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CONVEXITY OF THE ORIENTOR FIELD 

AND THE SOLUTION SET OF 

A CLASS OF EVOLUTION INCLUSIONS 

NIKOLAOS S. PAPAGEORGIOUx) 

(Communicated by Michal Zajac) 

ABSTRACT. In this paper we examine semilinear evolution inclusions and show 
tha t if the set of solutions is weakly closed in the space of absolutely continuous 
functions, then the orientor filed for almost all times is convex valued. In estab
lishing this result we obtain a new existence theorem for the nonconvex problem, 
a new relaxation theorem and a new Filippov-Gronwall type theorem, all of which 
are of independent interest and can be useful in the study of infinite dimensional 
control systems . 

1. In troduc t ion 

In a recent interesting paper, C e l l i n a - O r n e l a s [4], considered differ
ential inclusions in Rn , driven by a Lipschitz orientor field and established an 
equivalence between the closedness in ACW (the space of absolutely continuous 
Rn -valued functions defined on T = [0, b] and endowed with the weak topology) 
and the convexity of the values of the orientor filed. The purpose of this note is 
to extend this result to evolution inclusions, that appear often in the study of 
distributed parameter systems (see [14]). 

Let T = [0, b] and let X be a separable Banach space having the Radon-
Nikodym Property (RNP; see D i e s t e 1 - U h 1 [6, Definition 3, p. 61]). Let 
AC(X) be the space of all absolutely continuous functions from T into X . It is 
well known (see for example D i e s t e 1-U h 1 [6, p. 217]), that such functions are 

t 
almost everywhere differentiable and furthermore that x(t) = x(0) + J x(s) ds , 
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t G T. So AC(X) can be identified with X x L X (X) , where Ll(X) is the 
Lebesgue-Bochner space of all functions h: T —• X s.t. ||/i(*)ll £ L 1 . Now let 
F : T —> 2 X \ {0} be a multifunction with closed values and assume that F(-) 
is measurable (see Section 2) and that t H-• \F(t)\ = sup{||x|| : x G F(t)} G L1. 
Let S(xo) C AC(X) be the set of solutions of x(t) G F( t ) a.e., x(0) = xn . 
Given the identification of AC(X) with X x L X (X) , we see that S(x0) is 
identified with {x0} x 5 ^ , where S£ = {h G LX(X) : h(t) G F(«) a .e .} . 
From Theorem 4.3 of [19], we know that S}? is weakly closed in Ll(X) (and 
so S(xo) is weakly closed in AC(X)) if and only if F(-) is convex-valued. In 
this paper we extend this fact to the case where F depends also on x and is 
the orientor field of an evolution inclusion defined in a separable Banach space. 
In doing this, we also prove a new Filippov-type approximation theorem and a 
new relaxation theorem, which are interesting by themselves. Our result on the 
automatic convexity of the orientor field, is another instance of the "principle" 
that the weak topology and convexity go together. Recall Mazur's theorem that 
says that a convex set is closed if and only if is uv-closed and from nonlinear 

6 

analysis the result that says that the integral functional If(x) = f f(t,x(t)) dt 
o 

is uv-l.s.c on Ll(X) if and only if /(*,•) is convex for almost all t ET. This 
result was first proved b y R o c k a f e l l a r [21, Theorem 1] for X = W1 , it was 
extended to separable reflexive Banach spaces by B i s m u t [3, Theorem 1] and 
finally it was proved for X a general separable Banach space by this author in 
[16, Theorem 5.1]. 

2. P re l imina r i e s 

Let ($1, S) be a measurable space and X a separable Banach space. Through
out this paper we will be using the following notations: 

Pf(c)(X) = {A C X : nonempty, closed (and convex)} 

and 

P(w)k(c)(X) = {A C X : nonempty, (weakly-) compact (and convex)} . 

A multifunction F: ft —• Pf(X) is said to be measurable, if for all z G X 

CJ i—> d(z,F(u))) = inf{| |z — x|| : x G F(u)} is measurable. A multifunction 
G: Q —• 2X \ {0} is said to be graph measurable if GrG = {(cO,x) G $1 x X : 

x G G(u)} G S x B(X), with B(X) being the Borel cr-field of X. In general, 
for Pf(X) -valued multifunctions measurability implies graph measurability, and 
the converse is true if there exists a cr-finite measure /x(-) on S , with respect 
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to which E is complete. Other equivalent definitions of measurability of closed-
valued multifunctions and additional results on the subject, can be found in the 
survey paper of W a g n e r [23]. 

Now let (f2,E,/x) be a cr-finite measure space. Given a multifunction 
F: ft -> 2X \ {0}, by S£ (1 < p < oo) we will denote the set of selectors 
of F(-) that belong in the Lebesgue-Bochner space Sp = {/ G LP(X) : 

f(w) G F(u) /i-a.e.} . This set may be empty. It is nonempty if F(-) is graph 
measurable and u r—> inf{||x|| : x G F(u)} belongs in L1. Note that S£ is 
a decomposable set; i.e., if A G E and /1-/2 G -S£, then / = xA / i + XAc/2 
G Sp. Decomposable sets in Lebesgue-Bochner spaces were studied in [19]. Us
ing Sp we can define a set-valued integral for F(-) by setting J F(UJ) dfi(u) = 

n 
< J f(u) d/i(u) : f G S}? >. The properties of this integral were studied in [11]. 

Let Y, Z be Hausdorff topological spaces and let G: Y —> 2 Z \ {0} be a mul
tifunction. We will say that G(-) is upper-semicontinuous (u.s.c) (resp. lower-
semicontinuous (l.s.c)), if for all U C Z open, G+(U) = {y G Y : G(y) C U} 
(resp. G~(U) = {y G F : G(y) H C/ 7-= 0} ), is open in Y. Additional properties 
of upper and lower semicontinuous multifunctions, can be found in D e B 1 a s i -
M y j a k [5] and K l e i n - T h o m p s o n [12]. Suppose V is a metric space. 
On Pf(V) we can define a generalized metric, known in the literature as the 
Hausdorff metric, by setting 

h(A, B) = max supd(a, B), supd(b,A) for all A, B G P / ( V ) . 

