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ON DISTRIBUTION OF SEQUENCES OF INTEGERS 

MILAN PASTEKA*) — STEFAN PORUBSKY **) ^ 

(Communicated by Oto Strauch) 

ABSTRACT. In the paper we introduce on sequences of integers a notion ana­
logical to t h a t of distribution function. Due to some topological peculiarities of 
the set of integers we shall s tudy more general notions of distribution measure 
and distribution density. 

1. In t roduc t ion 

In 1916 H e r m a n W e y l in his famous paper [12] introduced the notion 
of uniformly distributed sequences of real numbers modulo 1. This notion was 
subsequently generalized in various ways. One of them stems from I . N i v e n [6] 
who in 1961 introduced the notion of uniform distribution of integers. Another 
generalization can be done via the notion of asymptotic distribution function 
mod 1 which was initiated b y S c h o e n b e r g [11]. 

The aim of this paper is to join this two approaches. However the structure of 
positive integers gives us small space for the study of "distribution functions". 
Therefore we shall use a more general notion of distribution measure and we 
shall investigate the sequences of integers from the point of view of the uni­
form distribution in compact spaces of so called polyadic numbers. This is a 
generalization of M e i j e r 's method [5], [4] in the space of g-adic numbers. 
Nevertheless, instead of "distribution function" we shall use " T -distribution". 

In the first chapter we prove an existence theorem (Theorem 1), which is an 
analog of the existence theorem known for the distribution function. Then we 
shall focus on the properties of T -distributed sequences and the distribution 
measures. The principal result is given in chapter 3 which establishes (Theo­
rem 3) that an integer sequence is T -distributed if and only if it is uniformly 
distributed in the space of polyadic numbers with respect to distribution mea­
sures; (Corollary 3 of Th. 6) any integer polynomial sequence is distributed. In 
chapter 4 we collected technical results. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11B05. Secondary 28E99. 
K e y w o r d s : Density, Uniform distribution, Measure sequence. 

x ) Supported by grants 363 & 622/03. 
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MILAN PASTEKA — STEFAN PORUBSKY 

In the sequel we will denote by N the set of all nonnegative integers and by 
R the set of all real numbers. 

2. T -distr ibu t ion 

The following sequences T will be of fundamental importance for us. Let 

F = {h(j,m): 0<j<m, m G N \ { 0 } } (1) 

be a system of nonnegative real numbers. Given a sequence w = {w(n)} of 

positive integers, a sequence {w(n)} will be called F - distributed if and only if 

r # { n < I V ; w(n)= j (mod m)} 
hm —i J- = h(j,m) (2) 

N—+oo IV 

for every j , m G N and 0 < j < m. 

The first natural question: Which conditions on the system F do guarantee 
the existence of a F -distributed sequence {w(n)}7 

Let us denote 
j + (m) = {j + km; k = 0 , 1 , 2 , . . . } 

for j , m G N and 0 < j < m. If we write j + (m), we shall always tacitly 
suppose that m ^ O and instead of 0 + (d) we shall simply write (d). 

Further, for any set S c N and IV G N let 

A(N,w,S) = #{n<N; w(n) G S} . 

Clearly, for two disjoint sets Si , S2 C N we have 

A(N, w, Si U S2) = A(N, w, Si) + A(N, w, S2), (3) 

and for every IV, j , m we have 

# { n < IV; w(n) = j (mod m)} = A(N,w,j + (m)) . 

Since every set j+(m) can be represented in the form of a disjoint decomposition 

k-i 

j + (m) = [J j + rm+ (km) (4) 
r=0 

for arbitrary k G N and A(N,w,N) = IV, the existence of a T-distributed 
sequence implies that 

M0,1) = 1 (5) 
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and 

fc-i 

h(j, rn) = /_] h(j + rm, km) (6) 
r = 0 

for every k, m 6 N, 0 < j < m. In other words: if m | m i , then 

m 

h(j,™>)= ^2 h(j + rm,m1). (7) 
г = 0 

Thus (5) and (6) are necessary conditions for the existence of a T -distributed 
sequence. 

