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APPROXIMATE COUNTING 

VIA EULER TRANSFORM 

HELMUT P R O D I N G E R 

(Communicated by Stanislav Jakubec ) 

A B S T R A C T . In th is short note we would like to emphasize how some elements 
of "g-ana lysis" (basic hypergeometric functions) allow some shor tcuts in the 
enumerative part . 

Approximate Counting might be described as follows. There is a counter C 
which is initially set to 1 and incremented randomly depending on the counter 
value. If this value is k, the probability that the counter will be increased by 
1, is 2~k . Otherwise, the counter value will stay the same. The idea is that 
after n random increments the counter should have a value close to log2 n. It 

is convenient to replace - by g. 

There is another useful way to imagine this procedure: There are the states 
1,2,. . . , and in one step one may either advance from state i to state z + 1 with 
probability ql, or stay in the state i with probability 1 — ql. The interesting 
parameter is the state that one reaches after n random steps, starting in state 
1. This is clearly the value of the counter C. 

The original analysis was performed by F 1 a j o 1 e t [2] and consists of an 
enumerative (or algebraic) part and an asymptotic (or analytic) part. The latter 
was done by the Mellin transform. In [5], some additional manipulations allowed 
to rewrite the sought quantities in such a way that an alternative asymptotic 
technique (Rice's method) could be used. See also the related papers [6], [7]. 

In this short note we would like to emphasize how some elements of "g-analy
sis" (basic hypergeometric functions) allow some shortcuts in the enumerative 
part. Let Hi(x) be the generating function, where the coefficient of xn is the 
probability that n random steps have led to state I. We find a rather explicit 
form for the bivariate generating function Yl Hi(x)yl, which is interesting in 

/ > i 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11B68. 
K e y w o r d s : Generating function, Eider transform. 
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itself and might lead to additional insight. We only use it here to find represen
tations for the expectation and the second factorial moment as alternating sums, 
with binomial coefficients and some simple quantities, which is essential for the 
use of Rice's method. One could avoid to use such explicit formulae and, using 
the (new) generating functions, derive the asymptotics directly by the ingenious 
method in [4]. However, here, we only deal with the enumerative part. 

We need a few concepts from q -analysis which are taken from [1]. 

q-Pochhammer symbol: 

(a)n := (1 - a ) ( l - aq)... (1 - aqn~x), (a)0 = 1, ( a ) ^ = lim (a)n . 
n—+oo 

Cauchy's formula: 

(a)nt
n _ (at)oo 

Heine's transformation: 

y , (a)n(b)nt
n

 = (&)oo(a*)oo V ^ (c/b)n(t)nb
n 

^ (q)n(c)n (c)oo(*)oo £?Q (<Z)n(at)„ 

Euler's transformation: If 

/0e) = Yl anxH ' 
n > 0 

then 

T^/(^r) = 5:(t(ll)(-»4«)'"-
n>0 v k=0 ' 

This is very easily computed directly and was used with great success in [3] and 

[4]-
The generating function H\(x) was computed in [2]. Using a decomposition 

of a path from 1 to I into stages, it is not hard to see that 

rr f \ X 1 X \ 1 — X / 

Hi{x) = — 

i = l 
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The coefficient of xn in ]T Hi(x) must be 1 for all n , since each path of length 
Z>1 

n must simply lead somewhere. Let us see how we find the formula 

£B<(v * 
1 - X 

l>\ 

by some properties of " q -analysis". It is equivalent to showing 

£ {-z)lq&) 

l>\ <«*)' 
= ~z, 

with z — • Let us show that 
x - 1 

- - - - - ПZ)t 

i>o <«*)' 

First, write 

( - l ) ' g ( . ) = (0 - 1)(0 - q)... (0 - g '- 1 ) = l i r n / U / e ) , . 