If V is complete, then so is (Pf(V),h) . 

Next let H be a separable Hilbert space and X a dense subspace of H 
carrying the structure of a separable, reflexive Banach space. Assume that X 
embeds continuously into H; i.e., X —> i7 continuously. Then identifying if 
with its dual (pivot space), we have X —+ FT —> X* , with all embeddings be
ing continuous and dense (see Z e i d 1 e r [24, p. 416]). Such a triple of spaces 
is known in the literature as evolution triple or Gelfand triple. To have a con
crete example in mind let Z be a bounded domain in W1, let H = L2(Z) 
and X = W™'P(Z) with m G N, m > 1 and p > 2. Then X* = W~m^(Z), 

— I — = 1 and from the Sobolev embedding theorem, we know that (X, FT, X*) 

is an evolution triple and in fact all embeddings are compact. By (•, •) we will 
be denoting the duality brackets for the pair (X, X*) and by (•, •) the inner 
product in H. The two are compatible in the sense that (•, -)\x x H = (' >') • 
Also by || • || (resp. | • | , || • | |*) , we will denote the norm of X (resp. of 
H, X * ) . 
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We set W(T) = {x G L2(X) : x G L2(X*)} , where the derivative is un
derstood in the sense of vectorial distributions on T. Furnished with the norm 

1 ii 
llxllvV(T) = (llxlli2(x)"HNIL2(x*)) 5 W(T) becomes a separable reflexive Ba-
nach space. It is well known (see Z e i d 1 e r [24, Proposition 23.23, p. 422]) that 
W(T) —> C(T, H) continuously; i.e, every function in W(T) after possible 
modification on a Lebesgue-null subset of T, equals an H-valued continu
ous function on T. Also if X —• H compactly, then W(T) —•> L2(H) com
pactly (see Z e i d 1 e r [24, p. 450]). Furthermore, since by definition W(T) C 
HX(X*) = W*>2(X*) (= the Sobolev space of X*-valued distributions) and 
since W^2(X*) = ACl>2(X*) = {x: T -> X* : x(-) absolutely continuous, 
£(•) G L2(X*)} (recall that since X* is separable, reflexive, it has the RNP 
(Phillips' theorem see D i e s t e l - U h l [6, Corollary 4, p. 82]) and so x(t) 
exists), we have that W(T) —> AC1,2(X*). For further details on vector distri
butions and vectorial Sobolev spaces, we refer to B a r b u [2]. 

3. Exis tence and relaxation theorems 

Let T = [0, b] and X be a separable Banach space. Consider the following 
evolution inclusion: 

x(t) + A(t)x(t)eF(t,x(t)), 
(*) 

x(0) = x0. 

We will need the following hypotheses on the data of (*). 

H(A): {—A(t) : t E T} is a family of densely defined, closed, linear opera

tors, which generates an evolution operator S: A = {(t, s) G T x T : 

0<s<t<b}—+ C(X), which is assumed to be compact for t — s > 0. 

R e m a r k . Recall (see T a n a b e [22, p. 87]), that S(t,s) is an evolution 
operator (or fundamental solutions), if S: A —> C(X) is strongly continuous, 
S(t, T)S(T, S) = S(t, s) for 0<s<T<t<b (semigroup property), S(t, t) = I 

for all t e T, -jfiSfas) = -A(t)S(t,s) and -jfeS(t,s) = S(t,s)A(s). Condi

tions for such an operator to exist can be found in T a n a b e [22]. 

H(F): F: T x X -* Pf(X) is a multifunction s.t. 
(1) (t,x) i—• F(t,x) is graph measurable, 
(2) x i—> F(t,x) is l.s.c, 
(3) |F ( t ,x ) | = sup{| |y | | : y G F(t,x)} < a(t) + b(t)\\x\\ a.e. 

with a(-),6(.) G L\. 

By a solution of (*), we understand a mild solution x(-) G C(T, X) of the 
t 

form x(t) = S(t, 0)x0 + J S(t, s)f(s) ds, t G T , /(•) G SL ,m)). 
o 
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We start with an existence result that improves Theorem 3.1' of [18], since 
now our growth hypothesis on the orientor field F(t, x) is more general. 

THEOREM 3 .1 . If hypotheses H(A) and H(F) hold, then (*) admits 
a solution. 

P r o o f . Since the proof is similar to that of Theorem 3.1 in [18], we will 
only present an outline of it, and the details can be found in [18]. 

For any solution x(-) G C(T,X) of (*), we get via Gronwall's inequality 

that ||x(t)|| < K = (M||x0 | | + A/ | | a | | i )exp(M| |6 | | i ) , where \\S(t,s)\\ < M , 

(t,s) G A . Define F: T x X -> Pf(X) by 

_ F(t,x) if \\x\\<K, 

F(t,x)= ' 

' ( ' • H ) if \x\\ >K. 

Then F(t,x) is graph measurable, l.s.c. in x and \F(t,x)\ = sup{||t/|| : 

y e F(t,x)} < a(t) + b(t)K = <p(t) a.e. with <p(-) € L\ . Then define 

l 

W = ix(-) G C(T, X) : x(t) = S(t, 0)x0 + f S(t, s)g(s) ds, 

o 

t£T, \\g(t)\\ < <p(t) a . e . | . 

As in the proof of Theorem 3.1 in [18], via the Arzela-Ascoli theorem, we 
can get that W is compact in C(T,X). Let R: W -> Pf(L

1(X)) be defined 
by R(x) = Sp . From Theorem 4.1 of [15], we have that R(-) is l.s.c. 