A system T satisfying conditions (5) and (6) will be called a distribution. 
The fact that the distribution properties are also sufficient for the existence of 
a T-distributed sequences will follow from Theorem 1. 

However before stating this theorem, we have to recall some preliminaries 
from the theory of the uniform distribution in compact spaces. Various parts 
presented here can be found in monograph [3, Chapter 3]. 

Let X be a compact separable Hausdorff space with a probability measure 
P which is a regular normed Borel measure in X . A sequence {xn} of elements 
in X will be called P-uniformly distributed in X (or shortly P-u.d. in X) if 

IV 

lim ^è / (*n)= ífdP 
IV—>oo П Á—J J 

7 1 = 1 

for every continuous functions / : X —> K (cf. [3, p. 171]). 

The next three results form a springboard for us: 

THEOREM A. ([3, p. 175]) A sequence {xn} is P-u.d. in X if and only if 

lim - j - V 1 = P(M) 
iV-oo N ^ 

n<N 
xneM 

for every Borel set M with P(~M \ Int(M)) = 0 . 
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THEOREM B . ([3, p. 183]) Let S be the set of all P-u.d. sequences in X 
viewed as a subset of X°° . Let P^ be the product measure on X°° . Then 
Poo(S) = l . 

COROLLARY. There exists at least one sequence of elements in X which is 
P-u.d. 

In 1962 E . V . N o v o s e l o v [7] introduced the space Q, of polyadic num­
bers in the following way: For every n G N, let ipn be the indicator of positive 
integers not divisible by n, i.e. 

( 1 if n \ m , 
<Pn{m) = < 

I 0 if n I m 

for n = 1, 2 , . . . . Then the function 

«».»> = Ê - 4 F - -
71 = 1 

is a metric on N. Unfortunately, the set N endowed with this metric is not 
a complete metric space, it is only relatively compact. The completion fi of 
(N, d) is called the space of polyadic numbers. The set fi is obviously a compact 
metric space with respect to the extension of the metric d on ft. Moreover, the 
operations of addition and multiplication can be in a natural way extended from 
N to continuous operations on ft,. Both for these operations and their extensions 
we shall use the standard symbols + , •. 

Let us remark that probably the polyadic numbers are the original result of 
P r ii f e r 's work [10]. For a general survey of polyadic numbers, we refer to [9, 
Chapter 3.5]. 

The next result shows that also the process of division with remainder can 
be extended in a natural way to the whole $1. 

THEOREM C. ([7]) For every a G fi and m G N \ {0} there exist uniquely 
determined elements (5 G ft and j G N such that 0 < j < m and 

a = m • /3 + j . 
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The extension of the metric d to the whole Q is also given by the same rule 

d(a,P) = 2^ ^ (8) 
n = l Z 

for a, (3 G £7, where again for 7 G f2 

1 if n { 7 , 

0 if n I 7 . 
Vn(7)= I 

Let for 7 G fi symbol (7) denote the principal ideal generated by 7 , and 
a + (7) the residue class containing the element a. Theorem C implies that 
for every m G N the set fi can be represented in the form of the disjoint 
decomposition 

771— 1 

n = \J 3 + (m)- (9) 

The set j + (m) is closed (see [7]), but (9) implies that it is simultaneously 
also an open set. Moreover it follows from (8) that the system 

{] + (ra); 0 < j < m, m G N} 

forms a base of open sets in Q. 

Put 

V = \ \Jli + (m*) > 0<k<mi, mu k G N \ U {0} . 

