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ON GRANDE'S PROBLEM 
CONCERNING B\ FUNCTIONS 

TOMASZ NATKANIEC1) 

(Communicated by Ladislav Misik) 

ABSTRACT. A function / : R —• 1R belongs to the BJ class if and only if for 
each non-empty perfect set P e t , f\p is quasi continuous on some portion 
of P . 

Let us establish some terminology to be used. We consider only real functions 
defined on subspaces of the real line R. For a function / : X —• 1R we denote 
by C(f) the set of all points at which / is continuous. Moreover, for a given 
x e X , let oscx(f) denote the oscillation of / at x. (Recall that x € C(f) if 
and only if oscx(f) = 0.) 

For A C X we denote by c\x(A) and intx(-4) (or c\(A) and int(.A) if X 
is fixed) the closure and the interior of A in X, respectively. 

A subset A of X is said to be a portion of X if and only if A = JdX ^ ill for 
some open interval J c R . Let A C X. A maximal (with respect to inclusions) 
portion of A contained in X is called a "component" of A in X. 

For x 6 R and e > 0 we denote by B(x,e) the closed ball in R centred at 
x and with the radius e. 

DEFINITION 1. A function f defined on X is said to be quasi-continuous at 
a point XQ G X if and only if for every e > 0 and for every neighbourhood 
U C X of xo there exists an open set V C X such that 0 ̂  V C U and 
\f(x) - f(xo)\ < e for every xeV ([SK]). 

/ is said to be quasi-continuous if and only if it is quasi-continuous at each 
point x € X . 

The set of all points at which / is quasi-continuous will be denoted by Q(f). 
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DEFINITION 2. A function / : R —> R belongs to the B\ class if and only if 
for each non-empty perfect set P C R there exists a portion of P on which f\p 
is continuous ([ROM], see also [Z] and [BK], for the history of the class B\). 

Recall that / : R —• R is a Baire one function if and only if C(f\p) 7-= 0 for 

each non-empty perfect set P C R (see e.g. [KK, Theorem 1, p. 301]). 

Moreover, the following fact is known (and easy to obtain). 

FACT 1. A function f: R —• R is of the first Baire class if and only if Q(f\p) 
is non-void for each non-empty perfect set P c R . 

Z . G r a n d e [ZG] posed the problem whether the analogous characteriza­
tion holds for the class B\. In this note we give an affirmative answer to this 
question. 

LEMMA 1. Assume that PQ is a non-void perfect set, a function f: PQ —» R 
is quasi-continuous, and C(f) contains no portion of P 0 . Then there exists a 
non-empty perfect set P C PQ such that Q(f\p) contains no portion of P . 

P r o o f . For each x E PQ \ C(f) let ex = oscx ( / ) > 0. In the whole proof of 
this lemma, c\(A), int(i4) and "component" of A mean the closure, the interior 
and a component of A in Po, for any i c P o -

First choose x E Po \ C(f) and define 

A1 = {*}, P1 = P0\int(/-1(B(/(x),£x/2))). 

Then 

(h) x€P1\(C(f)UQ(f\pi)), 

(iii) int(Pi) is dense in Px (this follows easily from the quasi-continuity 
o f / ) . 

Now let (In)n be the sequence of all "components" of the set in t (Pi ) . For each 
n choose a point xn E In \ C(f) and define 

A2 = {xn: neN}, P2 = Px \ (j(/„ flint (r1(B(f(xn),exj2)))). 
n 

Note that 

(-2) - 4 1 U ^ 2 c P 2 \ ( C ( / ) u Q ( / | p 2 ) ) , 

(ii2) int(P2) is dense in P 2 . 
In this way we choose by induction two sequences (Pn)n and (An)n of sets such 
that 

On) U^CP„\(C( / )UQ(/ |p) ) , 
i<n 
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(iin) int(Pn) is dense in P n , 
(hin) if J is a "component" of P n then card ( J n An) — 1. 

Set 

P = c\l [}A\ 

Then P is a non-empty perfect subset of PQ and f\p is quasi-continuous at 

no point of IJ-^n C P . But l j A n is dense in P , so f\p is quasi continuous 
n n 

on no portion of P . • 

THEOREM 1. A function f: R —» R belongs to the B{ class if and only if for 
each non-empty perfect set P C R, f\p is quasi continuous on some portion 
of P. 

P r o o f . Obviously only the implication " <= " needs to be proved. Sup­
pose that / $. B\ . Then there exists a non-empty perfect set Pn C R such 
that / | p is continuous on no portion of Po. Hence PQ \ C{f) is dense in Pn. 

and, by Lemma 1, there exists a non-empty perfect set P such that f\p is 
quasi-continuous on no portion of P ; this is a contradiction. • 
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