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P U R E POWERS AND P O W E R CLASSES 

IN RECURRENCE SEQUENCES 

P E T E R K I S S 1 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . Let G be a linear recursive sequence of order k satisfying the 
recursion Gn = AiGn-i + ••• + AfcCn-/e- I*1 c a s e k = 2 it is known that 
there are only finitely many perfect powers in such a sequence. R i b e n b o i m 
and M c D a n i e 1 proved for sequences with k = 2 , Go = 0 and G\ = 1 
that in general for a term Gn there are only finitely many terms G m such that 
GmGn = x2 for some integer x. In the general case, with some restrictions, we 
show that for any n there exists a number ao > depending on G and n, such that 
the equa t ion GnGx = wq in integers x , uj, q has no solution with x > n and 
q > qo> 

Let R = R(A, B, RQ,RI) be a second order linear recursive sequence defined 
by 

Rn = Ai?n_i + BRn„2 ( n > 1), 

where A, J5, i?o and i?i are fixed rational integers. In the sequel we assume 
that the sequence is not a degenerate one, i.e. a//3 is not a root of unity, where 
a and (3 denote the roots of the polynomial x2 — Ax — B. 

The special cases J?(l, 1,0,1) and i?(2,1,0,1) of the sequence R are called 
the Fibonacci and the Pell sequence, respectively. 

The squares and other pure powers in sequences R were investigated by 
many authors . For the Fibonacci sequence C o h n [2] and W y 1 i e [22] showed 
that a Fibonacci number Fn is a square only when n = 0 ,1 , 2, or 12.. P e t h o 
[11], L o n d o n and F i n k e l s t e i n [8], [9] proved that Fn is a full cube 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11B37. 
K e y w o r d s : Recursive sequences, Perfect powers in sequences. 
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only if n = 0 ,1 , 2, or 6 . From a result of L j u n g g r e n [7] it follows that a 
Pell number is a square only if n = 0 , 1 , or 7, and P e t h 6 [12] showed that 
these are the only perfect powers in the Pell sequence. Similar, but more general 
results were shown by M c D a n i e 1 and R i b e n b o i m [10], R o b b i n s 
[18], [19] C o h n [3], [4], [5], and P e t h o [14]. A general result was obtained 
by S h o r e y and S t e w a r t [20]: 

Any non degenerate binary recurrence sequence contains only finitely many pure 
powers which can be effectively determined. 

This result also follows from a result of P e t h 6 [13]. 

Another type of problems was studied by R i b e n b o i m and M c D a n i e l . 
For a sequence R we say that the terms Rm, Rn are in the same square-class 
if there exists a non zero integer x such that 

J*^?nJ^n % 

A square-class is called trivial if it contains only one element. 

R i b e n b o i m [15] proved that in the Fibonacci sequence the square-class 
of a Fibonacci number Fm is trivial, i.e. the equation 

rm^y = % 

has no solution in non-zero integers x and y 7̂  m , if m ^ 1, 2, 3, 6, or 12 and for 
the Lucas sequence L( l , 1, 2,1) the square-class of a Lucas number Lm is trivial 
if m 7̂  0 ,1 , 3 or 6. For more general sequences R(A, B, 0 ,1) , with (A, B) = 1, 
R i b e n b o i m and M c D a n i e l [16] obtained that each square-class is finite 
and its elements can be effectively computable (see also R i b e n b o i m [17]). 

For general recursive sequences of order larger than two we have fewer results. 

Let G = G(A±,..., Ak, G o , . . . , Gk-i) be a kth order linear recursive se
quence of rational integers defined by 

Gn = -AiGn_i + A 2 G n _ 2 + • • • + AkGn-k (n > k - 1), 

where A\,..., Ak and G o , . . . , Gk-i are not all zero integers. Denote by a = 
a i , a2,..., as the distinct zeros of the polynomial xh — A\xk~x — A2x

k~2 — ... 
— Ak • Assume that a, a2,..., as has multiplicity 1, m2,... , ms respectively, 
and |a | > |c^| for i = 2 , . . . , 5 . In this case, as it is known, the terms of the 
sequence can be written in the form 

Gn = aan + r2(n)an + • • • + rs(n)an (n > 0 ), (1) 
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where r̂  (i = 2, . . . , 5 ) are polynomials of degree m^ — 1 and the coeffi
cients of the polynomials and a are elements of the algebraic number field 
Q(a , c^2, • • •, &s). Under some natural conditions S h o r e y and S t e w a r t 
[20] proved that the sequence G does not contain qth powers if q is large 
enough. This result follows also from [6] and [21], where more general theorems 
are presented. 

The purpose of this note is to show a result, similar to those mentioned above, 
for general sequences. 

THEOREM. Let G be a kth order linear recursive sequence satisfying the above 
conditions. Assume that a / 0 and Gi ^ aa1 for i > n$ . Then for any inte
ger n, with Gn ^ 0, there exists a number r/o, depending only on n and the 
sequence, such that the equation 

GnGx = w« (2) 

in positive integers x, w, q has no solution with x > n and q > r/o • 

For the proof of our theorem we need a result due to B a k e r [1]. 

LEMMA. Let 71 , . . . , 7-t; be non-zero algebraic numbers. Let M i , . . . , Mv be up
per bounds for the heights of 7 1 , . . . , j v , respectively. We assume that Mv is at 
least 4 . Further let bi,. .. , b7;_i be rational integers with absolute values at most 
B and let bv be a non-zero rational integer with absolute value at most Bf. We 
assume that Bf is at least three. Let L be defined by 

L = bi log 71 + 1- bv log <yv , 

where the logarithms are assumed to have their principal values. / / L / 0 ; then 

\L\ > exp ( -C( logB ' log Mv + B/Bf)) , 

where C is an effectively computable positive number depending only on the 
numbers M i , . . ., Mv-i, 7 1 , . . . , j v . and v (see [1; Theorem 1] with 6 = l/Bf). 

P r o o f of t h e t h e o r e m . We can suppose that n > no and n is 
sufficiently large since by [20] or [6] it follows that for any given d the equation 

dGx = wq 

implies that q < q0. We can also assume, without loss of generality, that the 
terms of the sequence G are positive. 
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Let x, w and q be integers satisfying (2) . Then by (1) 

ti;« = a a * ( l + r 2 ( x ) l ( - S - ) X + . . . ) G n > (3) 

and so 
c\— < \ogw < C2~ (4) 

q q 
follows with some ci, C2 > 0, which depend on the sequence G, since 
V2{x){a2/a)x —> 0 as x —> oo and l o g G n ~ nlog|cvJ + log |a | < c^x. Using 
that x > no and the properties of the logarithm function by (3), with some 
C4 > 0, we have 

L = G„aoř 
l o g7^bd< e ~ C 4 X • (5) 

On the other hand, by Lemma with v — 4, M4 = w and B' = c/, we obtain the 
estimate 

L = | g l o g ^ - l o g G n - log a - x l o g a | > e-c(iogqiogw+x/q), (6) 

where C > 0 depends on n. By (5) and (6), using (4) we obtain 

C4X < C(log q log w + C5 log w) < c 6 log q log zU , 

from which 
x < C'Y logqlogw (7) 

follows with some c5,C6,cT > 0. By (4) and (7), it follows that 

q log w < c2x < c 8 log q log w , 

and so 
q < c 8 l o g < j , 

which is impossible if q > qo = qo{n) • 
This contradiction proves our theorem. 
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