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KOROVKIN THEORY IN BANACH * ALGEBRAS 

FERDINAND B E C K H O F F 

(Communicated by Michal Zajac) 

ABSTRACT. In this paper the author investigates the Korovkin closures in a 
class of noncommutative Banach-*-algebras. The universal Korovkin closure of 
a *-subalgebra with respect to Schwarz maps is nothing but its closure with 
respect to the norm of the enveloping C*-algebra in the case of liminal algebras. 
This yields equivalent conditions for such an algebra to possess a finite universal 
Korovkin system. 

1. In troduc t ion 

Let A be a Banach-*-algebra (i.e. a complex Banach algebra with an isomet
ric involution), and T C A a non-empty subset. Let V be a class of positive 
operators A —•> C, where C is a C*-algebra. Then let us define 

Kov\v(T) = {x G A | if (Pi)i is a net of operators Pi'. A —> C in V, 
where C is a C*-algebra, and if S: A —• C is a *-homomorphism such that 
\\PiV ~ Sy\\ - • 0 for all y G T , then \\P{x - Sx\\ -> 0} . 

An interesting case is Kor^-p(T) = A for then to prove convergence 
PiX —• Sx for all x G A it suffices to show Piy —• Sy for all y in the test 
set T. A is said to have a finite universal Korovkin system if there is a finite 
subset T C A such that its universal Korovkin-closure Kov\v(T) coincides 
with A. 

In [Becl] it has been shown that Kox\v(B) = B for all J*-subalgebras B of 
a dual C*-algebra A, where V stands for the class of all positive operators which 
are norm bounded by 1 (in this case the symbol V will be left out). The same 
result also holds when V is the class S of Schwarz-maps, i.e. continuous and 
linear maps P: A - • C which satisfy P(x)*P(x) < P(x*x) and P(x)* = P(x*) 
for all x G A and B is a C*-subalgebra. This result will be extended to type I 
C*-algebras in the second and third paragraph, and to a more general class of 
Banach-*-algebras in the fourth paragraph. It will be convenient to treat the 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 41A36. Secondary 46K99, 46L99. 
K e y w o r d s : Korovkin approximation, Banach-*-algebra, C*-algebra, Schwarz map . 
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case of liminal and type I C*-algebras differently since in the liminal case we 
will get some further information about the surjective Korovkin closure which 
will be explained now. 

Define the surjective Korovkin closure Kor^ -p(T) by considering only surjec
tive *-homomorphisms in the above definition. In the same way we may define 
the dense Korovkin closure KorAV(T) by restricting attention to *-homomor-
phisms having dense image (this is of course the same as the surjective Korovkin 
closure if .A is a C*-algebra). If we only approximate the *-homomorphism 
S = id^4 in which case A necessarily must be a C*-algebra, we write Korv4)-p(T). 
It is not clear whether this coincides with the universal Korovkin closures defined 
above, but of course it contains them. 

It may be extracted from [Rob] or taken from [Bec2] that 

C*(T) cKor\s(T\J{t%tf | t€T}), 

where C*(T) is the C*-subalgebra generated by T . We will achieve equality for 
type I C*-algebras in Corollary 3.5, this partially answers a question posed in 
[Alt]. The analog 

J*(T) C Kor^ (T U {«* o t \ te T}) 

also holds (here J*(T) is the closed Jordan-*-algebra generated by T and o 
is the Jordan product). This can be proved along the lines of [Pr] and [LN] or 
taken from [Bec2]. 

Those algebras, which possess a finite universal Korovkin system will be char
acterized as expected, i.e. they should be finitely generated in some sense. When 
these results are applied to the case of a commutative Banach-*-algebra, some 
known results will follow quite easily. This is demonstrated among other things 
in the last paragraph. 