Since the values of R(-) are decomposable subsets of LX(X) (see Section 2), 
we can apply F r y s z k o w s k i ' s selection theorem [8], to get r : W —> LX(X) 
continuous s.t. r(x) G R(x) for all x G W. Let q: W —> W be defined by 

t 
q(x)(t) = S(t,0)xo + f S(t,s)r(x)(s) ds, t G T. Clearly q(-) is continuous and 

o 
since W G Pkc(C(T,X)) , we can apply Schauder's fixed point theorem, to get 
x G W s.t. q(x) = x. Then x(-) solves (*) with F(t,x). Using Gronwall's 

inequality and the definition of F(t, x), we can show as in [18], that ||x(t)|| < K 

for all t G T => P(t,x(t)) = F(t,x(t)) t G T => x(-) solves (*) with 

F(t,x). D 
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To evolution inclusion (*), we associate its relaxed (convexified) version: 

x(t) + A(t)x(t) € convF(t, x(t)) , 
(*)r 

x(0) = X0 • 

By P(xo) C C(T, H) we will denote the solution set of (*) and by Pr(x0) Q 
C(T, X) the solution set of (*)r . 

We will need the following hypothesis on F(t,x). 

H(F)X: F:T -+ Pwkc(X) is a multifunction s.t. 
(1) (t,x) i—> F(t,x) is graph measurable, 
(2) x i—> F(t , x) is u.s.c from X into Xw , 

Xw = {the space X equipped with the ul-topology} , 
(3) \F(t,x)\<a(t) + b(t)\\x\\ a.e. with a(-),6(-) e L\. 

THEOREM 3.2. If hypotheses H(A) and H(F)i hold, then 

Pr(x0)ePk(C(T,X)). 

P r o o f . The nonemptiness of Pr(xo), can be established exactly as in The
orem 3.3 of [18]. Since Pr(x0) C W C C(T,X) (see the proof of Theorem 3.1) 
and because W is compact in C(T, X), it suffices to show that Pr(xo) is closed 
in C(T,X). To this end let {xn}n>i C Pr(xo) and assume that xn —> x in 
C(T, X). Then by definition we have for n > 1, 

t 

xn(t) = 5(ť,0)x 0 + / 5(ť,æ)/ n (s) ds 

for all t G T and some fn G -SL. x / u . Because F( t , •) is u.s.c. from X into Xy, 

and it has values in Pwkc(X), from Theorem 7.4.2 of K l e i n - T h o m p s o n 

[12, p. 90], we have that G(t) = \ \J F(t,xn(t))] \JF(t,x(t)) G Pwk(X), while 

from hypothesis H(F)i(l), we have that t \—> G(t) is graph measurable, hence 
measurable for the Lebesgue cr-field on T (see Section 2). Then t \-* convG(t) is 
measurable (see H i m m e l b e r g [10, Theorem 9.1]), Pwkc(X)-valued (Krein-
Smuiian theorem; see D i e s t e l - U h l [6, Theorem 11, p. 51]) and |convG(t)| < 
a(t) + b(t)Mi = (fi(t) a.e., with (p±(-) E L\, and Mx = sup | |xn | |c(r ,x) • 

n > l 

Hence invoking Proposition 3.1 of [20], we deduce that SQ is ^-compact in 
Ll(X), hence by the Eberlein-Smulian theorem, sequentially tt;-compact. Since 
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{/n}n>i Q SQ , by passing to a subsequence if necessary, we may assume that 

fn A / in Ll(X). From Theorem 3.1 of [15], we get 

f(t) ecofww^\mi{fn(t)}n^1 C convF( t , x n (0 ) C F(t,x(t)) a.e. 

since xn(t) —• x(t) in X, F(t,-) is u.s.c from X into I w and the values of 
F ( - , •) are in Pwkc(X). Hence / G SF(-,*(•)). Then 

t 

x(t) = S(t,0)x0 + / S(t,x)f(s) ds for teT 

and with /(•) G *SL ,̂ x -=> x G Pr(-^o) = ^ -^(^o) 1s closed in C(T,X), 

hence compact. • 

R e m a r k . Our result extends Theorem 2.7 of F r a n k o w s k a [25], 
where X is assumed to be reflexive and the operator A is time independent. 
Note that in the time invariant case, technically the situation is easier since the 
semigroup {S(t) : t G T} generated by A is a function of one variable and in 
case we assume that S(t) is compact for t G (0, b], then t \—> S(t) is continuous 
from (0, b] into C(X) furnished with the uniform operator topology. In the time 
varying case the evolution operator {S(t,s) : (t, s) G A} is a function of two 
variables and if we assume that S(t, s) is compact for t — s > 0, then t i—• S(t, s) 
is continuous from (s, b] into C(X) with the uniform operator topology. Note 
that this continuity property in general depends on s and is only uniform with 
respect to 5 in sets bounded away from t; i.e. t — s > /3 for (3 > 0 (see Propo
sition 2.1 of [18]). This makes our arguments more involved and different from 
those of F r a n k o w s k a [25]. Also in view of what we said above, in Theo
rem 2.7 of F r a n k o w s k a [25], condition (ii) is actually covered by condition 
(i) since equicontinuity at t = 0 is an immediate consequence of the absolute 
continuity of the Lebesgue integral. 

The next result relates solution sets P(x0) and Pr(xo) (relaxation theorem). 
For this we will need the following stronger hypothesis on the orientor field 
F(t,x). 

H(F)2 : F:T xX -> Pwk(X) is & multifunction s.t. 
(1) tv-+F(t,x) is measurable, 

(2) h(F(t,x),F(t,y))<k(t)\\x-y\\ a.e. with k(-) G L\, 

(3) \F(t,x)\ < a(t) + b(t)\\x\\ a.e. with <),&(•) eL\. 
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R e m a r k . Note that H(F)2(2) above implies that x i—> F(t,x) is l.s.c 
(see D e B l a s i - M y j a k [5]). Also because of H(F)2(2), the support func
tion x i—• a(x*,F(t,x)) = a(x*,convF(t,x)) = sup{(x*,z) : z G conv F(t,x)} 
is continuous and so Theorem 10 of A u b i n - E k e 1 a n d [1, p. 128], tells us 
that x H-> convF(t, x) is u.s.c from X into Xw . Also by the Krein-Smulian the
orem, convF(t,x) G Pwkc(X). Furthermore hypotheses H(F)2(\) and (2) and 
Theorem 3.3 of [17], tell us that (£, x) i-> F(t, x) is measurable. Note that Theo
rem 3.3 of [17] gives us a much simpler proof for Lemma 1.4 of F r a n k o w s k a 
[25]. Furthermore, it shows that the Lipschitz property of F(t,-) is not necessary 
for the lemma to be valid. It suffices to have Hausdorff continuity. 

