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PRODUCTS OF SIMPLY CONTINUOUS
AND QUASICONTINUOUS FUNCTIONS!

JAN BORSIK

(Commaunicated by Ladislav Misik )

ABSTRACT. Functions which are products of simply continuous and quasicon-
tinuous functions are characterized here.

In [5], T. Natkaniec proved that a function h: R — R is a product of
quasicontinuous functions if and only if h is cliquish, and each of the sets h=1(0),
h=1((—=00,0)), h~1((0,00)) is the union of an open set and a nowhere dense
set. More precisely, he proved that such function is a product of 8 quasicontin-
uous functions. We shall show that 3 quasicontinuous functions are sufficient.
Moreover, we shall generalize this theorem for functions defined on a T3 second
countable topological space.

In what follows, X denotes a topological space. For a subset A of a topologi-
cal space denote by Cl A and Int A the closure and the interior of A, respectively.
The letters N, Q and R stand for the set of natural, rational and real numbers,
respectively.

We recall that a function f: X — R is quasicontinuous (cliquish) at a point
x € X if for each € > 0 and each neighbourhood U of x there is a nonempty
open set G C U such that |f(y) — f(z)| <e for each y € G (|f(y) — f(z)| < e
for each y, z € G). A function f: X — R is said to be quasicontinuous (cliquish)
if it is quasicontinuous (cliquish) at each point z € X (see [6]).

A function f: X — R is simply continuous if f~1(V) is a simply open set
in X for each open set V' in R. A set A is simply open if it is the union of an
open set and a nowhere dense set (see [1]).

By [1], the union and the intersection of two simply open sets is a simply
open set; the complement of a simply open set is a simply open set.
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If 7 C RX is a class of functions defined on X, we denote by P(F) the
collection of all functions which can be factored into a (finite) product of func-

tions from F. Further, denote by @, S and K the set of all functions which are
quasicontinuous, simply continuous and cliquish, respectively. Now, let

H= {f X — R; f is cliquish and the sets f_l((O, oo)) and
f7((=00,0)) are simply open} .

It is easy to see that @ C S and Q C H. In [7], it is shown that if X is
a Baire space, then every simply continuous function f: X — R is cliquish.
[4; Example 1] shows that the assumption “X is a Baire space” cannot be omit-
ted. Thus, if X is a Baire space, then S C H. It is easy to see that P(K) =K.

LEMMA 1. For an arbitrary topological space X we have P(H) ="H.

Proof. Let fi,fo € H and f = f1 - fo. Then f is cliquish because
P(K) = K. Further, the sets f; ' ((—00,0)), f3 1 ((—00,0)), fl-l((O,oo)) and
fz_l((O, 00)) are simply open, and hence f1((~0,0)) = (fl_l((—oo,())) N
f{l((O,oo))) U (ffl((O,oo)) nft ((—oo,O))) is simply open. Similarly for
F71((0,00)). O

Therefore P(Q) C H, and if X is a Baire space, then also P(S) C H. We
recall that a m-base for X is a family A of open subsets of X such that every
nonempty open subset of X contains some nonempty A € A (see [8]).

LEMMA 2. (see [3; Theorem 1]) Let X be a Baire second countable Ts-space
such that the family of all open connected sets is a m-base for X . Then every
cliguish function f: X — R is the sum of two simply continuous functions.

LEMMA 3. Let X be as in Lemma 2. If f: X — R is a positive (negative)
cliquish function, then f s the product of two simply continuous functions.

Proof. Put g = |f|. Then Ing is cliquish, and, by Lemma 2, there are
simply continuous functions g;,¢2: X — R such that Ing = g1 + g2. The

functions f; = sign f - expg1 and fo = expgs are simply continuous and f =

fl'.f?- O

THEOREM 1. Let X be a Baire T3 second countable space such that the family
of all open connected sets is a w-base for X . Then P(S) = H. Further, every
function from H 1is the product of two simply continuous functions.