2. L iminal C*-algebras 

Let P(A) be the set of pure states of a C*-algebra A, and let r = 
cr(A, spanP(*4)) be the weak topology which is induced by the pure states 
on A. Then r is a locally convex Hausdorff topology and the involution * is 
r-continuous (since f(x*) = f(x) for all states / ) . Let us prove that the multi
plication is separately continuous: For this consider X{ —> x and y £ A\, where 
A\ is the C* -algebra obtained from A by adjoining a unit. If / £ P(A), then 
the GNS-construction shows that f(y* • y) G R + • P(A) C spanP(*4), and so 

1- 3 

y*x\y —> y*xy(r). Now the formula yx{ = —' ]P ik(y + ik)*xi(y + ik) proves 
4 k=o 

the claim. Conclusion: If B C A is a J*-subalgebra, then so is B . 
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Let {pi | i £ / } be a complete system of representatives of unitary equi
valence classes of irreducible representations of A. If J is a subset of I, then 
define 7rj := 0 pj . Then 7rfi := TTJ is called the atomic representation of A 

j€J 

([Pd, 4.3.7]). All the 7Tj may be considered as subrepresentations of 7ra in the 
obvious way, in particular they all act on the atomic Hilbert space Ha := 0 Hi. 

i€l 

So we identify L(Hi) with a subspace of L(Ha). Note that the weak operator 
topology (WOT) of L(Hi) coincides with the WOT of L(Ha) restricted to 
L(Hi). Let J be the set of finite subsets of I. Then it is a simple matter to 
show that lim nj(x) = na(x) for all x £ A in the strong operator topology. 

LEMMA 2 .1 . Let (XJ)I be a net in A and x £ A. Then the following are 
equivalent: 

(i) Xi —> x with respect to r . 
(ii) 7r.7(x?) —* TTJ(X) in the weak operator topology for all J £ J . 

(iii) Pj(xi) —> pj(x) in the weak operator topology for all j £ J . 

P r o o f . The equivalence of (ii) and (iii) is trivial. To prove that (iii) fol
lows from (i) observe that we have pj = TXf for some pure state / , where Try-
denotes the GNS-representation associated to / . Let £/ be the corresponding 
cyclic vector. If then £ £ Hf there is a y £ A such that ^f(y)if = £. Then 
(pj(xi)£,£) = f(y*Xiy) -» f(y*xy) = (pj(x)^£), i.e. we have convergence in the 
weak operator topology. The reverse implication is proved in a similar way using 
the fact that if / is a pure state, then 7rj must be unitarily equivalent to one 
of the pj 's. 

COROLLARY 2.2. If B C A is a J*-subalgebra, and if J £ J. then we have 
— T- — - W O T 

7Tj(B )C7Tj(B) 

COROLLARY 2.3. If na(xi) —•> 7ra(x) with respect to WOT, then Xi —> x with 
respect to r. 

LEMMA 2.4. Let B C A be a J*-subalgebra and x £ A\B . Then there is a 

J £ J such that nj(x) £ TTJ(B ) . 

P r o o f . First let us consider the case, where x is selfadjoint. Let us as-
r WOT 

sume that 7Tj(x) £ TVJ(B ) C TTJ(B) for all finite subsets J of I. Let 
r be a positive number greater than | |x| |. Then ||7Tj(x)|| < r for all J £ J. 
Since J*-subalgebras are closed with respect to functional calculus of selfad
joint elements, the proof of Kaplansky's density theorem which is given in 
([Pd, Th. 2.3.3]) tells us that {y £ nj(B) \ y = y*, ||y|| < r } is dense in 
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-WOT 
{y £ KJ(B) | y = y*, \\y\\ < r ) • Hence, if U is the set of all convex 

WOT-neighbourhoods of 0 G L(Ha), then there is a Tj^u = ^j(bj,u) £ ^J(B) 

such that the norm of TJJJ is less than r and TJJJ — TTJ(X) G -TTU , where 

f7 G W. Since nj(bj^u) G 7rj(C*(bj?(/)) C TTJ(B), we may assume that the 
norm of 6j5fJ is less than r . 

Now if f = 0 & E i? a is given one easily computes || (7ra(6j i t/)-7rj(6j,rj))f || 
iei 

< r2 J2 llfill2 . a n ( l s o na(bj,u) ~~ ^j(bj,u) —> 0 with respect to WOT for each 
i€I\J 

fixed UeU. 

Now consider the net (bj^u)j,u , where J x U carries the product order. 
Then 

Ka(bj,u) ~ na(x) = na(bj,u) - ^j(bj,u) + TJJJ - nj(x) + nj(x) - iva(x) 

^ \ u + \ u + \ u = u 

if J is big enough. This proves na(bj,u) —» 7ra(x) and by the above corollary 
we may conclude 6j?(/ —-» x with respect to r . 