It is easy to see that V is an algebra of sets. Our next aim is to give a construction 
for measures on V which depend upon our system (1) of nonnegative real 
numbers. To do this we shall need the following two lemmas: 

LEMMA 1. Let T satisfy (6) . If 

k 

l + (m) = (jli + (mt) (10) 
i=l 

is a disjoint decomposition, then 

k 

h(l,m) — ^2,h(li,mi). 
i = l 

525 
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P r o o f . Prom (10) we have 

_ L - _L J _ 
m mi nik 

If M = [m, m i , . . . , rrik], then for every i = 1, 2 , . . . , k we have 

j _ _ _ i 

*i + (mi) = [J li+ pmi + (M) 
p=0 

and according to (7) 

J___I 
. m i 

/i('i>™i) = ] T / i ( / i+pmi,M). (11) 
p = 0 

Therefore the set I + (m) can be represented as a disjoint decomposition of the 
form 

M 1 
k m, 

/ + ( m ) - - ( J ( J li+pmi + (M). 
i = l pz=0 

M 
Since 0 < U + pmi < M for all i, p , 0 < p < 

A = | z i + p m i ; 0 < p < ^ - , t = l,2,...A;} 

c { j . / + m , . . . , Z + ( ^ - l ) m } - _ . 

To show that the sets A, i? coincide, it is enough to show that both have the 

same number of elements. The set B has obviously elements. On the other 
J m 

hand, since the sets li +p mi + (M) for i = 0 , . . . , 1 and i = 1, 2 , . . . , k are 
mi 

mutually disjoint, the numbers Z; + prrii for p = 0 , . . . , 1, i = 1,2,..., k 
Tfli 

are distinct. Therefore the set A has 

mi rrik \ mi m*. / m 

elements, as the set B has, and consequently A = B. Now (11) and (7) imply 
that 

к к ГПІ 

Y^KU,rrii) = ^2 _C h(li+pmuM)=Y^h(l',M) = h(l,m), 
i = l i=\ p-=0 I'eA 

and the proof is complete. 
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LEMMA 2. Let Zi + (mi) , . . . , Ik + (mk) and l[ + (m[),...,/(.+ (m'r) be two 
systems of pairwise disjoint sets and let h satisfy (6). If 

k r 

\Jh + (mi)=(Jl'j + (m'j), 
i=l 3=1 

then 
k r 

Y,Kh,mi) = Y,h(l'vm,3)-
i=l 3=1 

P r o o f . We will proceed by induction on k. The case k — 1 is covered by 
Lemma 1. Let the induction hypothesis be true for k — 1 and take 

k r 

[jh + (mi)=[jlf

j + (m'j). 
- = 1 3=1 

Splitting every class l'j + (m'j) into mk disjoint classes modulo mkm'j we obtain 
a new system on the right-hand side, e.g. 

k rmjt 

U^ + KHU'i+K')' (12) 
- = 1 3=1 

where all m" are multiples of ra*.. Thus every class on the right-hand side of 
(12) is either a subset of Ik + (mk) or it is disjoint with it. Rearrange the sets 
on the right-hand side of (12) in such a way that ri is the maximal integer 
sharing the property 

l < J < r i =^ lk + (mk)nl'j + (m'j)^<b. 

Then the disjointness property and k > 1 imply that 

k—l rmfc 

\Jk + (mi)= (j /; + K) 
i = l j=r\ + l 

together with 
r i 

h + (mk) = Џ l" + (m'ţ) 
з=i 
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Now the induction hypothesis and Lemma 1 imply 

k — l rrnk 

Y,h(li,mi)= J2 hdj,rn'!) 
i=l .7=7*1 + 1 

and 
7*1 

• h(lk,mk) = Y,h(l",rn'j). 

Now it is enough to add these two equalities and to use (7) to finish the proof. 