Proof. Let f € H. Put A = f~1((0,00)), B = f7'((=00,0)), C =

f£71(0). According to Lemma 3, there are simply continuous functions g1, gz :
Int A > R, hq,hy: Int B — R such that flIntA = g1-92 and flIntB = hy-hs.
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Now define functions fi, fo: X — R as follows:
gi(z) for z€IntA,
fi(z) =< hi(z) for z € IntB,
f(z)  otherwise;
g2(z) for ze Int A,
fa(z) = ¢ ho(z) for z € Int B,

1 otherwise.

Then f = fi - f». Let V be an open set in R. Since f;'(V)NIntA =
97 (V) is simply open and A, B and C are simply open, the set f; (V) =
(F7H(V)NInt AU (F7H(V)NInt B)U (f71(V)NInt C) U (f; (V)N ((A\Int A)U
(B\Int B)U (C\ IntC))) is simply open. Similarly for NV, O

LEMMA 4. (see [2; Theorem]) Let X be a T3 second countable space. Then
every cliquish f: X — R is the sum of three quasicontinuous functions.

LEMMA 5. Let X be as in Lemma 4. If f: X — R is a positive (negative)
cliquish function, then f is the product of three quasicontinuous functions.

Proof. Similar as in Lemma 3. O

LEMMA 6. (see [9; Lemma 1]) Let X be a separable metrizable space without
1solated points. If A is a nowhere dense nonempty set in X, and B C X is an
open set such that ClA C C1B, then there exists a family (Knm)neN. m<n Of
nonempty open sets satisfying the following conditions: -
(1) ClKp;m CB\CIA (neN, m<n),
(2) CIK,;NCIK;; =0 whenever (r,s) # (i,j) (r,i €N, s<r, j<i),
(3) for each z € ClA, each neighbourhood U of z and an arbitrary m
there exists an n = m such that C1K, , C U,
(4) for each x € X \ C1 A there exists a neighbourhood U of = such that
the set {(n,m) : UNClKym # @} has at most one element.

LEMMA 7. Let G be an open subset of X and let f: X — R be a cliquish
function. Then the restrictions f|G and fICIG are cliquish functions.

We omit the easy proof. Remark that the restriction of a cliquish function
to an arbitrary closed set need not be cliquish. (Let C' be the Cantor set and
("= AUB, where A and B are dense disjoint in C'. Then f: R - R, f(z) =1
for x € A and f(z) = 0 otherwise, is cliquish, but f|~ is not cliquish.) The
following lemma is obvious.

LEMMA 8. Let G be an open subset of X, let f: X — R be a function, and
let x € C1G (z € G). If f|ClG (f|G) is quasicontinuous at x, then f 1is
quasicontinuous at x.
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THEOREM 2. Let X be a T3 second countable (=separable metrizable) space.
Then P(Q) =H. More precisely, every function from H is the product of three
quasicontinuous functions.

Proof. Let f € H. Denote by D the set of all isolated points of X . Put
B = X \ CID. Now denote by
G1=BnInt f71((0,00)),
G2 = BnNInt f7((-00,0)),
Gsz = BnlInt f71(0).

Then the set
A=B\(G1UG,UG3)=Bn((C1G1 \ G1) U (CIG2 \ G2) U (C1Gs \ G3))

is nowhere dense and ClA C ClB. Hence, by Lemma 6, there is a family
(Kn,m)neN, m<n Of nonempty open sets satisfying (1), (2), (3) and (4). Put

(oo} n
c=J | OKnm.
n=1m=1
Let j € {1,2}.
Let z € G; \ C. Then = ¢ Cl A, and hence, by (4), there is a neighbourhood
U of = such that {(n,m): UNCIKpm, # 0} has at most one element. Thus
there is (r,s), r 2 s such that UNCIK,, ,, = 0 for each (n,m) # (r,s). Then
G;NU\ClK,, C G;\C is a neighbourhood of z, and hence G;\C is an open
set.