Now let x G *4\B be arbitrary. If 7Tj( B ) contained 7rj(x) for all J G J, 
then it also would contain the real and imaginary part of these 7Tj(x), and by 
what we have proved above, the real and imaginary part of x would belong to 
B and so would x itself, a contradiction. 

THEOREM 2.5. Let A be a liminal C*-algebra, B C A a J*-subalgebra. Then 

Koxu
A(B) cBT.IfB is a * -subalgebra, then KOT\S(B) C IT . 

P r o o f . If x £ B , the above lemma gives us a finite subset J oi I such 

that nj(x) £ nj(B). But TTJ(B) C 7Tj(.4) C C[ 0 Hj) since A is liminal (the 

C stands for compact operators), and so 7rj(*A) is a dual C*-algebra. Therefore 
we know (see introduction) 7Tj(x) ^ K o r ^ / ^ j (TYJ(B)) D TTJ( Kor^(J3)) , this 
inclusion is trivial. So this gives us the desired result x £ Kor^ (B) . If B is a 
*-subalgebra, then the same arguments apply to the universal Korovkin closure 
with respect to Schwarz-maps. 

COROLLARY 2.6. Let A be a liminal C* -algebra, B a * -subalgebra. Then we 
have Kov^(B) = KOT^S(B) = B (norm closure). 

We have B C Kor^ (5 ) C Kovu
xs(B) C BT by the theorem above. Since 

Korovkin-closures clearly are norm closed, we have to show, that B = B . 
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But this is a simple application of the Stone-Weierstrafi theorem for type I 
C*-algebras ([Dxm, 11.1.8]). This result will be generalized in the next section. 

R e m a r k . Clearly KovAV(T) C Kors
AV(T) and the above proof shows 

equality if T is a *-subalgebra, since the *-homomorphism which has been used 
in [Bed] to show TTJ(X) fi KorJJ /^N (TTJ(B)) is the identity map on TTJ(A), 

which clearly is surjective. Therefore we arrived at the slightly stronger result 
Kor^ (£ ) = Kor^(B) = B if B is a *-subalgebra of A. 

3. T y p e I C*-algebras 

Things are pretty much easier if we restrict to unital C*-algebras and 
C*-subalgebras containing this unit. 

PROPOSITION 3.1 . Let A be a unital C* -algebra and B C A a nuclear 
C*-subalgebra containing the unit element of A. Then Kor^(B) — B . 

P r o o f . Since B is nuclear, there are kn G N and unital completely positive 
maps Rn: B —> M/Cn and Sn: Mfcn —> B such that 5 r i o Rn converges to id # 
pointwise in the norm topology, see [L] for a survey on nuclearity. By Arveson's 
extension theorem for completely positive maps (see [Arv], or [PI, Th. 6.5]), 
there are completely positive maps Rn: A —• Mfcn which extend Rn. Then 
Pn •= Sn o Rn is a completely positive map A —• B C A which is norm 
bounded by one and obviously \\Pnx — x\\ —> 0 if and only if x G B, hence the 
proposition. 

In order to apply this proposition we must look for those unital C*-algebras 
which only have nuclear C*-subalgebras. By [Bl] these are exactly the type I 
C*-algebras. 

COROLLARY 3.2. Let A be a unital type I C*-algebra and B a C*-subalgebra 
containing the unit element. Then KOT^(B) — B . 

In order to get rid of the unit element we prove 

LEMMA 3.3. Let A be a C* -algebra, T C A. Let A\ be the C*-algebra where 
a unit element has been adjoined. Then Kor^(T) = Kor^ ({1} U T) fl A. 

P r o o f . First let x G Kor^(T) . Let (Pi)i be a net of positive linear con
tractions A\ —> C and S: A\ —> C a *-homomorphism such that Piy converges 
to Sy for all y G {1} U T . Then restrict this situation to A and conclude 
PiX -+ Sx. Thus we have proved Kor^(T) C K o r ^ ({1} U T). 