Lemma 2 provides a tool for introducing a measure on V. 
Every set from V can be represented in a form of a disjoint decomposition, 

e.g. (4). If H G V has such a disjoint decomposition 

k 

H = \J li + (m{), 
i=l 

we put 
k 

Ar(H) = Y,Hh,mi). 
i=l 

Lemma 2 and compactness of 0, imply that Ap(i-0 is a measure on V. If 

{ oo oo "\ 

] T > r ( f f i ) ; S c l J i I ; , HieV\ 
i=l i=l J 

for S C ft, then P£ is an outer measure on 2° . Moreover, the subsystem 

vr = {scn-, P*r(S) + PUV\S) = 1} 
is a a -algebra and the contraction 

Pr = Pr\vr 

is a measure on the a -algebra VT (see [2]). For j , m G N, 0 < j < m we 
plainly have 

P*r{j + (m))=h(j,m). (13) 

Therefore j + (m) G VT . Thus the fact that {j + (m); j,m € N} is the base of 
open sets on Q, implies that Pp is a Borel regular probability measure on fi. 

Now we are in the position to state the announced Theorem 1: 
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THEOREM 1. For every distribution T there exists a sequence {w(n)} of 

positive integers which is T -distributed. 

P r o o f . By Corollary 1 of Theorem B there exists a sequence {aT l}, 
an G $1, n = 1,2,... , which is P p -uniformly distributed in fi. The set N 
is dense in fi, thus there exists a sequence of positive integers {xn} such that 
d(xn, an) —> 0 for n —» oo . If g is a continuous function on fi it is also uniformly 
continuous. Thus 

lim \g(xn) - g(an)\ = 0. 
71—»-00 

Therefore 
N 

П=l 

This equation also shows that {xn} is a uniformly distributed sequence in fi. 

Theorem C now implies for x G N : 

x = j (mod m) <=-=> x E j + (m). 

If w(n) = xn for n = 1, 2 , . . . , then 

A(N,w,j + (m))= Yl !• ( 1 4 ) 
n<N 

xnej+(rn) 

Since j + (m) = Int (j + (m)) , j + (m) \ Int (j + (m)) = 0. Thus from (13), 

(14) and Theorem A we have 

r A(N,w,j + (m)) 

IV—•oo IV 

and the proof is complete. 

The measure Pr will be called a distribution measure of the sequence {w(n)}. 

We now give two examples of distributions: 

oo 

E x a m p l e 1. Let ^ an = 1 be an infinite series with nonnegative ele-
n=T 

ments. It is a routine task to show that the values 

Kh m)= ]P an 

n=j (mod m) 
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satisfy conditions (5) and (6) and therefore the system F consisting from these 
values is a distribution. 

E x a m p l e 2. Let Bn(x), n = 1, 2 , . . . be the n-th Bernoulli polynomial 
defined by the generating function 

tetx - ^ tn 

^ n = E *»(*);?' ]t]<2n-
n=0 

It is known that in the class of all polynomials B(x) the Bernoulli polynomial 
Bn(x) together with the value of B(0) are completely characterized by the 
difference relations 

B(x + l)-B(x) = nxn~1 

and the interpolation equation 

ra—1 

B(mx) = m™-1 ^2B(^x+^y 
k=0 

If we define 

/i(j,m) = m s - 1 B 8 ( ^ ) 

for every fixed s = 0,1, 2 , . . . , then 

m— 1 

У J h(j + rm, km) = h(j, m) 
г = 0 

In particular for 5 = 0 we have 

h(j,m) = m-1B0(^-) = — v ' V m / m 

for B0(x) = l. 

This together implies that every triangular matrix (1) which entries satisfy 
relations (6) and are given through polynomials has apart from the value Bs(0) 
the form 

r={m s - 1 B s (^-); 0 < j < m , m = l,2,...} 

for every given s = 0,1,2,... . 
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Note that this example is within the scope of the previous one because of the 
connection with the partial zeta function. For if, 0 < x < m and x is coprime 
with m, we define 

n=x (mod m) 

Then this Dirichlet series converges only for Re(t) > 1, but it can be analytically 
continued to the whole complex plane and Hurwitz has shown that 

C(x,l-5) = - ì m - 1 B . ( - ^ - ) 

As an application of Theorem 1 to Buck's measure density /i* (see [1]) we 
have: 

T H E O R E M 2. 

a) If /i( j , m) > 0 , for all j , m G N, 0 < j < m, then 

fi*{{w(n); n = l , 2 , . . . } ) = l . 

b) If S C N and n*(S) = 1, then S can be rearranged into a 
r -distributed sequence. 

