 68 2 1 168 2 1
21 2 2 80 1 1 180 2 1

28 2 1 96 1 1 52 53 1 2 1

36 1 1 120 2 1 54 81 1 2 1

16 17 2 2 3 36 37 1 2 4 56 87 2 2 2
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2N

20

64

66

70
72

78
80

82
84

88
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32
40
48
60
19
27
25
33
44

85
128
136
160
192
204
240

67

71

73

91

95
111
117
135
148
152
216
228
252

79
123
164
165
176
200
220
264
300

83
129
147
172
196

89
115
184
276

Q

—_— R e e e DD e e e
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2N

40

102
104

106
108

110
112

116

120

126
128

130
132

57

63

76
108

41

55

75

88
100
132
103
159
212
107
109
133
171
189
324
121
113
145
232
348
177
236
143
155
175
183
225
231
244
248
308
372
396
127
255
256
272
320
340
384
408
480
131
161

——
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@
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[
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166
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172
176

m

116
59
61
7
93
99

124

432
444
456
468
504
540
149
151
157
169
237
316
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205
328
352
400
440
492
528
600
660
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243
249
332
167
203
215
245
261
344
392
516
588
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267
345
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2N
92

96

100

196
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200

204

208
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m

141
188

97
119
153
195
208
224
260
280
288
312
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360
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101
125
357
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448
476
520
560
576
612
624
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780
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275
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375
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412
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2N

136
138
140

144

238
240

250
252

256

m

201
207
268
137
139
213
284
185
219
273
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292
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315
364
380
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287
305
325
369
385
429
465
488
495
496
525
572
616
620
700
732
744
792
900
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356
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460
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217
279
297
235
376
564
191
193
221
291
281
319

355
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936
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1140
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343
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2N m g s w 2N m g s w 2N m g
327 6 2 640 1 1 596 1
333 6 2 680 8 1 300 341 30
351 6 2 768 1 1 453 10
399 12 2 816 4 1 604 10
405 2 2 960 2 1 306 307 3
436 3 1 1020 16 1 310 311 2
532 6 1 260 393 2 2 2 312 313 2
648 1 1 524 1 1 371 2
684 6 1 262 263 2 4 1 395 2
756 6 1 © 264 299 2 2 5 471 6

220 253 2 2 2 335 2 2 477 2
363 2 2 483 4 2 507 2
484 1 1 536 1 1 628 3

222 223 6 4 1 644 4 1 632 2

224 339 8 2 4 804 2 1 676 1
435 8 2 828 2 1 948 2
452 4 1 268 269 1 2 1 316 317 1
464 1 1 270 271 2 4 1 320 425 8
580 4 1 272 289 2 2 561 8
696 2 1 411 4 2 615 16

226 227 1 2 1 548 2 1 656 2

228 229 3 2 1 276 277 3 2 4 704 1

232 233 8 4 4 329 4 4 748 4
295 2 2 417 2 2 800 1
472 1 1 423 2 2 820 8
708 2 1 K 556 1 1 880 2
984 4 1 712 8 1 765 16
1056 2 1 736 2 1 772 2
1200 2 1 920 2 1 776 2
1320 4 1 1068 8 1 832 1

324 489 2 2 4 1104 2 1 884 8
513 18 2 1380 4 1 896 2
567 6 2 356 537 2 2 2 952 4
652 1 1 716 1 1 1040 4
972 1 1 358 359 2 4 1 1120 2

328 415 2 2 3 360 403 6 2 8 1152 1
664 1 1 407 2 2 1164 4
996 2 1 427 6 2 1224 4

330 331 11 2 1 475 2 2 1248 2

332 501 2 2 2 543 2 2 1344 2
668 2 1 549 6 2 1428 8

336 337 16 4 6 627 4 2 14440 2
377 4 2 651 12 2 1560 8
609 4 2 675 2 2 1680 4
645 12 2 693 12 2 388 389 1
688 3 1 724 1 1 392 591 2
735 4 2 836 2 1 788 1
784 2 1 868 12 1 396 397 9
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2N m

812
860
980
1032
1044
1176
342 361
344 519
692
346 347
348 349
413
531
352 353
391
445

W e BN =N = RN DN Q
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@
g

BN R RN RN N KN = NN e o e o —

of degrees < z.

x

100
500
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000

10- CW(x)/z

8.6
8.18
7.99
7.7
7.6066
7.4500
7.3760
7.3283
7.2285
7.1787
7.1455
7.1130
7.0745
7.0458
7.0115
6.9821
6.9406

2N m

1116
1188
366 367
368 705
752
940
1128
372 373
378 379
380 573
764
382 383
384 485
579
595
663

Table 2.

Notation. CW(zx) is the number of Witt equivalence classes of all cy-
clotomic fields of degrees < x. CWyq4(z) and CWeven(r) are the numbers of
Witt equivalence classes of cyclotomic fields E,, of degrees < x with m odd
and m divisible by 4, respectively. C(z) is the nunber of all cyclotomic fields

10 - CWoq4(z)/x

5.1
4.72
4.59
4.41
4.3533
4.2625
4.2120
4.1783
4.1271
4.0862
4.0711
4.0500
4.0254
4.0041
3.9923
3.9764
3.9566
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808
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