Conversely let us consider x G K o r ^ ({1} U T) n A. Let (Pi)i be a net of 
positive linear contractions A —* C and S a corresponding *-homomorphism 
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such that Piy —> Sy for all y €T. Pi and S may be extended to unital maps 
of the same kind Pi,S: A\ —> C\. Then one easily concludes x G Kor^(T) . 

THEOREM 3.4. Le£ A be a type I C* -algebra and B C A a C* -subalgebra. 
Then we have Kor^(B) = P?. 

This obviously is a consequence of the last lemma and the last corollary. 

R e m a r k . In the first part of the proof of the above lemma wre had to 
restrict the *-homomorphism S. This restriction in general is not surjective. So 
we cannot say anything about the surjective Korovkin closure as we could in the 
liminal case. 

COROLLARY 3.5. Let A be a type I C*-algebra, T C A. Then 

KoT\s(TU{t*t,tt*\ * G T } ) = C * ( T ) . 

One inclusion has been mentioned in the introduction, the other one is a 
consequence of the above theorem. 

Next let us attack the question which type I C*-algebras possess finite uni
versal Korovkin systems. 

LEMMA 3.6. Let T be a Jordan subalgebra of the associative algebra A. As
sume x\... xn G T and {x{Xj | i,j = l...n}cT. Then T already contains 
the algebra which is generated by { x i , . . . , xn} . 

P r o o f . Let us prove inductively that T contains all products of length less 
than or equal to m which may be formed out of { x i , . . . , xn}. This holds by 
assumption for m = 1 and m = 2 . Now consider j / i , . . . , ym G {^i,..., xn} , 
where m > 3 . Then z := 2/2 • • • 2/Vr?-i G T by induction hypothesis, and for 
the same reason yiz,zym G T. But then T also must contain y i . . . y m — 
ym ° yiz — ymyi ° z + yi o zym , and this finishes the proof. 

THEOREM 3.7. Let A be a type I C*-algebra. Then the following are equiva
lent: 

(i) A possesses a finite universal Korovkin system with respect to all pos
itive contractions. 

(ii) A possesses a finite universal Korovkin system with respect to all 
Schwarz maps, 

(iii) A is a finitely generated C* -algebra. 

P r o o f . The implication (i) = > (ii) is trivial, since Kor^(T) C Kor^> 5(T) 
always holds. 
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To prove (ii) ==-.> (iii) let T be a finite universal Korovkin set with respect to 
Schwarz maps. Then T0 := TU{t*t,tt* \ t £ T} is finite and A = K o r \ 5 ( T ) C 
Kor^ ^(To) = C*(T) by the above corollary. 

Finally (iii) = > (i). If T is a finite set generating A, then we may assume 
that T consists of selfadjoint elements only. Then Ti := T U {t\t2 \ tut2 £ T} 
is also finite and A = C*(Ti) = J*(TX) C Kor^ (T1U{t*ot\ te Ti}) . 

4. L iminal Banach-*-Algebras 

In this section let A be a Banach-*-algebra. If x £ ^4, then \\x\\ + := 
sup7rGjR ||7r(x)|| < ||x||, where R is the class of all Hilbert space representa
tions of A, see ([Dxm, 1.3.7]). Then N := {x £ A \ \\x\\ + = 0 } is a closed 

two-sided *-ideal, and A/N may be completed to a C*-algebra A/N, which 
will be called the enveloping C*-algebra. A is said to be liminal if and only if 
its enveloping C*-algebra is. 

Let T be the set of positive functionals on A which satisfy f(x*) = f(x) 
and | / (x ) | 2 < Kff(x*x) for all x £ A, where Kf is some constant depending 
on / . 

For every / £ T we have / = ( T T / ( - ) C / ^ / ) by the well-known GNS-con-

struction ([Rick, 4.5.12]), and so f(N) — 0, hence / defines a positive linear 

functional / on A/N which can be extended to a positive linear functional / 

on A/N. In the same way we can define a representation nf of A/N. This 

representation may be extended to a representation WJ: A/N —> L(Hf), then 

f(x) = (7rf(x)£f,£f) extends / to a positive functional on A/N. 

Conversely if g £ (A/N) is a positive functional, then g o p £ T, where p 

is the canonical map onto the quotient algebra. And so we see that / <-> / is a 

bijective affine correspondence between T and (A/N) . 