By Lemma 7, the function f | G;\C is cliquish, and hence, by Lemma 5,
J

there are quasicontinuous functions #/, ¢}, t3: G; \ C — R such that
flojo =t 4.
Now let j € {1,2}, n€ N and m < n.

By Lemma 7, the function f |Cl Kpm NG, is cliquish, and hence, by Lemma 5

there are quasicontinuous functions g,’;’m’l, gi,m,Z’ gi,m’?,: ClK,m»NG; = R
such that

IO K 0 Gy = Frimt * Gnym,2 * Inym,3

Evidently, gi’m’i(m) # 0 for each ¢ € {1,2,3} and each z € C1K,, ,, NG;. If
ClK,»wNG; # 0, choose an arbitrary aﬁl,m € KnmNG;.Let W C CID\D be
a countable dense subset of C1 D\ D. Then W = {w; : i € M}, where w, # w;
for r # s and M C N. For each i € M there is a sequence (v})x in D converging
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to w; such that v} # v} for (i,k) # (r,s). Let Q\ {0} = {q1,¢2,93,--.} (one-
to-one sequence of all rationals different from zero).

For each i € M let H; = {v}, v}, v, vi,...}. Now, let \;: H; — (Q\{0}) xN
be a bijection, and let m: (Q\ {0}) x N— Q\ {0}, n(g-,s) = gr.

Put

(245]

2 oo
L= U U 9Enzm-s-
k=1n=1 m=1

Similarly as for G, \ C, we can prove that G3\ (C'\ L) is open. Now define
functions f1, f2, f3: X — R as follows:

( gi,3m_k’1(x) -gi,3m~k,k+1(ai’3m_k) if r € G;NClKn3m-k
3m —k < n),
J
z) " gm
g?—.%l(—]),i if z S Gj NnCl Kn,Sm
9n,3m,1(an,3m) (G €{1,2}, 3m <n),
f1 (CL') dm if z € G3 N Cl Kn,Bm
(3m £ n),
W(Az(x)) ifze H; (Z € M),
f(z) ifz € AU (ClD\ U{Hi)
iEM
U(Gs\ (C\ L)),
| () ifzeG;\C (j€{L2});
o J ] J
gn,3m,2($) gn,3m,1(an,3m) ifze GJ A Cl Kn,Bm
fm (j € {1,2}, 3m £ n),
J
. gn,Sm—l,J?(x) ifz e Gj N Cl Kn,3m—-1
In3m-1,2(%7,3m—1) G e{1,2},3m—1=n),
9 3m—22(2) if z € G; N Cl Kn,3m—2
G e{1,2},3m—2=n),
RO @
—— ifze H; (ieM),
W(Ai(x))
0 ifz€Gs\L,
1 ifz € AU(G3 N L)V
(CID\ U H)
i€EM
\ (=) itzeq;\C (€ {12}
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( J
In,3m—23(T) ,
7 3 2’; if z € G;NCLK,, 372
In,3m—2,3(0n,3m—2) (G €{1,2}, 3m —2 < n),
f3(z) = giL,Sm—k,B(I) ifz € G;NClIK, 3m—k
T (G €{1,2}, ke {0,1}, 3m —k < n),
1 ifre AUCIDUGS3,
[ () ifzeG;\C(je{1,2}).

Then f = f1-f2- f3.

We shall show that fi, f2, f3 are quasicontinuous. Let zo € X. Fix ¢ > 0
and a neighbourhood U of zg.

a) Let 29 € A. Let m € N be such that |g,, — f(z0)| < % According to (3).

there is n 2 3m such that Cl K, 3, C U. By (1), we have Cl K, 3,, N (G
Gy U G3) # 0.

al) If C1 K, 3m NG3 # 0, then G = K, 3, NG5 is an open nonempty sub et
of U and |fi(y) — fi(zo)| = |¢m — f(z0)] < & for each y € G.

a2) If C1K,3m NG; # 0 for j € {1,2}, then H = K,, ,,NG; C U i
nonempty open. Since 92,3m, is quasicontinuous at a{lysm, there is an open
nonempty G C H such that