THEOREM 3.3. If hypotheses H(A) and H(F)2 hold, then Pr(x0) = P(x0), 
the closure taken in C(T, X). 

P r o o f . Let x(-) G Pr(x0). Let rj: LX(X) -> C(T,X) be the map, which 
to each h G S^^p, , ^ assigns the unique mild solution rj(h)(-) G C(T,X) of 
the Cauchy problem x(t) + A(t)x(t) = h(t), x(0) = x0. We claim that r)(-) is 
continuous from S^^p, x,^ equipped with the relative weak L1(X) -topology 

into C(T,X). Note that S^^p, x, u with the relative weak LX(X) -topology, 

is compact metrizable (see Proposition 3.1 of [20] and note LX(X) is separable, 

since X is). So we may work with sequences. Hence let {/in}n>i C 5-L_ 

s.t. hn A h in Ll(X). Set zn = r)(fn) C Pr(x0) C C(T,X). Because of 
Theorem 3.2 and by passing to a subsequence if necessary, we may assume that 
zn —> z in C(T, X). By definition we have 

t 

zn(t) = S(t, 0)x0 + I S(t, s)hn(s) ds , t G T 

t t 
and zn(t) -A z(t) in X , while f S(t,s)hn(s) ds - ^ f S(t,s)h(s) d s . So in the 

o o 
limit as n —> oo, we get 

2(f) = 5(t , 0)a:o + / B(«, s)/i(s) d s , ' t 6 T 

o 

Hence jy(-) is indeed continuous as claimed. Since #(•) € PrO^o) > there exists 

/ G •SjjoHvFC- x(-)) S-*- x ~ ^ (1 ) • Having the continuity of r?(-), we know that 
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given e > 0, we can find U a symmetric, weak neighbourhood of the origin s.t. 
f-heU => \\v(f) ~ v(fi)\\c(T,x) = \\x - r)(fi)\\c(T,x) < £• Furthermore 
Theorem 4.1 of [16], tells us that we can pick f\ G 5i-51WF/ x,^ . Set z\ = r)(f\). 

Let L(t) = {v G F(t,z\(t)) : d(f(t),F(t,z\(t))) = ||/i(«) - *||} . Since 
t .—• F(t, z\(t)) is measurable (recall that (t, x) \—• F(t, x) is measurable, see re
mark above), we can easily check that L(-) is graph measurable, with nonempty 
values since F(-, •) is Pwk(X)-valued. So using Theorem 5.10 of W a g n e r 
[23], we get f2:T —• X measurable s.t. f2(t) G L(t) a.e. Then we have 

/-(•) Є 5 F ( - , 2 l ( - ) ) 

and 

| |/i(í) - /2WII < h(F(t,x(t)),F(t,Zl(t))) < k(t)\\x(t) - Zl(tj\\ < k(t)e a.e. 

Set z2 = r)(f2) and as before let M > 0 be s.t. | |s(ť,s)||£ < M for all 
(t, s) G A. We háve 

\\z2(t) - x(t)\\ < \\z2(t) - Zl(t)\\ + \\Zx(t) - x(t)\\ 

J S(t, s)f2(s) ds - J 5(ť, s)fг(s) ds 

0 0 

t 

<Jм\\f2(s)-Ш\\ds + є 
0 

t t 

ík(s) ds + є = є\M ík(s) 

+ є 

< Mє ds + 1 

Now suppose that we have obtained / i , . . . , fn G LX(X) s.t. 

r - l 

ll/г+l(*)-/r(-)ll<Є*(-) 
M г - 1 

( r - 1 ) ! 
Jk(s) ds 

and 

fr+i(t) G F(t,zr(t)) a.e., with zr = r/(/ r), r = 1,2,... ,n - 1 

(i) 

(2) 

601 



NIKOLAOS S. PAPAGEORGIOU 

Then we can write that 

t 

|zr+1(í) - zr(t)|| < jM\\fr+1(s) - fr(s)\\ ds 
o 

t r s ' 
<JMek(s)1—-^ Jk(r)dr 

o Lo 

<^/ d ( / M T ) d T ) r = ^ [/*(., a." 
o ^ o ' L 0 

So from the triangle inequality we get 

г t 

Ml Í 
\\Zr+1(t)-x(t)\\<sJ2— Jk(s)ds 

£=o L o 

< є e x p [ M P | | i ] . (3) 

As above, via Theorem 5.10 of W a g n e r [23], we can choose / n + i 
6 5 F(-,* n (- ) ) S - L 

| | / n + l ( 0 " /n(0ll = d(fn(t), F(t, Zn(t))) a.C, Zn = V(fn) 

=> ll/n+l(0-/n(0ll <ME(Mn(0),E(Mn-l(0)) 

<fc(0l|z„(0-2„-i(0ll 
t 

< 
Mw- 1efe(Q 

( n - 1 ) ! 
Jk(s) 

. 0 

ds 

n - 1 

Thus we have completed the construction of {/n}n>i C LX(X) and {z n } n >i 

C C(T,X), satisfying (1), (2), and (3) above. From (1), we deduce that 

{/n}n>i C Ll(X) is Cauchy. Thus fn A / in LX(X). Then zn = V(fn) -> z = 

r)(f) in C(T,X) and /(*) e /i - l i m F ( t , zn(t)) = .F(t,*(t)) a.e. So z = r?(/) 

£ P(£o) • Then since (3) holds for all r > 0, we get in the limit as r —> oo that 

||*(0-s(0H<--exp(M||fc||i) 