LEMMA 4 . 1 . Let P: A —+ C be a Schwarz map, where C is a C*-algebra. 

Then P may be extended uniquely to a Schwarz map P: A/N —+ C . 

P r o o f . Let / £ S(C), the state space of C. Then / o P £ T and therefore 
f(Px) = 0 for all x £ N. Since / £ S(C) is arbitrary, we see P(N) = 0. So P 
induces a map P on A/N which is easily seen to be a Schwarz map. Therefore 
we may assume w.l.o.g. that N = 0. We also may assume that C C L(H) for 
some Hilbert space H, just use an isometric representation for this. The claim 
now is that P may be extended to a Schwarz map P: A/N —> C. 

If g £ C , then g is a linear combination of positive functionals and so goP 
is a linear combination of elements in T. This implies that there is a unique 
|| • II* -continuous extension g o P of g o P. 
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Now let x G A. Define c/>x: H2 —> C by </>x(€,ri) := £ ® ^ o P(x), where 
£ ® 77 G C is defined by f ® 77(2/) = (y^rj) • It *s e a s v to see that 0^ is a 
sesquilinear form on H. We claim, that it is continuous. For this let (xn)n 

be a sequence in A such that \\xn — x\\* —> 0. If g G C , then f joP is 
|| • ||*-continuous and so (P(xn)(t,r]) = £ ® 77 o P(xn) is a Cauchy sequence. 
Since WOT-Cauchy sequences are bounded by the uniform boundedness prin
ciple we see that | |P(x n ) | | is bounded by a constant K, say. Now |0x(^j^) | — 

\Z®V°P(x)\ = l im|e®r,oP(x n ) | = lim|(P(xn)e,t7>| < K • \\i\\ • ||r.||, and so 
the continuity of (f)x is established. 

But then there must be a y G L(H) such that (^(£,77) = (y^v) - Define 

P(x) = y . It is easy to see that P extends P and is linear. Since ( P(x*x)£, £) = 

^ ® c; o P(x*x) > 0, P is positive, hence continuous, hence a Schwarz map and 

uniquely determined. Moreover P(A)C P(A) C C, and this finishes the proof. 

THEOREM 4.2. Let A be a liminal Banach-* -algebra, B C A a * -subalgebra. 

Then KoT\s(B) = BMm . 

P r o o f . Since B clearly is contained in the Korovkin closure, we can prove 
one inclusion by showing that the Korovkin closure in question is || • ||* -closed. 
But this is very simple since all Schwarz maps and *-homomorphisms involved 
are || • ||* -continuous by the above lemma and hence uniformly bounded by 1 

with respect to the C*-norm. So we may assume B = B * and are left to 
show KOTU

AS(B) CB. 

So consider x G A \ B. Let p: A —> A/N be the canonical map. If we 

had p(x) G p(B), then p(x) — l imp(x n ) , xn G B with respect to the C*-norm 

on A/N . This implies \\x — xn | |* = ||p(x) — p(xn) | |* —+ 0, and so x G B = B . 

Therefore we must have p(x) £ p(B), and this set coincides with 

Kor^y-r ( p ( P ) ) by section 2. Hence there is a net (Pi)i of Schwarz maps 

Pi: A/N —• C and a *-homomorphism S: A/N —> C such that P{(z) —• S(z) 

for all z G p(B), but PiiKp(x)) —» S(p(x)) does not hold. Now use the net 

(PiO p)i and the *-homomorphism Sop to conclude that x £ Koi\s(B). 

Let a := a(A,T) be the initial topology induced by T. Since B is convex, 

the usual arguments show B — B . 

COROLLARY 4 .3 . Let A be a liminal Banach-*-algebra. Then A has a finite 
universal Korovkin system if and only if it is finitely generated as a a-closed 
*-algebra. 

R e m a r k s . An examination of the above proof immediately shows that we 
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have the slightly stronger result Kord
AS(B) = B * . 

Let us say that A is of type I if the enveloping C*-algebra is of type I. 
Then the same arguments which have been used to prove the above theorem 

yield KorAS(B) = B * , but whether this coincides with the dense Korovkin 
closure is unknown to me. 