3. T rans fo rmations of T -distributed sequences 

In this part we shall study properties of transformations of sequences which 
are related to preservation of T-distribution of sequences of positive integers. 
Therefore let u(n) be a sequence of positive integers. A mapping F: N —> N 
will be called T -preserving if for each T-distributed sequence |o;(n)} also the 
sequence |F (u ; (n ) )} is T-distributed. Since one sequence can be T-distributed 
for a distribution T and not Ti-distributed for Ti ^ T, we introduce the 
following notion: 

A sequence {u;(n)} will be called distributed if it is T-distributed for some 
distribution T. A mapping F will be called distribution preserving (or shortly 
d. preserving) if for every distributed sequence {u;(n)} also the sequence 
F(u(n)) is distributed. 

Further we shall use the notion of a polyadically continuos mapping. A map­
ping F will be called polyadic continuous (shortly p.c.) if and only if 

V M 3IV Vui , t i 2 ; ux=u2 (modAr!) = > F(ux) = F(u2) (mod Ml). 
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It is easy to see that such p . c mapping can be extended to a uniformly continuous 
mapping 

F : n-+n. 

It follows from (8) that a function g : ft —> R is continuous if and only if 

Ve > 0 31V V a i , a 2 E ft; a x = a 2 (mod 1V!) => \g(ax) - g(a2)\ < e . 

Thus the system of such periodic real valued functions whose periods are pos­
itive integers is dense in the space C(ft) of all continuous real valued functions 
on ft. Analogically the system of all indicators of remainder classes j + (m) is 
linearly dense in C(ft) . Since every periodic real valued function, with positive 
integeral period is continuous, Theorem A implies: 

THEOREM 3. A sequence [w(n)} is T-distributed if and only if it is 
P p -uniformly distributed in ft . 

We shall use this fact in proving some properties of transformations of se­
quences. 

THEOREM 4. A p.c. mapping F is r -preserving if and only if for every real 
valued continuous function g on ft 

ígdPr= í goFdPr, 

P r o o f . Let {w(n)} be a T-distributed sequence. The functions g and 
g o F are continuous and thus 

i N r 

J v
1!íS0]v :E- í(u ,(n))=/- í d pr 

n = l 

and 
2V 

^JřT,9(FЫn)))=f9oFdPг. 
n=l 

This yields the assertion. 
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THEOREM 5. A p.c. mapping F is r -preserving if and only if there 

exist at most one T-distributed sequence {w(n)} such that {F(w(n))} is 

T -distributed. 

P r o o f . The necessary condition is trivial. For the sufficient part let {w(n)} 

be such a sequence. Then 

[gdPr = J^±^g{w{n))=^±'Eg{F{w{n))) = [goFdPr 

n=l n=l 

and the proof is complete. 

A special case of T-distribution is the uniform distribution in Z ([6]), in 

which case h(j, m) = — for all /i(j, m) G T. 
m 

The sequence {n} is uniformly distributed in Z, therefore we have: 

COROLLARY 1. A p.c. mapping F is u.d. preserving if and only if the sequence 

{F(n)} is uniformly distributed in Z . 

COROLLARY 2. Let F: N —» N be a p.c. mapping. If there exists x such that 

the sequence of iterations {x, F(x), F(F(x)^ ... } is T-distributed then F is 

T -preserving. 

In the sequel we shall need the following known result: 

THEOREM D. [2, p. 384] Let X be a compact topological space. If (p is a 
nonnegative linear functional on C(X) (the space of all continuous real valued 
functions), then there exists a unique regular Borel measure P such that for 
every g G C(X) we have 

v>(g) = / g dP. 

THEOREM 6. Each p.c. mapping F: N —• N is d. preserving. 

