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ABSTRACT. For r > max{p, q}, let F(p, o; r) denote the minimum number of 
vertices in a graph G tha t has the following properties: 

(1) G contains no complete subgraph on r vertices, 
(2) in any green-red colouring of the edges of G there is a green complete 

subgraph on p vertices or a red complete subgraph on q vertices. 

We show tha t F(3, 3; 5) < 16, which improves a recent result due to E r i c k s o n . 

For r > max{p , q} , let the Folkman number F(p1 o; r) be the minimum number of vertices 
in a graph G tha t has the following properties: 

(1) G contains no complete subgraph on r vertices, 
(2) in any green-red colouring of the edges of G there is a green complete subgraph 

on p vertices or a red complete subgraph on q vertices. 

The existence of such a non-negative integer was proved by F o l k m a n [2]. If r > R(p,q) 
( R(p,q) is the Ramsey number), then clearly F(p, o;r) = B(p, q). 

Very little is known about the Folkman numbers in the case r < B(p, q). The only known 
precise result F(3, 3; 6) = 8 was established by G r a h a m [3]. The corresponding graph is 
C:> -t- C3 • the join of a cycle of length 5 and a cycle of length 3 . Note tha t the join Ci -f G>2 
of two graphs G\ and C2 is the graph whose vertex set is the union of the vertex sets of G\ , 
G2 , and whose edge set is the union of the edge sets of G\ , C2 , toge ther with the set of all 
possible edges joining a vertex of G\ to a vertex of C2 • 

The only Folkman number tha t has been bounded reasonably is F(3, 3; 5) . The lower bound 
F(3, 3; 5) > 10 is due to L i n [6]. G r a h a m and S p e n c e r [4] have shown F(3, 3; 5) < 23. 
hater the upper bound was improved to 18 by I r v i n g [5] and recently to 17 by E r i c k s o n 
| 1 | . E r i c k s o n conjectured that F(3,3;5) — 17. The aim of this note is to disprove his 
conjecture by showing that F(3, 3; 5) < 16. 

As in [1], our proof is based on the following observation. 

L E M M A . [1] If C is a, connected graph and C5 -f- C has been green-red coloured with no 
monochromatic triangle, then C is monochromatic. 

P r o o f. Suppose C is not monochromatic. Then in C there is a green edge vw adjacent 
to a red edge wx. At least two edges of the same colour (say green) from the vertex w have 
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to be joined to some adjacent vertices y and z in C5 . As C5 + C has no green triangle, each 
of the edges vy, vz, yz is forced to be red which is a contradiction. • 

T H E O R E M . We ha 
F(3, 3; 5) < 16 . 

P r o o f . Denote by W the union of three cycles X -- abcde, Y — afgdh. Z — aijdk 
of length 5 whose vertices are given in cyclic order. Denote by H the graph with vertices 
1 ,2 ,3 ,4 ,5 and edges 12, 13, 23 , 24, 35. Let H(2,3,4,5), H(l, 2, 4 ) . and H(l,3.o) denote the 
vertex-induced graph of H for the vertex sets { 2 , 3 , 4 , 5 } , {1,2 ,4} and { 1 . 3 . 5 } . respectively. 

We construct a graph C of order 16 to be the union of the graphs 
X + H(2, 3, 4, 5) , Y + H(l, 2, 4) , and Z + H(l, 3, 5) . 

As W is triangle free, any complete subgraph K5 of C must contain the vertices 1.2.3 
which form a triangle in H. But in W there is no edge whose vertices are joined with each of 
the vertices 1 ,2 ,3 . Therefore C contains no K5 . 

Suppose C has been coloured with no monochromatic triangle. By applying Lemma we 
get that : 

• the edges 24, 23 , 35 are of the same colour (in X + H(2.3, 4.5) ). 
• the edges 12, 24 are of the same colour (in Y + H(l, 2. 4) ) , 
• the edges 13, 35 are of the same colour (in Z + H(l, 3. 5)) . 

These facts yield the existence of the monochromatic triangle 123 which is a contradiction 
proving the theorem. • 
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