5. Examples 

5.1. Commu tat ive Banach-*-algebras. 

Let A be a commutative Banach-*-algebra. Clearly A is liminal and so the 
results of the last section are applicable. In order to arrive at a nicer description 
let A*4 be the subset of the Gelfand spectrum A ^ which consists of all hermitian 
homomorphisms (i.e. f(x*) = f(x)). Obviously A ^ = A^ilT is closed in A .4, 
furthermore A ^ U {0} is compact. 

THEOREM 5.1. Let A be a commutative Banach-* -algebra. Then the following 
are equivalent: 

(i) A has a finite universal Korovkin system with respect to Schwarz maps. 
(ii) Finitely many elements of A separate A*4 U {0} . 

P r o o f . Let T be a finite universal Korovkin system, let A*(T) be the 
*-algebra generated by T. Then A = Kox\s{T) C Koru

AS (A*(T)) = A^fj" . 

So A*(T) must separate the points of J7 , in particular it must separate the 
points of A*4 U {0} , and so does T. 

To prove the converse consider T\ := {/ G T \ | / ( x ) | 2 < f(x*x)} which is 
a convex and w*-compact set. Observe that ex(T\) C A*^ and this obviously 
is a Baire set in the w* -topology of T\. By the well-known Choquet-Bishop-
Meyer-de-Leeuw theorem there is a measure [if concentrated on A*4U{0} such 
that f(a) = J a((j)) dfif(4>) for all o E . 4 . 

Now let T be a finite set in A which separates the points of A ^ U {0} . 
Then A*(T)A is a subalgebra of C0(A*4) which separates the points and does not 
vanish in a point. Since the elements of A*4 are hermitian, A*(T)A contains the 
conjugates of all its elements and so is dense in C0(A*4) by the Stone-Weierstrafi 
theorem. 

Now let f,g € Ti satisfy / | ^* t j 1 ) = O\A*(T) ' Then for all a G A*(T) we 

have J a dfif = f(a) = g(a) = J a dfig and hence /I/|/^* = /Ig|/\* • ar1d 

finally / = g. So A*(T) separates the points of T, and so A = A*(T) = 
KOT\S (TU{t* ot\ te T}) which finishes the proof. 
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R e m a r k s . The universal Korovkin closure in [Alt] is defined in a different 
way, i.e. all C*-algebras C appearing in the definition of the Korovkin closure 
are supposed to be commutative. But since we have KorAS(B) — KOYAS(B) 

for subalgebras B these two notions of Korovkin closure coincide. This does not 
seem to be obvious. 

This also makes clear why the more difficult proof for liminal C*-algebras 
which has been given in paragraph 2 is useful. It gives additional information 
about the surjective Korovkin closure, and this admitted a proof of the fact that 
the universal Korovkin closure of a liminal Banach-*-algebra coincides with the 
dense Korovkin closure which I do not know to hold in the type I case. 

If A has a bounded approximate identity with bound 1, then it is easy to see 
that all positive linear contractions from A into commutative C*-algebras are in 
fact Schwarz maps. So the above results easily lead to Korovkin type theorems in 
commutative Banach-*-algebras with a bounded approximate identity (bound 1). 
For example in the end of section 2 of [Alt2] it is stated that the commutative 
C*-algebra C(X), where X is a compact Hausdorff space, has a finite universal 
Korovkin system if and only if finitely many functions separate the points of X . 
This also may be deduced from the facts stated above. Related questions are 
discussed for example in [Alt2], [Alt], [Pa]. 

5.2. Group Algebras. 

Let A be a, Banach-*-algebra having a bounded approximate identity. Then 
the set T of section 3 coincides with all positive functionals, and so A*4 — A ^ . 
If G is a compact group (or more generally a Moore group), then L1(G) only 
admits finite dimensional irreducible representations, and so L1(G) is liminal 
and the results of section 3 are applicable. If G is commutative, then Ll(G) 
possesses a finite universal Korovkin set if and only if finitely many elements of 
Ll(G) separate GU {0} . If in addition G is totally disconnected, we know that 
L1(G) is a Stone-Weierstrafi algebra ([Rud, 9.3]). This yields 

THEOREM 5.2. Let G be a locally compact abelian group such that G is totally 
disconnected. Then Ll(G) has a finite universal Korovkin system if and only if 
Ll(G) is a finitely generated Banach-*-algebra. 

