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TRANSCENDENTAL SEQUENCES 1 

JAROSLAV H A N C L 

(Communicated by Stanislav Jakubec) 

ABSTRACT. We in troduce the so called transcendental sequence and prove a 
criterion for a sequence to be transcendental. 

There are a lot of papers concerning the irrationality (see, e.g., [2], [3], [4], 
[5]), or the transcendency (see, e.g., [1]) of infinite series. In a previous paper [5], 
the author proved a criterion for irrational sequences. In this paper, we prove 
a theorem concerning the transcendental sequences. A similar method was used 
by K o s t r a in [6]. 

DEFINITION. Let {an}n
cL1 be a sequence of positive real numbers. If for every 

OO 

sequence {cJl}n
<L1 of positive integers the number ]T] l/(ancn) is transcenden-

7 1 = 1 

tcil, then the sequence {an}n
<

=1 is called transcendental. 

THEOREM. Let a , f3 be positive real numbers such that a > /3 and {an/6n}£cL1 

be a sequence, where an and bn are positive integers. If 

an > 2(3 +°)" (1) 

and 
bn < 2 ^ " (2) 

hold for every large positive integer n, then the sequence {an/bn}n
<)

=zi is tran­
scendental. 

P r o o f . It is sufficient to prove the transcendency of the series II — 

zC bn/an. (If we take a sequence {cn}n
<Ll of positive integers and put An = 

7 1 = 1 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11J81. 
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cnan, then the sequence {AJbn}n%zl will fulfill (1) and (2) for every large n.) 
(1) implies that there is a positive real number 7, (3 < 7 < a such that 

a n > 2 ( 3 + ^ ) n (3) 

holds for every large n . Let c be a positive integer such that for every n > c 

(1) and (2) hold. Then we take a positive integer B such that for every n < c, 

an < 2 ( 3 + 7 ) . Let the number of an such that an < 2^^n be equal to s. 

The inequality (1) then implies, that there is a positive integer N such that the 

number of an satisfying an G ( 2 ( 3 + 7 ) , 2^3 + 7) ) is less then or equal to N — B — 

s - 1. The number of intervals ( 2 ( 3 + 7 ) S , 2 ( 3 + 7 ) S + 1 ) , . . . , < 2 ( 3 + ^ ( J V _ 1 ) , 2( 3 + 7 > N ) 

is N — B. Thus there is a smallest positive integer M, B < M < N, such that 

the number of an satisfying an G (2^ 3 + 7 ) , 2( 3 + 7 ^ ) is less then M - B - s. 

Because the number M is the smallest number fulfilling the above assumption, 

for every positive integer K {B < K < M ) , the number of integers an such 

that an G ( 2 ( 3 + 7 ) * , 2 ( 3 + 7 ) M ) is less then or equal to M - K - 1. Thus, there 

is no an contained in ^2( 3 + 7 ) , 2^3 + 7) ) . These conditions imply 

П ӣn = П ӣn П ӣn 
anє(0,2(*+'r)M-1) anє(0,2(3+-ү)ß) a n є ( 2 ( 3 + 7 ) ß ^ + ^ ' 1 ) 

м - i м - i 
, Í U - B £ (3+7)J E (3+7)J / , . v.м „ , . ч 

< 2 s( 3+т) 2І=B+S < 2j=в < 2( + 7 ) ' ( 2 + 7 ) . 

(4) 

ay 
(5) 

On the other hand, if B is large enough, then 

J2 bJan < J2 bJan + J2 bJan 
a n > 2 ( 3 + ^ ) M _ 1 a n > 2 ( 3 + 7 ) M _ 1 n>M 

n<M 
00 

< M2 ( 3 + / 3 ) M -( 3 + 7 ) M + V 2(3+ / i)n-(3+ 
n=M 

< 2 2 ( 3 + / 3 ) M - ( 3 + 7 ) M 

holds. If 

Plg = ' XI 6n/an ' 
a n <2( 3 +-v) M _ 1 

then, from (4) and (5), it follows 

\H-P/q\= Y.KK < 2^+vM-^M< ,----, 
a n > 2 ( 3 + 7 ) M " 1 

where 0 < e < 7 . If we now apply R o t h ' s theorem (see, e.g., [7]), we obtain 
the transcendency of the number H. • 
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COROLLARY. The sequence {24 }^=1 is transcendental. 

Rema rk . The problem remains open whether {23 }™=1 is a transcendental 
sequence. 
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