?

j j €
Ig%,;im,l(y) - gZL,Sm,l(aiz,:}m)l < m‘gi,?’m,l(air 31 L)|
m
for each y € G. Hence, for each y € G we have

ggl,37n,1(y) “qm _ g‘]z.Sm,l(a‘Zz,Sm) “dm

J J J J
gn,3m,1<an,3m) gn,.‘im,l(an,Jm) 2

|f1(y) = fi(a), 3m)| =

and

|f1(y) - fl(x0)| é )fl(l/) - fl(ai,Brn” + |f1(a¥7,,3m) - f1($0>'
%+|Qm_f(l‘o)| < €.

AN

Thus f; is quasicontinuous at xg € A.
b) Let zo € C1D \ D. Choose w; € (C1D\ D)NU and véj € HiNU such
that '
|7T()\i(v%j)) - f($0)| <e.
Then {v};} is an open nonempty subset of U and |f1(v5;) = fi(zo)l < &, thus
f1 is quasicontinuous at zo € C1D\ D.
c) Let o € A. According to (3), there is n € N such that ClK,2CU.
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cl) If C1K,2NGs #0, then G = K, N G3 is an open nonempty subset of
U and |f2(y) — f2(zo)| =0 for each y € G.
c2) If Cl1K,2NG; # 0 for j € {1,2}, then there is an open nonempty
subset G of Ky 2 NG such that \gn,z,z(y) gn 2, 2(an 2)\ < 5l9n,z,2( n, 2)| for
each y € G. Therefore for each y € G we have
|f2(y) = f2(z0)| = |fo(y) — fa(ar, 5)| + | fa(aF, o) — fa(zo)]

_ gfz,z,z(y) gin( 312) fl-1l<e
9i,2,2(a11,2) gn22( 2)

Therefore fo is quasicontinuous at zg € A.
d) Let zop € C1D \ D. Then there are w; € (C1D\ D)NU and v, , € U.
Then {v}; ,} is an open nonempty subset of U and |fz(vh;_,) — f2(zo)| = 0.
e) Let 2o € A. Then, by (3), there is n € N such that C1K,,; C U, and the
quasicontinuity of fs at xy we can prove similarly as for fs.
The quasicontinuity of f;, fo and f3 at other points follows from Lemma 8.
a

Problem 1. Can the assumption “the family of all open connected subsets
of X is a m-base for X” in Theorem 1 be omitted?

Problem 2. Isevery function f from H (X asin Theorem 2) the product
of two quasicontinuous functions?

Evidently, a positive answer to Problem 2 implies a positive answer to Prob-
em 1.

Remark 1. The assumption “X is T3 second countable” in Theorem 2
cannot be replaced by “X is normal (but not T ) second countable”. If X =R
vith the topology 7, where A € T if and only if A =0 or A = (a,00) (where
a € R), then every quasicontinuous function on X is constant (see [2]) but there

are nonconstant functions from H (e.g., f(z) =0 for z <0 and f(z) =1 for
r>0).

Remark 2. If X is a Baire space, then 'H = H*, where
H* = {f: X - R; f is cliquish and f~'(0) is simply open}.
Evidently, H C H*. If there is f € H* \ H, then the set f—l((O,oo)) is not
simply open. Hence there is an open nonempty set E such that FE is disjoint
from f~1(0), and the sets f~1((0,00)) and f~*((—o0,0)) are dense in E. Since

f is cliquish, the set {:c € E: f(z) > %} is nowhere dense in E for each
n € N. Then the set

E:@{er:fm)>—}u {er;f(x)<__1_}
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is of the first category, which is a contradiction.
For an arbitrary X this equality need not hold. If Q = A U B, where A
and B are dense disjoint in Q, A = {a1,a2,...}, B ={b1,bs,...} (one-to-one

sequence), then the function f: Q = R, f(a,) = %, fbn) = —%, belongs to
H*, but it does not belong to H.
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