P r o o f . Let {iu(n)} be a T-distribution sequence. If g: Q —• R is a con­
tinuous function, then 

1 N r 
^OQNT,9(F(w(n)))= J goFdPr. n = l 

If we put 

1 N 

^ ^ J Й O J V - C ^ И " ) ) ) . 
n = l 
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then Theorem D implies the existence of a regular Borel measure P such that 

v(g) = JgdP. 

The system Ti = {P(j + (m)) ; 0 < j < m , m G N} obviously forms a 
distribution and the regularity of P implies that P = Prx . Theorem 3 implies 
that {F(w(n))} is a Ti-distributed sequence and the proof is complete. 

Theorem 6 implies the following corollaries: 

COROLLARY 1. If F: N —> N is ap.c. mapping, then {F(n)} is a distributed 
sequence. 

COROLLARY 2. If F: N —* N is a such mapping that for m , n G N we have 

( m - n ) | ( F ( m ) - F ( n ) ) , 

then {F(n)} is a distributed sequence. 

COROLLARY 3 . If F(x) is a polynomial with nonnegative integeral coeffi­
cients, then {F(n)} is a distributed sequence. 

4. Con t inuos funct ions on ft 

In this chapter we will study continuous functions on ft with relationship to 
the r-distribution, or to the distribution measure. We shall use the following 
notions: 

Let m G N, S C ft. A set Si C S will be called a set of representatives of 
S modulo m if 

(i) Va G S 3 a i G S i ; a i = a (mod m) , 
(ii) Va i , a2 G Si; a i = a2 (mod m) = > a i = a2 . 

Let {Bn} be a sequence of positive integers. We say that {Bn} is complete if 

(iii) V d G N 3 n n ; V n > n o ; d\ Bn, 
(iv) B n _ i | Bn, n = 2 , 3 , . . . . 

The equation (8) implies that the function 

g: ft-^R 

is continuous if and only if 

V e > 0 3 n ; V a i , a 2 G f t ; a i = a 2 (mod Bn) => \g(a{) — g(a2)\ < e . 

Denote by a mod m , a G fi , m G N the remainder of a after division by m 
(see Theorem C). 
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THEOREM 7. Let g: fi —• R be a continuous function and S C ft be a closed 
set. If {Bn} is a complete sequence and Sn is a set of representatives of S 
modulo Bn, then 

/ gdPr = lim V ] g(a)h(a mod Bn, Bn). 
e <*esn 

P r o o f . The set S is closed. Thus 

oo 

S= f)S+(Bn). 
n=l 

Since the measure is quasicontinuous from above, 

[gdPr= lim / gdPr. J n-*°° J 
S S+(Bn) 

S is also a compact set, therefore g is a uniformly continuous on S. Conse­
quently for every e > 0 there exists no such that for n > no 

for a,0eS. 
Clearly 

к 

a = /3 (modBn) => \g(a) - g(/3)\ < e (15) 

J gdPr= J2 J 9dPr- (16) 
S+(Bn) Q € S " a + ( B n ) 

g(a'n) = msiK{g(ß) ; ß E a + (Bn)} , 

g(a'^) = mm{g(ß); ßea + (Bn)}, 

then (15) implies 
\g(a'n)-g(a'n)\<e. 

Since 
g(a';)<g(P)<g(a'n), 

g(a'n)h(a mod Bn,Bn)< J дdPT < g(a'n)h(a mod Bn, Bn). 

<*+(£„) 
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In particular, for /3 = a we also have 

g(an)h(a mod Bn,Bn) < g(a)h(a mod Bn,Bn) < g(a'n)h(a mod Bn,Bn). 

Thus, for n > no, we obtain 

/ gdPr - g(a)h(a mod Bn,Bn) < e • h(a mod Bn,Bn). 

« + (Bn) 

This, together with the relation (16) leads to the 

I / -gdPT - ] P g(ot)h(a mod Bn,Bn) 

S + (Bn) Q G 5 n 

< є 

for n > no. The proof is complete. 