= * \\x ~ z\\c(T,x) < ^exP (MPIIi) • 

Since e > 0 was arbitrary, we conclude that Er(a;o) = E(#o) ^he closure 
taken in O(T, X). • 
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R e m a r k . Relaxation results for evolution inclusions can also be found in 
F r a n k o w s k a [25, Theorem 2.5 and Corollary 2.6] and in T o l s t o n o g o v 
(Theorem 3.1). In Theorem 2.5, F r a n k o w s k a [25] using an idea of Clarke, 
proves that Pr(xo) C P(xo) the closure taken in C(T,X). Appropriately mod
ifying her arguments (which are based on properties of the set-valued integral) 
we can extend her result to the broader class of systems considered here, with
out assuming that S(t, s) is compact for t — s > 0. Note that Lemma 2.4 of 
F r a n k o w s k a [25], which is the main tool in the proof of Theorem 2.5 is an 
immediate consequence of the more general Theorem 3.1 of K a n d i l a k i s -
P a p a g e o r g i o u [11]. That general result on set-valued integration permits 
us to extend Frankowska's Theorem 2.5 to our more general setting. In Corol
lary 2.6, F r a n k o w s k a [24] proves that Pr(x0) = P(xo), the closure taken 
in C(T, X) under the assumption that X is reflexive and the unbounded op
erator A is time invariant. Again remark that condition (ii) is covered by con
dition (i) in that corollary. T o l s t o n o g o v [26], considers evolution inclu
sions where A is a time invariant, generally nonlinear m-accretive operator. 
However, he assumes that X* is strictly convex and that F(t,x) has compact 
values. We believe that this last hypothesis (see also condition (iii) in Corollary 
2.6 of F r a n k o w s k a [25]) is very restrictive and is not satisfied in most 
applied problems (like control systems). Finally, our proof differs from those of 
F r a n k o w s k a [25] and T o l s t o n o g o v [26]. 

4. A Filippov-Gronwall type t h e o r e m 

In this section we prove a Filippov-Gronwall type theorem, which we will 
use in the proof of our main result in Section 5 (Theorem 5.2) and which we 
believe can be useful in the study of infinite dimensional control systems. So we 
show that given an approximate mild solution of the evolution inclusion, we can 
find an exact mild solution, so that the difference of the two satisfies a Filippov-
Gronwall type inequality. This result was first proved for differential inclusions in 
W1 by F i 1 i p p o v [7], and here we extend it to evolution inclusions, following 
his proof. Analogous results were recently proved by F r a n k o w s k a [25, 
Theorem 1.2] and T o l s t o n o g o v [26, Theorem 2.1] for evolution inclusions 
with time-independent unbounded operators. Note that T o l s t o n o g o v [26] 
assumes that 6 = \\x0 — z0\\ = 0. The proofs of these results as well as our proof, 
follow closely the original one due to F i 1 i p p o v . Our result is true with the 
following weaker hypothesis on A(t). 

H(A)i: {— A(t) : t €T} is a family of densely defined, closed linear operators 
that generates an evolution operator S: A —> C(X). 

THEOREM 4 . 1 . If hypotheses H(A)i and H(F)2 hold, g G LX(X), 
z(-) G C(T,X) is the mild solution of z(t) + A(t)z(t) = g(t), z(0) = z0 
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and t i—• p(t) = d(g(t),F(t,z(t))) € L\, then there exists a mild solution 

x(-)GC(T,X) of (*) . . . . 

t t t 

| | z (ť)-«( í ) l l <SexpÍM ik(s) d s ) + / p ( r ) e x p ( M í k(s) d s j d r , 

where 6 = \\z0 — x0\ 

P r o o f . Let m(t) = / k(s) ds. Through a straightforward application of 
o 

Theorem 5.10 of W a g n e r [23], we can find v0: T —> X measurable s.t. 
v0(t) e F(t,z(t)) a.e. and d(g(t),F(t,z(t))) = \\g(t) - v0(t)\\ = p(t) a.e. 

t 
Clearly v0(-) e LX(X). Set xx(t) = 5(_, 0)x 0 + / 5(_, s)v0(s) ds. Then we have 

o 
t 

| |x i(.) - z(t)\\ < M\\x0 - zo|| + Mfp(s) ds (recall \\S(t,s)\\c < M for all 
o 

( M ) e A ) . 
Suppose that we have constructed £_(•) , . . . ,xn(-) £ C(T,X), so that for 

r , { l , . . . , n } we have: 

(a) xr(t) = S(t,0)x0 + /S (_ ,5 )v r _ i ( s ) d s , teT 
o 

with tv_i(s) £ F(s,xr-i(s)) a.e., 

(b) ||v,—xC*> — «.—aCOII 

Mr-2m(t)r-2 \ Mr~2(m(t) - m(s))r~2 

<ңt) ( r - 2 ) ! + /• ( r - 2 ) ! 
p(s) ds 

Observe that from (b) above, we have 

| * n - i (ť )-a : n (ť ) | | 

/ S(t,s)(vn-2(s) -vn-i(s)) ds 
o 

t 

<M í\\vn^2(s)-vn.1(s)\\ds 
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<м 
t 

Jk(s) 
™-2™ l_\n-2 SMn-2m(s) 
(n-2) ! 

ds 

+ ; ; r-'w-**))" n.WT) iTds 

t s 

II 
0 0 

(n-2) ! 

t t 

= / #_$ d W * ) ) " " ' + {Í.-TJÍ jv(r) j _ (m(») - m(x))"-1 dSdr 

_м 
(n 

t 
n^m{t)n~l + ^гӯ. / ^ И ) - m( r))n _ 1 d r • 

(1) 
Via a new, easy application of Theorem 5.10 of W a g n e r [23], we can get 

a measurable function vn: T —* X s.t. vn(t) £ F(t,xn(t)) a.e. and 

\\vn(t) - vn.x(t)\\ = d(vn^(t),F(t,xn(t))) </i(F(t,xn-x(t)),F(t,xn(t))) 

< fc(t)||.r:rx__1(t) — ^^(t)!! a.e. 

Using (1) above we get that 

_ 

IЫt)-»»-iWII <*(«•) ^9mW"" , + # ^ ! JpírHmlD-mír))"-1 dг _Ш 

( 

which gives us part (b) of the induction process. 
t 

Set xn+i(_) = S(t,0)x0 + fS(t,s)vn(s) ds, f G T , vn(t) € F(t,xn(t)) a.e. 
o 

to get also part (a) of the induction process. 
By setting XQ = z £ C(T, _K), we have 

IV 

||xn+x(ť) - z(ť)|| < £_ ||xfc+i(ť) - Xfc(ť)|| 
k=0 

<£\^™(t)k + ^Íp(r)Ht)-rn(T))k<lT 
i r. L J fc=0! 