Then we can use the transformation of Heine and compute 

y ^ (l/e)i(ez)1 _ (q)j_ = (9)00(^)00 y ^ (^)n(g2:)nrjn 

~ (g*)z (g)z (gz)oo(^)oo r ^ (q)n(z)n 

Now we can perform the limit e —> 00 on the right hand side without problems 
and obtain 

(q)oo(z)oo sr^ _ ? n 

n>0 
£ føz)°° frl (<?)n 

We use the trivial fact (z)oo — (1 — ^(qz)^ for the first factor and Cauchy's 
identity (the special case which is attributed to Euler), which evaluates the sum 
to 1/(9)00, which gives us the desired 1 — z. 

Now let us attack the generating function of the expectations, 

_ _ H t . ( s ) . 
i>\ 
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For t h a t , we consider t h e bivar iate genera t ing function 

H(x,y) = YtHi(x)yl, 
/ > 0 

differentiate it w.r.t. y and evaluate at y — 1. We obtain 

x f^ (qz)i ' x -1 ' 

Using Heine's transformation as before, we get 

y^ (-yz)lq^) = (q)oo(yz)oc y > ( z ) w g n 

~ (?«)/ (^)oo ^ (<7)njyz)n 

For y = 1 we could evaluate the sum immediately. Now we transform the sum 
again by "Heine", with a = 0, b = z, c = yz and t = q and find (for the sum 
only) 

(z)oo V ^ (y)n(q)nZU 

(yz)oo(q)oo rf^ (g)n 
5 

which gives 

Я(x,y) = l ( l - г ) \ - > ) n Z ' \ 
n > 0 

-y — 

Now observe that 

Іy^ = - f ø ) n - l , 
í /=l 

n > 1 

x - 1 

so that the generating function of the expectations E(x) is 

E(X) = - 1 ( 1 - Z) J2(l)nZn+1 = (1 - z)2 $ > ) „ Z n • 

n>0 n>() 

According to Euler's transformation we have to extract the coefficient of zn in 

J±J • (i - zf YM)«z" = ^ - *) £fa)»*n. 
n>0 n>0 

572 



APPROXIMATE COUNTING VIA EULER TRANSFORM 

which is 

(g)n - (q)n-i = -qn(q)n-i 

for n > 1 and 1 for n = 0. Hence the expected value En is 

En = l-Y,(П

k)(-l)kqk(q)k-i, 
fc=l 

a formula already reported in [5]. 

To obtain the generating function ^ ( x ) for the second factorial moments 
we have to differentiate twice w.r.t. y and evaluate at y — 1. Observe that for 
n > 2 

y=i r~^ 1 -dyÀ ' ' y=i tťi l ~ 9 

Let us abbreviate 

Then 

Г» = E T 

/ 

fc = l 9 f c ' 

E2(x) = i r(l-,)-2Y2(g)nT?,y i + 1 

7 ? > 1 

As before, we have to extract the coefficient of zn in 

J+JE2(X) = -2(1-z)Y(q)nTn 

n>l 

which is 

-2((q)nTn - ( g ^ j T - i ) = 2,7"(?),,_!(T,,.! - 1). 

Hence the second factorial moment En is given by 

£»2) = _C(2)(-1)fr • Vc^-iC-^-x -1: 
k=i 

This is equivalent to the formula given in [5]. 

As stated before, asymptotics follow, as demonstrated in [5], by Rice's 
method. For the sake of completeness we cite the expectation E1} ('the av
erage value of the counter C after n random increments') and refer for the 
variance to the literature. 

En = log2 n + ^ + - - a< + 5(log2 n) + O(± 
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where 7 = 0 .577 . . . is Euler's constant, 

a = ] T --r = 1.606695 . . . 
k>i 

and S(x) is a periodic function of period 1, mean 0, small amplitude and known 
Fourier expansion. 

We would also like to mention that, since we have the explicit forms of the 
generating functions of the moments, an approach like the one in [4] would give 
the asymptotics even a little bit more directly. We do not work it out, because 
the computations are somehow similar to those which occur with Rice's method . 
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