If S C ft is a closed set, then its characteristic function xs is continuous 
and Theorem 7 implies 

Pr(S) = lim V h(a mod Bn, Bn). 
otesn 

COROLLARY 1. Let g: Q, —> R be a continuous function and {Bn} be a 
complete sequence. Then 

ľ в»- i 
gdPг= lim ] Г 9(j)h(j,Bn). 

5. D i s t r i b u t i o n dens i ty 

For S C N we define 

M * r ( 5 ) - P r ( S ) . 

The following assertion shows that /J,*r has the properties of the so called strong 
submeasure. 

THEOREM 8. For every Si,S2cN we have 

(v) 5 X C 5 2 =-=> ,ur( s i ) < ^ * r ( 5 2 ) , 

(vi) Mr(Si U S 2) + /x*r(5! n 5 2 ) < / 4 ( S X ) + fi*r(S2), 

(vii) /-*r(N) = l . 
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P r o o f . Properties (v) and (vii) are trivial. Therefore we prove only (vi). 
Clearly 

S1l)S2 = S~[uS2'. 

Thus _ _ 
l*r(Si U S2) + Pr( Si n S2 ) = Mr(5i) + M r ( ^ ) • 

But _ _ 
Si n s2 c Si n s2, 

and so 
^*r(5i ns2) < Er(sTnsI) 

and (vi) follows. 

The set 5 C N will be called T -measurable if 

fr(S) + n*r(N\S) = l. 

Denote by AY the system of all T-measurable sets. Theorem 8 implies that 
AY is an algebra of sets and that the restriction 

-ur = M r U r 

is a finitely additive measure on AY- The submeasure fi*r will be called the 
distribution density. 

If S C N and m € N, then put 

H(S,m)= ] T fe(j,m). 
jES mod m 

Since S mod m = S mod ra, Theorem 7 gives: 

THEOREM 9. If {Bn} is a complete sequence of positive integers, then 

»*r(S)= lim H{S,Bn) 
n—*oo 

for every S c N . 

Let A be the system of all sets of the form a\ + (mi) U • • • Ua^ + (ra^). Then 
A C AY and the compactness of f2 implies: 

THEOREM 10. For every S C N we have 

li*r(S) = mi{fir(H); S c / Y , H e A} 

Theorem 10 gives us the following possibility for characterization of the 
algebra AY ' 
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THEOREM 11 . Let S C N. Then S G Ar if and only if for every e > 0 there 
exist S\,S2 G A such that 

S1cScS2 

and 

Hr(S2) - fir(Si) < e. 

This characterization yields 

THEOREM 12. For every S G AT we have 

J i m AT = M r ( S ) 

/or every F-distributed sequence {w(n)} . 

Recall the well-known Darboux property: 

The set function v has the Darboux property on the set system V if for 
every sets Si,S2 €V, Si C S2 we have 

{v(S)- SxcScS2l SeV} = [v(Sl),v(S2)}. 

A partial answer gives us the following Theorem proved in [8]: 

THEOREM E. Let V C P(N) 6e an algebra of sets and v be a finitely additive 
measure on V. If v satisfies the following two conditions: 

(a) If A C N and 

inf{i/(C); CeV, A C C} = v = sup{v(B); B G P , B C A} y 

then A EV and v(A) — v. 
(b) For each M G V and e > 0 £/iere exists mutually disjoint sets Dj G ? , 

s 

j = 1,2, . . . , s such that M — | J Dj and v(Dj) < e, j = 1 , . . . , 5 , 
.7 = 1 

then v has the Darboux property on V. 

Since the distribution density /ip satisfies the condition (a) on *Ar, we have: 

THEOREM 13. If for each e > 0 there exists m G N 8uc/i £/ia£ /i(j, m) < e , 
0 ^ j ^ ^ - 1; ^e™ A*r has the Darboux property on Ar . 
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