In fact, such a theorem may be established for any semisimple commutative 
Banach-*-algebra which is generated by its idempotents, since such an algebra 
is a Stone-Weierstrafi algebra (in fact, this has been used to prove the above 
Stone-Weierstrafi result for Ll(G) in [Rud]). 

5.3. The Schatten Classes. 
Let Cp be the pth Schatten class, 1 < p < oo, on a Hilbert space FT, 

recall that C^ coincides with the ideal of compact operators. Then Cp does 
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not possess a bounded approximate identity (if p < oo). And indeed there are 

positive functionals not in T'. If C' is identified with Ca (where 1 = 1) 
P i \ p q / 

in the usual way, then it is not hard to see that T — C'p C\ C\ = C\. In the 
case p — 1 we have C[ = L(H). It is easy to derive from this result that the 
enveloping C*-algebra is C^ , hence liminal. The question, whether Cp has a 
finite universal Korovkin system with respect to Schwarz maps, does not depend 
on p. And the answer is, it has. Just take an irreducible operator t G C\, then 
{1,£*£,1i*} will be such a system for any p. 

REFERENCES 

[Alt2] ALTOMARE, F . : On the Korovkin approximation theory in commutative Banach alge-
Ъras, Rendiconti di Matematica (4) 2 (1982), 755-767. 

[Alt] ALTOMARE, F . : Korovkin closures in Banach Algebras. In: Proc. of the IXth Conf. in 
Operator Theory, Timisoara-Herculane 1984, pp. 4-14. 

[Aгv] ARVESON, W . : Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224. 

[Bec2] B E C K H O F F , F . : Korovkin Theorie in Algebren. Schriftenreihe Math. Inst. Univ. Münster 
2. Ser. Heft 45, Univ. Münster, Münster, 1987. 

[Becl] B E C K H O F F , F . : Korovkin theory in normed algebras, Studia Math. 100 (3) (1991), 
219-228. 

[Bl] BLACKADAR, B . : Nonnuclєar subalgebras of C* -algebras, J . Operator Theory 14 (1985), 
347-350. 

[Dxm] DIXMIER, J . : C* -algebras. North Holland Math. Library, North-Holland, Amsterdam-
New Yoгk, 1981. 

[L] LANCE, E. C : Tensor products and nuclear C* -algebras. In: Proc. of Symp. in Pure 
Math. Vol. 38, Part I, Amer. Math. S o c , Providence, RI, 1982, pp. 379-395. 

[LN] LIMAYE, B. V . — N A M B O O D I R I , M. N. N . : Korovkin type approximation on C*-algebras, 
J. Approx. Theory 34 (1982), 237-246. 

[Pa] P A N N E N B E R G , M.: Korovkin approximation in Waelbroeck algebras, Math. Ann. 274 
(1986), 423-437. 

[Pd] P E D E R S E N , G. K.: C* -Algebras and Their Automorphism Groups, Academic Press, 
London-New York-San Francisco, 1979. 

[Pl] POULSEN, V. I . : Completely Bounded Maps and Dilations. Pitman Res. Notes Math. 
Ser. 146, Longman, Sci. Tech. Harlow, 1986. 

[Pr] P R I E S T L E Y , W. M.: A noncommutative Korovkin theorem, J. Approx. Theory 16 (1976), 

251-260. 

[Rick] R I C K A R T , C : General Theory of Banach Algebras, van Nostrand, New York, 1960. 

[Rob] R O B E R T S O N , A. G . : A Korovkin theorem for Schwarz maps on C* -algebras, Math. Z. 

156 (1977), 205-207. 

641 



FERDINAND BECKHOFF 

[Rud] RUDIN, W . : Fourier Analysis on Groups, Interscience publishers, New York-London, 
1962. 

Received January 24, 1992 Mathematisches Institut 

Revised December 3, 1992 der Universitat Miinster 

Einsteinstrafie 62 

48149 Miinster 

Germany 

642 


		webmaster@dml.cz
	2012-08-01T08:52:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