< 

t t t 

6 exp í M / fc(s) ds) + p(т) exp í M / k (s) ds Ј dr . 

(2) 
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From (a) and (b) above, we have that {xn(m)}n>1 1s Cauchy in C(T,X) 

while {vn(')}n>l 1s Cauchy in Ll(X). So let xn -^> x in C(T,X) and vn -̂ > v 

in Ll(X). We have 

v(t) eh-Y\mF(t,xn(t)) =F(t,x(t)) a.e. 

and 

t 

x(t) = S(t, 0)x0 + / S(t, s)v(s) ds , t G T ; i.e. x(-) G P(x0). 

o 

Furthermore, from (2) above, we get 

t t t 

\\x(t) - z(t)\\ <<5exp(M J k(s) ds) + / p ( r ) e x p ( M /fc(s) d s j d r , 

o o T 

which proves the theorem. • 

R e m a r k . If A(t) — 0 and X = W1, we recover the result of F i 1 i p p o v 
[7]. If A(t) = A (i.e. independent of t), we recover the result of F r a n k o w s k a 
[25]. 

Another result that we will need in the proof of our main theorem in Section 5 
(Theorem 5.2) is the following. Assume (Jl ,S,/ i) is a cr-finite measure space, 
while as before X is a separable Banach space. 

PROPOSITION 4.2. If F: ft, —* Pf(X) is a measurable multifunction s.t. 

£jf__F zfz 0 and F(UJ) ^ convF(u) for all u G Slo > /I(-^-o) > 0 , then there 

exists f G S ^ F s.t d(f(u>), F(u)) > (5 > 0 for all UJ G fii, fi(fti) > 0 . 

P r o o f . Let R: Q0 - • 2 * \ {0} be defined by 

P(u;) = {x G convP(u;) : x ^ P(u;)} 

= {x G X : d(x,convF(u)) = 0 and d(x,F(u)) > 0} . 

Since F(-) is measurable, Theorem 9.1 of H i m m e 1 b e r g [10], tells us that 
convP(-) is measurable too. Thus G r P G (E H J70) x B(X) and so Aumann's 
selection theorem gives us g: QQ —* X measurable s.t. g(u) GiJ(w) / i |o -a.e. 
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Let nn = lu e fto : d(g(v),F(u>)) > — \ . Then clearly /x(ftn) T M^o) > 0. 

So for some n > 1, we have fi(£ln) > 0 . Since Q is cr-finite we have an increasing 

sequence of E-sets fi,m s.t. /i(f)m) < oo ra > 1 and Q = (J fim. Set £ln = 
m>l 

\J fin n n m . Again as before, we can find ra > 1 s.t. 0 < /I(fin D Qm) = 
m > l 

V(ftnm) < oo. Then set £2nmfc = {a; G J7nm : ||^(u;)|| < k} . Since O n m = 

U ^nmfc, for some A; > 1 ^(^lnmk) > 0. Let /i £ S^^F (such a function 
k>i 

exists by hypothesis) and define 

f = Xtinmk9 + Xnnmkh. 

Clearly / G S ^ F and d(f(u;),F(u;)) > ± > 0 for all a; G ftnmfc,. 

Mf-nmfc)>0. D 

5. Convexity of the orient or field 

In this section, let (X, H, X*) be an evolution triple of spaces (see Section 2), 
and assume in addition that X —> H compactly (hence H —> X* compactly 
too; see Z e i d 1 e r [24]). Recall (•, •) denotes the duality brackets for (X, X*) 
and (•, •) the inner product in H . Also || • || (resp. | • | , || • ||* ) denotes the norm 
of X (resp. of H, X* ). We will need the following hypothesis on A(t)x. 

H(A)2: A: T-+C(X,X*) is a map s.t. 
(1) \\A(t)-A(t')\\c<£\t-t'\ for some £ > 0 , 
(2) ||A(t)x||* < 7||x|| for all t G T and some 7 > 0, 
(3) (A(t)x,x) > ci\\x\\2 for all t G T and some CA > 0 

(i.e. A(t)(-) is strongly monotone, uniformly in t G T ) . 

Then given / G L2(H), from T a n a b e [22] and Z e i d 1 e r [24], we know 
that there exists x(-) G W(T) s.t. x(t) + A(t)x(t) = f(t) a.e., x(0) = x0. 
Furthermore from Proposition 5.5.1 of T a n a b e [22, p. 153], we know that 
{— A(t) : t G T} generates an evolution operator S: A —> C(H) s.t. 

x(t) = S(t, 0)x0 + / S(t, s)f(s) ds, teT. 

0 

Now we turn our attention to evolution inclusion (*), and we make the 
following hypothesis concerning the orientor field F(t, x). 

H(F)3 : F:T x H -+ Pfc(H) is a multifunction s.t. 
(1) 11—> F(t,x) is measurable, 

607 



NIKOLAOS S. PAPAGEORGIOU 

(2) hH(F(t,x),F(t,xf)) < k(t)\x-xf\ a.e., with k(-) G L\ 
(here hn(•, •) denotes the Hausdorff metric on Pf(H)), 

(3) \F(t,x)\ < a(t) + c(t)\x\ a.e. with a(-),c(-) G L\ . 
Denote the solution set by P(x0). Recall (see Section 2), that P(x0) C W(T). 

PROPOSITION 5.1. If hypotheses H(A)2 and H(F)$ hold and x0 G H, then 
P(x0) is a weakly compact subset of W(T). 

P r o o f . Let x(-) G P(x0). Then by definition we have 

x(t) + A(t)x(t) = f(ty a.e., x(0) = x0 

with / G Sj,^x(m)y So using Proposition 23.23 of Z e i d l e r [24, p. 422], we 
get 

(x(t), x(t)) + (A(t)x(t), x(t)) = (f(t), x(t)) a.e. 

=> i - ^ k W I 2 + ci||-r(t)||2 < \f(t)\\*(*)\ < \f{t)\P\\*(jt)\\ a.e., (1) 

where /3 > 0 is such that | • | < /3|| • | | . It exists since by hypothesis X —> H 
continuously. Then using Cauchy's inequality with e > 0, we get 

\±\x(t)\2 + C l | |x(f) | | 2 < § | / ( t ) | a + ^ | | x ( t ) | | 2 a.e. 

t t t 

\x(ť)\2 + 2C l J \\x(s)\\2 ás<ej \f(s)\2 ás + § J \\x(s)\\2 ás + |x 0 | 
0 0 0 

t t 

< e J (2a(s)2 + 2C(S)2 |x(s)|2) ds + | / | |x( S ) | | 2 ds + |x 0 | 2 . 

Let є = 1-7— . We get 
2ci 

t 

WOI2 < -^-llallІ + -£-Jc(s)2\x(s)\2 ds+ \x0\ 

Invoking GronwalPs inequality we get that there exists Mi > 0 s.t. 

|*(*)l < Mx (2) 
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for all t G T and all x(-) G P(x0). 

Using (2) in (1), we get 

b b 

2ci / ||x(*)||2 dt < f (a(s) + b(s)M1)M1 ds 

0 0 

==> IMIL'(X) < M2 

for some M2 > 0 and all x(-) G P(x 0 ) • 

Finally let h G L2(X) and denote by ((•,-))o the duality brackets for the 
b 

pair (L2(X),L2(X*)); i.e., ((v,h))0 = f(v(t),h(t))dt for all v G L2(X*), 
o 

/i G L 2 ( X ) . Let A: L2(X) -> L2(X*) be defined by ( i x ) ( t ) = A(t)x(t). Clearly 
.A(-) is linear, monotone hence continuous (see Z e i d l e r [24, p. 596]). Then 
we have 

((x,h))0 + ((A(x),h))0 = ((f,h))0 

((x,/l))0 < [ | | i (*) | |La ( x . ) + \\f\\L2(X-)]\\h\\L*(X) 

< ( 7 M 2 + ||a||2 + Mi | | 6 | | 2 ) | | ^ | | L 2 ( x ) 

= » 11*11 W ) < M3 (3) 

for some M3 > 0 and all x(-) G P(xo) . 

From (2) and (3), we deduce that P(x 0 ) is bounded in W(T) and since the 
latter is a separable, reflexive Banach space, we deduce that P(xo) is relatively 
weakly compact in W(T). To finish the proof, we need to show that P(xo) is 
^-closed in W(T). So let {x n} n>i C P(x0) and assume x n A x in W(T). 
Then by definition 

xn + A(xn) = fn (4) 

with fn G 5,F(-,xn(.))'
 N o t e t h a t l-^WI - a(*) + c ( 0 ^ i a e - (hypothesis 

H(F)s(3)). So by passing to a subsequence if necessary, we may assume that 

fn - ^ / in L2(H). Since x n A x in W(T) and W(T) -> L2(H) compactly 

we have x n A x in L2(H). So using this and Theorem 3.1 of [15], we get that 

/ G S L ^ u . Also x n -̂ > x in L2(X*) (because x n -^> x in W(T)) and 

-4(xn) ----> A(x) in L2(X*) (because A(-) is continuous, linear). So passing to 
the limit as n —> 00 in (4) above, we get 

x + A(x) = f 
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with / G Sp, / u and x(0) = x0. Hence x G P(x0) => P(x0) is w-compact 

in W(T). ' D 

R e m a r k . Since W(T) -+ L2(H) compactly (see Z e i d 1 e r [24, p. 450]), 
Proposition 5.1 tells us that P(x0) is compact in L2(H). Also if X is a Hilbert 
space too, then from N a g y [13], we know that W(T) —• C(T,H) compactly, 
and so P(x0) is compact in C(T,H). Finally since W(T) -> Wl>2(X*) = 
HX(X*) = ACl>2(X*), we have that P(x0) is weakly closed in AC^2(X*). 

In the next theorem, we will obtain a kind of converse of this last obser
vation concerning the setP(x0). Our result extends to evolution inclusions 
Theorem 1 o f C e l l i n a - O r n e l a s [4]. So we will show that if P(x0) is 
closed in AC1'2(X*) endowed with the weak topology (denoted henceforth by 
ACh2(X*)w ), then for all t G T \ 1V, X(N) = 0 (X is the Lebesgue measure on 
T) and all x G H, we have F( t , x) is convex. Our proof was inspired by that of 
C e l l i n a - O r n e l a s [4]. We will need the following additional hypothesis. 

Hc : For all (£, s) G A , t — s > 0, S(t, s) is a compact operator. 

THEOREM 5.2. If hypotheses H(A)2,H(F)3 (with F ( - , •) only Pf(H)-valued) 
and Hc hold, and for ever initial time t0 and initial state x0 G H, there exists 
an interval T$ = [t0,t0 + 8] on which the solution set P(x0) of the evolution 
inclusion x(t) + A(t)x(t) G F(t,x(t)) a.e. on Ts, x(t0) = x0 is closed in 
ACl>2(T6,X*)w, then F(t,x) G Pfc(H) for all t eT\N, X(N) = 0 and all 
xeH. 

P r o o f . Suppose not. Then there exists x0 G H s.t. F(t, x0) ^ convF(t, x0) 

for all t G To C T , X(T0) > 0. Then the Proposition 4.2, we know that there 

exists / e ^ . ^ , s.t. 

dH(f(t),F(t,x0)) >0>O 

for all t G T i , A(7\) > 0 and Ti C T0 (here dH(-,B) denotes the distance 
function from a set B in H). 

Let t0 G T\ be a point of density of T\ , interior of T s.t. 

ío+ö t 

l i m y k(t)explмk(s)ds]dt = k(t0), [t0,t0 + 6]ÇT. 

to to 

Such a point exists by Theorem 18.2 of H e w i t t - S t r o m b e r g [9, p. 274]. 
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t0+6 
Set r,(6) = M J \f(s)\ ds and *(-) e W([t0,b]) C C([t0,&],tf) by 

to 

t 

x(t) = S(t,t0)x0 + I S(t,s)f(s) ds, te [t0,b]. 

to 

Then we have 

|x( t ) -S( t , t 0 )x 0 | <v(6) for te [t0, t 0 + 6] 

and 

dH(/(t),convF(t,x(t))) < hH(coTwF(t,x0),convF(t,x(t))) < fc(t)|x0 - x(t)| 

< k(t) [\x0 - S(t, t0)x0 | + |5(t, t0)x0 - x(t)|] . 

Since the evolution operator (t, s) H-• 5(t, 5) is continuous from A into C(H) 
with the strong operator topology and 5(to,to) = / , given e > 0, we can find 
6(e) > 0 s.t. if t £ [to, to + 6], then |xo — S(t, to)xo| < e. So we have 

dH(f(t),convF(t,x(t))) < k(t)[r,(6) + e] . 

From Theorem 4.1 we know that we can find x(-) G W(Ts), T$ = [t0, t0 + 6] s.t. 

ž(ť) + i4(ť)x(ť) GčoiTvF(ť,x(ť)) a.e. on T^ 

x(t0) = x0 

w; 

and also 

t t 

\x(t)-x(t)\ < íexpÍM ík(r) ÚT\ k(s) (T]{6) + e) ds 
to « 

" ( 6 ) + e|d(exp(M|^)dr)) 
to S 

t 

M 
ťo 

< м / ' 
^ " ^ ' e x p l M / * ( т ) d т ) - l 
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We will show that x(-) G W(Tg) cannot be a solution of the Cauchy problem 
y(t) + A(t)y(t) G F(t, y(t)) a.e. on T5, y(0) = x0 • To this and we have 

0 < 6 < d. (f(t), F(t, xQ)) < \\f(t) - x(t) - A(t)x(t)\U 

+ d*(x(t) + A(t)x(t),F(t,x(t))) + h*(F(t,x(t)),F(t,x0)) a.e. on TnTj, 
(1) 

where d+(- , F?) denotes the distance function from a set B in X* and h*(-, •) 
is the Hausdorff metric on Pf(X*). From the proof of Theorem 4.1, and in 
particular part (b) of the induction process, we have: 

t 

\\f(t)-£(t)-A(t)x(t)\\* <(3'k(t)(r)(6)+e)exp(M /fc(r) dr J a.e. on T6 (2) 

*o 

where /?' > 0 is such that || • ||* < (3'\ • |. It exists since H embeds into X* 
continuously. Similarly, if h//(•,•) and /&*(-,-) are the Hausdorff metrics on 
Pf(H) and Pf(X*) respectively, we have /i*(-, •) < f3'hn(-, •). So we can write 

h*(F(t,x(t)),F(t,x0)) 

<(3'hH(F(t,x(t)),F(t,x0))<p'k(t)\x(t)-x0\ 

< f3'k(t) [\x(t) - x(t)\ + \x(t) - S(t, t0)x0\ + \S(t, t0)x0 - x0\] 

<ß'k(t) TÌ(S) + Є 
t 

( e x p í м I k(т) dтj - l ) +т](6) + є 
M 

to 

(3) 

t 

= (3'k(t) (r)(6) + e) exp ( M f fc(r) dr 

to 

since we may assume without any loss of generality that M > 1. Recall M > 0 
is such that | |5(t,5)||£ < M for all (t,s) G A. 

Using estimates (2) and (3) in (1), we get 

t 

0-k(t)(r)(6) + e)exp(M / fc(r) dr j < d*(£(t) + A(t)x(t),F(t,x(t))) 

to 

a.e. on Tx D T6 . 
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Let T6' = {teTs = [t0,t0 + 6] : k(t)(V(6) + e) exp(M/fc(r) dr) > - | } 
*0 

and choose S > 0 small enough, so that A(7\ n T6) = \(TX n [*0, *o + 5]) > M- -

This is possible because t0 was chosen to be a density point for Ti. Also note 
that 

t0+6 t 

(r,(S) + e) J J k(t) exp (M f k(t) dr J d* 

*o to 

to+6 t 

= J J k(t) (r,(S) + e) exp (M J k(r) d r ) dt > \ ^ (4) 
to to 

(since the integral is positive). 
Now observe that the left-hand side in inequality (4) above, goes to e as 

S —> 0+ (recall the choice of t0 E Zi in the beginning of the proof). So we get 

2 610 o — 

A(T') 
But e > 0 was arbitrary and 6 > 0. So lim —-—— = 0. In particular then 

for S > 0 small enough, we have A(T )̂ < —. Hence we get 

A ( ( T 1 n T 5 ) \ T ^ ) > | 

and for t € (Ti t~l T6) \ T'6 we have 

O < f = 0 - f < d * (x(t) + A(t)x(t), F(t, x(t))) , 

which means that x(-) is not a solution of (*) on Ts. However x(-) is by 
choice a solution to the relaxed problem (*)f

r . So from Theorem 3.3, we can find 
{#n}n>i solutions of the nonconvex problem on Ts, emanating from x0 at t0 

s.t. xn -^ x in C(Ts, H). Recall from the a priori bounds derived in the proof 
of the Proposition 5.1, that {xn}n>i is bounded in W(Ts). So by passing to a 
subsequence if necessary, we may assume that xn —• y in W(Ts). Clearly since 
W(Ts) —• C(Ts,H) continuously, y = x. Then in particular we have xn ----> x 
in L2(T6,X*) =-> xn A x in A C 1 ' 2 ^ , A"*). But by hypothesis the solution 
set of the evolution inclusion y(t) + A(t)y(t) G F(t,y(t)) a.e., y(0) = x0 on 
78 = [£o>£o + <$] is closed in •AC1'2(.71$,.X'*)tl, . So x(-) is a solution of the Cauchy 
problem y(t) + A(t)y(t) G F(t,y(t)) a.e. on Ts , y(0) = x0 , a contradiction. 
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